Electronic Supplementary Information for

Versatile Construction of Functionalized Tropane Ring Systems Based on Lactam Activation: Enantioselective Synthesis of (+)-Pervilleine B

Su-Yu Huang, Zong Chang, Shi-Chuan Tuo, Long-Hui Gao, Ai-E Wang, and Pei-Qiang Huang*

Department of Chemistry, College of Chemistry and Chemical Engineering, and Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, Fujian 361005, China.

Contents

General Methods 1
Experimental Procedures 2
Reference 20
NMR Spectra 22

Experimental

General Methods. Melting points were uncorrected. Infrared spectra were measured using film KBr pellet techniques. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} with tetramethylsilane as an internal standard. Chemical shifts are expressed in δ (ppm) units downfield from TMS. Mass spectra were obtained using electrospray ionization and an ICR analyzer (ESI-MS) for high resolution mass spectra (HRMS). Silica gel (300-400 mesh) was used for flash column chromatography, eluting (unless otherwise stated) with ethyl acetate/hexane. Ether and THF were distilled over sodium benzophenone ketyl under N_{2}. Dichloromethane was distilled over calcium hydride under N_{2}.

General procedure for the formation of silyl enol ethers (SLXa,b): General procedure 1.

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of ketone-lactam ($0.5 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}, 0.1 \mathrm{M})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.25 \mathrm{mmol}, 2.5$ equiv) and TBDMSOTf (1.0 mmol, 2.0 equiv) or TMSOTf ($1.0 \mathrm{mmol}, 2.0$ equiv). After being stirred at the same temperature for 1 h , the reaction was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. For TBDMS silyl enol ethers, the residue was purified by flash column chromatography (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 4$ containing $5 \% \mathrm{Et}_{3} \mathrm{~N}$, v / v) to give SLXa (terminal) and SLXb (internal) as an inseparable mixture; while for TMS silyl enol ethers, the crude product was used in the next step without further purification. The ratio of regioisomers was determined by ${ }^{1} \mathrm{H}$ NMR.

General procedures for the lactam activation-based cyclization: Method A (General procedure 2): To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of a silyl enol ether (SLXa,b) (0.2 mmol) and 2,6-tert-butyl-4-methylpyridine ($49 \mathrm{mg}, 0.24 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 0.1 \mathrm{M})$ was added dropwise $\mathrm{Tf}_{2} \mathrm{O}(39 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$ and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 40 min . A solution of $\mathrm{ZnCl}_{2}(0.24 \mathrm{~mL}, 0.24$ $\mathrm{mmol}, 1.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) was added dropwise to the resultant mixture. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was allowed to warm to room temperature slowly and was stirred for 1 h . The reaction was quenched with saturated NaHCO_{3} (3 $\mathrm{mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on SiO_{2} (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 15)$ to give the desired product.

General procedures for the lactam activation-based cyclization: Method B

(General procedure 3): To a cooled ($-78^{\circ} \mathrm{C}$) suspension of silyl enol ether (SLXa,b) (0.2 mmol), 2,6-tert-butyl-4-methylpyridine ($49 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{ZnBr}_{2}(54 \mathrm{mg}$,
0.24 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}, 0.05 \mathrm{M})$ was added dropwise $\mathrm{Tf}_{2} \mathrm{O}(39 \mu \mathrm{~L}$, 0.24 mmol) and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was allowed to warm to room temperature slowly and was stirred for 1 h before quenching with saturated $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on SiO_{2} (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 10$) to give the desired product.

1-Benzyl-5-(2-(tert-butyldimethylsilyloxy)prop-2-en-1-yl))pyrrolidin-2-one (SL1a) and

1-Benzyl-5-(2-(tert-butyldimethylsilyloxy)prop-1-en-1-yl)pyrrolidin-2-one (SL1a)

Following the general procedure 1, reaction of ketone-lactam $\mathbf{6}$ (KL-1) ($91 \mathbf{m g}, 0.39$ $\mathrm{mmol})$ with $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 0.98 \mathrm{mmol})$ and TBDMSOTf ($0.18 \mathrm{~mL}, 0.79 \mathrm{mmol}$) afforded, after flash column chromatography purification on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 4$ containing $5 \% \mathrm{Et}_{3} \mathrm{~N}, \mathrm{v} / \mathrm{v}$), silyl enol ether-lactam SL1a,b (123 mg , combined yield: 90%) as an inseparable mixture of regioisomers in a ratio of 6.4: 1 (terminal: internal).

Pale yellow oil. IR (film, regioisomeric mixture) $v_{\text {max }}$: 2954, 2928, 2856, 1692, 1255, 1017, 838, 780, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data read from the regioisomeric mixture) $\delta_{\text {terminal }} 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.10$ (m, 1H), 2.35-2.55 (m, 3H), 3.63-3.71 (m, 1H), 4.00 (d, J= $15.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.06$ (br s, $1 \mathrm{H}), 4.09$ (br d, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta_{\text {terminal }}-5.0,-4.8,17.8,23.5,25.5,29.8,40.3,44.2,54.8$, 92.3, 127.4, 128.0, 128.6, 136.6, 155.3, 175.0; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 368.2016$; found: 368.2017.

1-Benzyl-5-(3-(tert-butyldimethylsilyloxy)but-3-en-1-yl)pyrrolidin-2-one (SL2a) and

1-Benzyl-5-(3-(tert-butyldimethylsilyloxy)but-2-en-1-yl)pyrrolidin-2-one (SL2b)

Following the general procedure 1, reaction of ketone-lactam KL-2 ($94 \mathrm{mg}, 0.38$ $\mathrm{mmol})$ with $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 0.96 \mathrm{mmol})$ and TBDMSOTf ($0.17 \mathrm{~mL}, 0.77 \mathrm{mmol}$) afforded, after flash column chromatography purification on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 4$ containing $5 \% \mathrm{Et}_{3} \mathrm{~N}, v / v$), silyl enol ether-lactam SL2a,b $(115 \mathrm{mg}$, combined yield: 84%) as an inseparable mixture of regioisomers in a ratio of 1.3: 1 (terminal: internal).

Pale yellow oil. IR (film, regioisomeric mixture) $v_{\text {max }}$: 2955, 2929, 2857, 1693, 1417, $1255,1004,838,812,780,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ data read from the regioisomeric mixture) $\delta_{\text {terminal }} 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.74$ (m, 1H), 1.80-2.18 (m, 4H), 2.34-2.56 (m, 2H); 3.36-3.50 (m, 1H), 3.96 (d, J= 15.2 $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 5 \mathrm{H})$; $\delta_{\text {internal }} 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $1.80-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.56(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ data read from the regioisomeric mixture) $\delta-4.8,-4.7,-3.8,18.0,18.1$, $20.5,21.5,22.7,23.9,24.0,25.6,25.7,30.2,31.9,32.8,36.3,44.0,56.7,90.2,106.7$, $127.3,127.4,127.96,127.98,128.5,128.6,136.78,136.84,147.5,158.5,175.0$, 175.1; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 382.2173$; found: 382.2178 .

1-Benzyl-5-(4-(tert-butyldimethylsilyloxy)pent-4-en-1-yl)pyrrolidin-2-one (SL3a) and

1-Benzyl-5-(4-(tert-butyldimethylsilyloxy)pent-3-en-1-yl)pyrrolidin-2-one (SL3b)

Following the general procedure 1, reaction of ketone-lactam KL-3 ($40 \mathrm{mg}, 0.15$ mmol) with $\mathrm{Et}_{3} \mathrm{~N}(0.06 \mathrm{~mL}, 0.39 \mathrm{mmol})$ and TBDMSOTf ($0.07 \mathrm{~mL}, 0.31 \mathrm{mmol}$) afforded, after flash column chromatography purification on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 4$ containing $5 \% \mathrm{Et}_{3} \mathrm{~N}, v / v$), silyl enol ether-lactam SL3a,b $(47 \mathrm{mg}$, combined yield: 81%) as an inseparable mixture of regioisomers in a ratio of 1.4: 1 (terminal: internal).

Pale yellow oil. IR (film, regioisomeric mixture): 2953, 2929, 2857, 1692, 1416, 1255, 1003, 838, $779,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, data read from the regioisomeric mixture) $\delta_{\text {terminal }} 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.54(\mathrm{~m}$, $2 H$), 1.65-1.74 (m, 2H), 1.88-2.16 (m, 4H), 2.35-2.55 (m, 2H); 3.38-3.48 (m, 1H), 3.96 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (br d, $J=0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (br d, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 5 \mathrm{H}) ; \delta_{\text {internal }} 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H})$, 1.29-1.54 (m, 2H), 1.65-1.74 (m, 2H), $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.88-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.55(\mathrm{~m}$, 2H), 3.38-3.48 (m, 1H), 3.96 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.29 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data read from the regioisomeric mixture) $\delta-4.77,-4.74,-3.9,18.0,18.1,20.5,21.4,22.6,23.8,24.0$, $25.6,25.7,30.2,31.9,32.8,36.3,44.0,56.7,90.2,106.7,127.29,127.34,127.9,128.0$, 128.5, 128.6, 136.77, 136.83, 147.5, 158.5, 175.02, 175.03; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 396.2329$; found: 396.2327.

1-Benzyl-6-(2-(tert-butyldimethylsilyloxy)prop-2-en-1-yl)piperidin-2-one (SL4a) and

1-Benzyl-6-(2-(tert-butyldimethylsilyloxy)prop-1-en-1-yl)piperidin-2-one (SL4b)

Following the general procedure 1, reaction of ketone-lactam KL-4 ($595 \mathrm{mg}, 2.43$ $\mathrm{mmol})$ with $\mathrm{Et}_{3} \mathrm{~N}(0.85 \mathrm{~mL}, 6.08 \mathrm{mmol})$ and TBDMSOTf ($1.12 \mathrm{~mL}, 4.86 \mathrm{mmol}$) afforded, after flash column chromatography purification on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 4$ containing $5 \% \mathrm{Et}_{3} \mathrm{~N}, \mathrm{v} / \mathrm{v}$), silyl enol ether-lactam SL4a,b (348 mg , combined yield: 40%) as an inseparable mixture of regioisomers in a ratio of 3.8: 1 (terminal: internal).

Pale yellow oil. IR (film, regioisomeric mixture) $v_{\max }$: 2954, 2929, 2856, 1676, 1642, $1470,1451,1302,1257,1023,836,811,780,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data read from the regioisomeric mixture) $\delta_{\text {terminal }} 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}$, 9H), 1.61-1.81 (m, 2H), 1.83-1.98 (m, 2H), 2.15 (dd, $J=10.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.56$ (m, 3H); 3.57-3.65 (m, 1H), $3.96(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.08(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=$ 15.1 Hz, 1H), 7.20-7.35 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data read from the regioisomeric mixture) $\delta_{\text {terminal }}-5.0,-4.8,16.9,17.9,25.5,25.7,31.8,39.7,47.7$, 53.1, 92.1, 127.1, 127.8, 128.5, 137.7, 155.8, 170.2 ; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 382.2173$; found: 382.2176.

8-Benzyl-1-chloro-8-azabicyclo[3.2.1]octan-3-one (7a)

Following the general procedure 2, reaction of the silyl enol ether SL1a,b (111 mg , 0.32 mmol) with 2,6-tert-butyl-4-methylpyridine ($78 \mathrm{mg}, 0.38 \mathrm{mmol}$), $\mathrm{Tf}_{2} \mathrm{O}(62 \mu \mathrm{~L}$, $0.38 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}\left(0.38 \mathrm{~mL}, 0.38 \mathrm{mmol}, 1 \mathrm{M}^{2} \mathrm{Et}_{2} \mathrm{O}\right)$ afforded cyclization product 7a (60 mg , yield: 86% from SL1a) as a colorless oil after flash column chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 15$). IR (film) $v_{\text {max }}: 3412,2954$, 1716, 1279, 1234, 1186, 1142, 916, 732, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44$ (ddd, $J=4.8,9.7,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.47$ (ddt, $J=3.3,4.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (ddd, $J=2.2,4.5,16.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (dd, $J=1.4$, $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (dd, J=3.1, 15.9 Hz, 1H), 3.51 (m, 1H), 3.71 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$),
$4.42(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.45(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.6,39.9$, 41.1, 47.1, 53.1, 54.4, 86.7, 127.4, 128.4, 128.5, 138.2, 205.7; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 250.0999$ and 252.0969; found: 250.1004 and 252.0980.

8-Benzyl-1-bromo-8-azabicyclo[3.2.1]octan-3-one (8a)

Following the general procedure 3, reaction of the silyl enol ether SL1a,b (73 mg, 0.21 mmol) with 2,6-tert-butyl-4-methylpyridine ($52 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{Tf}_{2} \mathrm{O}(42 \mu \mathrm{~L}$, 0.25 mmol) and $\mathrm{ZnBr}_{2}(57 \mathrm{mg}, 0.25 \mathrm{mmol})$ afforded cyclization product $\mathbf{8 a}(48 \mathrm{mg}$, yield: 76\% from SL1a) as a colorless oil after flash column chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 15$). IR (film) $v_{\text {max }}: 2955,1719,1454,1277,1230,1209$, 1183, 1140, 959, 908, 736, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.49$ (ddd, $J=4.7$, $9.8,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{dd}$, $J=1.4,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=3.0,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.47(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 27.3,41.1,41.2,47.8,52.4,56.6,81.3,127.4,128.4,128.6,138.2,205.4 ;$ HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 294.0494$ and 296.0473; found: 294.0496 and 296.0476.

1-(8-Benzyl-1-chloro-8-azabicyclo[3.2.1]octan-2-yl)ethanone (11b)

Following the general procedure 2, reaction of the silyl enol ether SL3a,b (45 mg , 0.12 mmol) with 2,6-tert-butyl-4-methylpyridine ($30 \mathrm{mg}, 0.15 \mathrm{mmol}$), $\mathrm{Tf}_{2} \mathrm{O}(24 \mu \mathrm{~L}$, $0.15 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}\left(0.15 \mathrm{~mL}, 0.15 \mathrm{mmol}, 1 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ afforded cyclization product 11b (10 mg, yield: 75\% from SL3b, single isomer) as a colorless oil after
flash column chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 15$). IR (film) $v_{\text {max }}$: 2930, 2875, 2854, 1710, 1453, 1359, 1185, 1154, 1110, 1082, 1028, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 1.05-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{ddd}, J=4.3,9.7,11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.64-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.87-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{ddt}, J=0.9,4.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~S}$, 3 H), 3.07 (ddd, $J=4.5,9.7,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (m, 1H), 3.49 (dd, $J=5.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.87(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6,22.9,25.7,32.8,34.5,46.1,52.9,54.7,89.4,126.9,128.3$, 128.4, 139.0, 209.5; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClNO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 278.1312$ and 280.1282; found: 278.1310 and 280.1287 .

9-Benzyl-1-chloro-9-azabicyclo[3.3.1]nonan-3-one (12a)

Following the general procedure 2, reaction of the silyl enol ether SL4a,b (72 mg, 0.20 mmol) with 2,6-tert-butyl-4-methylpyridine ($49 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{Tf}_{2} \mathrm{O}(39 \mu \mathrm{~L}$, $0.24 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}\left(0.24 \mathrm{~mL}, 0.24 \mathrm{mmol}, 1 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$, afforded cyclization product 12a (27 mg , yield: 65% from SL4a) as a white solid after flash column chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 15$). Mp: 91.4-93.4 ${ }^{\circ} \mathrm{C}$; IR (film) $v_{\text {max }}: 3405,3026,2940,1713,1494,1450,1224,1125,916,728,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.92$ (ddt, $J=4.5,13.6,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.24$ (m, 2H), 2.38 (dddd, $J=1.9,5.3,13.5,13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=7.1,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=1.6,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=$ $1.5,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), ~ 7.25-7.46(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.1,27.7,41.0,41.2,51.4$, 52.6, 54.0, 87.9, 127.2, 128.3, 128.4, 139.1, 207.4; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNO}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 264.1155$ and 266.1126; found: 264.1158 and 266.1139 .

Following the general procedure 1, reaction of ($3 S, 5 S$)-ketone-lactam $13(123 \mathrm{mg}$, $0.43 \mathrm{mmol})$ with $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.08 \mathrm{mmol})$ and TMSOTf ($0.15 \mathrm{~mL}, 0.86 \mathrm{mmol}$) afforded crude silyl enol ether SL5a,b (terminal: internal $>20: 1,{ }^{1} \mathrm{H}$ NMR) which was used in the next step without purification. Following the general procedure 3, reaction of the crude silyl enol ether SL5a,b with 2,6-tert-butyl-4-methylpyridine (97 $\mathrm{mg}, 0.47 \mathrm{mmol}), \mathrm{Tf}_{2} \mathrm{O}(78 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$ and $\mathrm{ZnBr}_{2}(106 \mathrm{mg}, 0.47 \mathrm{mmol})$ afforded cyclization product $(1 R, 5 S, 7 S)-\mathbf{1 5}(74 \mathrm{mg}$, yield: 50% from $(3 S, 5 S)-13)$ as a colorless oil after flash column chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 10$). $[\alpha]_{\mathrm{D}}{ }^{20}$ -73.6 (c 1.0, CHCl_{3}); IR (film) $v_{\text {max }}: 3409,3026,2950,1723,1450,1409,1347,1186$, $1149,1101,896,735,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(\mathrm{dd}, J=3.4,13.5$ Hz, 1H), 2.15 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (dddd, $J=2.3,7.8,10.4,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (ddd, $J=1.6,4.5,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=8.6,13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.29$ (d, $J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.68$ (m, 1H), 3.98 (tdd, $J=1.9,4.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.51(\mathrm{dd}, J=3.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.21 (td, $J=1.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.34(\mathrm{~m}, 1 \mathrm{H}), 5.88$ (dddd, $J=4.0,8.6,10.1,17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 35.6, 40.4, 46.7, 49.9, 51.4, 72.4, 84.3, 86.7, 118.0, 127.5, 127.7, 128.4, 134.5, 137.7, 204.3; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 350.0756$ and 352.0735 ; found: 350.0755 and 352.0736.
(1S,5R,7S)-8-Allyl-7-(benzyloxy)-1-bromo-8-azabicyclo[3.2.1]octan-3-one (16)

Following the general procedure 1, reaction of $(3 S, 5 R)$-ketone-lactam $14(250 \mathrm{mg}$, $0.87 \mathrm{mmol})$ with $\mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}, 2.18 \mathrm{mmol})$ and $\operatorname{TMSOTf}(0.32 \mathrm{~mL}, 1.74 \mathrm{mmol})$
afforded crude silyl enol ether SL6a,b (terminal: internal $>20: 1,{ }^{1} \mathrm{H}$ NMR) which was used in the next step without purification. Following the general procedure 3, the crude silyl enol ether SL6a,b with 2,6-tert-butyl-4-methylpyridine ($213 \mathrm{mg}, 1.04$ $\mathrm{mmol}), \mathrm{Tf}_{2} \mathrm{O}(78 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$ and $\mathrm{ZnBr}_{2}(392 \mathrm{mg}, 1.74 \mathrm{mmol})$ afforded, after flash column chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 10$), cyclization product $(1 S, 5 R, 7 S)-\mathbf{1 6}(70 \mathrm{mg}$, yield: $\mathbf{2 3 \%}$ from $(3 S, 5 R) \mathbf{- 1 4})$ as a colorless oil and tetracyclic compound $\mathbf{1 7}(70 \mathrm{mg}$, yield: 30% from $(3 S, 5 R)-\mathbf{1 4})$ as a pale yellow solid.
Compound (1S,5R,7S)-16: $[\alpha]_{\mathrm{D}}{ }^{20}+49.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (film) $v_{\max }: 2916,2849$, $1716,1453,1412,1194,1150,1115,1096,1013,929,736,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{dd}, \mathrm{J}=7.6,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.21(\mathrm{~m}, 1 \mathrm{H})$, 2.57 (ddd, $J=2.2,4.1,16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82 (dd, $J=1.3,16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19-3.28 (m, 2 H), 3.72 (dd, $J=3.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (ddd, $J=1.3,4.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.03 (tdd, $J=$ $1.9,3.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.22$ $(\mathrm{m}, 1 \mathrm{H}), 5.26-5.34(\mathrm{~m}, 1 \mathrm{H}), 5.92-6.06(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.4,40.6,47.5,52.4,54.4,72.9,82.2,86.1,117.7,127.67,127.70$, 128.3, 135.0, 137.7, 205.0; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNO}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 372.0575$ and 374.0555; found: 372.0580 and 374.0561.

Compound 17: Mp: 55-63 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+9.8$ (c 1.0, CHCl_{3}); IR (film) $v_{\text {max }}: 3073,2949$, $2854,1717,1446.1320,1099,766 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.21(\mathrm{dd}, \mathrm{J}=$ $7.2,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.66-2.74(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.03-3.13 (m, 2H), 3.78-3.85 (m, 1H), 4.20 (dd, $J=3.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.62(\mathrm{~d}, \mathrm{~J}=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73$ (d, J=14.7 Hz, 1H), 5.02-5.09 (m, 1H), 5.10-5.19 (m, 1H), 5.78 (dddd, $J=5.2,7.0,10.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (dt, $J=1.2,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $37.0,48.8,52.3,53.7,56.6,65.9,68.1,83.3,116.3,124.6,127.4,127.7,127.9,133.7$, 135.7, 137.3, 209.4; MS (ESI) m/z $270\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 270.1449; found: 270.1486.

8-Benzyl-8-azabicyclo[3.2.1]octan-3-one (18)

To a solution of 1-chlorotropane derivative 7a ($41 \mathrm{mg}, 0.165 \mathrm{mmol}$) and ACCN 1,1'-azobis(cyclohexanecarbonitrile) ($49 \mathrm{mg}, 0.200 \mathrm{mmol}$) in anhydrous toluene (0.8 $\mathrm{mL})$ was added $\mathrm{Bu}_{3} \mathrm{SnH}(0.09 \mathrm{~mL}, 0.330 \mathrm{mmol})$ and the mixture was stirred at $85^{\circ} \mathrm{C}$ for 3 h . After removing the solvent under reduced pressure, the residue was purified by flash chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 6)$ to give de-chlorinated product 18 ($32 \mathrm{mg}, 90 \%$) as a colorless oil. IR (film) $v_{\max }$: 2953, 2879, 2852, 1714, 1494, 1452, 1347, 1193, 1143, 1072, 1007, 730, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.60-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J=4.3$, $16.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.50(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 27.8,48.3,55.2,58.6,127.1,128.35,128.41,139.3,210.4$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 216.1383; found: 216.1379.

(S)-1-Methyl-2,5-dioxopyrrolidin-3-yl acetate (S-1)

To a stirred solution of (S)-malic acid ($67 \mathrm{~g}, 500 \mathrm{mmol}$) in 350 mL of toluene was added 49 mL of 40% aqueous $\mathrm{CH}_{3} \mathrm{NH}_{2}$. After 0.5 h the mixture was heated to reflux in flask equipped with a Dean-Stark trap and 46 mL of $\mathrm{H}_{2} \mathrm{O}$ was collected over a 48 h period. EtOH (150 mL) was added, the mixture was concentrated, and the residue was distilled to give desired imide ($50.5 \mathrm{~g}, 78 \%$). To an ice-bath cooled solution of imide ($12.9 \mathrm{~g}, 100 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL) were added successively DMAP (cat.), $\mathrm{Ac}_{2} \mathrm{O}$ ($18.8 \mathrm{~mL}, 200 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($34.9 \mathrm{~mL}, 250 \mathrm{mmol}$). After being stirred overnight at room temperature, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(30$ mL) and water (30 mL) at $0{ }^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with $\mathrm{EtOAc} / \mathrm{PE}(1: 2)$ to afford compound (S)-S-1 (14.2 g, 83\%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-20\left(c 3.4, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.{ }^{1}[\alpha]_{\mathrm{D}}{ }^{22}-21.0\left(c 0.43, \mathrm{CHCl}_{3}\right)\right\}$; IR (film) $v_{\max }$: 2953, 1750, 1707, 1438, 1384, 1282, 1224, 1127, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=18.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=18.3$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.4,24.9$, 35.7, 67.4, 169.7, 173.2, 173.5; MS (ESI) m/z 194 ($\mathrm{M}+\mathrm{Na}^{+}$, 100\%); HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 194.0429$; found: 194.0426.
(2S,3S)-2-Hydroxy-1-methyl-5-oxopyrrolidin-3-yl acetate (S-2)

To a cold solution $\left(-40^{\circ} \mathrm{C}\right)$ of (S)-imide S-1 $(2.20 \mathrm{~g}, 12.87 \mathrm{mmol})$ in THF $(150 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.734 \mathrm{~g}, 19.30 \mathrm{mmol})$ in one portion. The resulting mixture was
stirred at $-40{ }^{\circ} \mathrm{C}$ for 15 min and saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was slowly added. After being stirred for 30 min , the mixture was filtered through silica gel. The filtrate was concentrated under reduced pressure and then EtOAc was added. The solid was filtrated and washed with EtOAc to afford compound (2S,3S)-S-2 (1.083 g, 81%) as a white solid. M.p. $115-117{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{20}-59\left(c \quad 0.6, \mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$; $[\alpha]_{\mathrm{D}}{ }^{20}-22\left(c 0.5, \mathrm{CHCl}_{3}\right.$); IR (film) $v_{\text {max }}: 3186,2933,1727,1660,1434,1384,1341$, 1240, 1092, 1073, $1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 2.07$ (s, 3H), 2.43 (dd, J $=17.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=17.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{dd}, J=8.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddd}, J=8.0,6.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,27.0,35.1,68.7,83.8,171.2,171.5$; MS (ESI) $\mathrm{m} / \mathrm{z} 196$ $\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 196.0586$; found: 196.0580 .
(2S,3S)-1-Methyl-5-oxopyrrolidine-2,3-diyl diacetate (S-3)

To an ice-bath cooled solution of ($2 \mathrm{~S}, 3 \mathrm{~S}$)-S-2 (2.90 g, 16.76 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added successively DMAP (cat.), $\mathrm{Ac}_{2} \mathrm{O}(4.7 \mathrm{~mL}, 50.29 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(7.0 \mathrm{~mL}$, $50.29 \mathrm{mmol})$. After being stirred overnight at room temperature, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was extracted with EtOAc (3×30 $\mathrm{mL})$. The combined organic layers were washed with brine (2 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with $\mathrm{EtOAc} / \mathrm{PE}(1: 2)$ to afford compound $(2 S, 3 S)$-S-3 ($3.35 \mathrm{~g}, 93 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-78$ (c 3.9, CHCl_{3}); IR (film) $v_{\text {max }}$: 2937, 1750, 1719, 1435, 1380, 1236, 1084, $1003 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 2.03$ ($\mathrm{s}, 3 \mathrm{H}$), 2.07 (s, 3H), 2.49 (dd, $J=16.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $J=16.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 5.34(\mathrm{dt}, J=5.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=5.4 \mathrm{~Hz}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 20.7,20.9,27.9,34.3,66.8,84.3,170.9,171.4$, 172.2; MS (ESI) $m / z 238\left(M+\mathrm{Na}^{+}, 100 \%\right)$; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 238.0691; found: 238.0688.
(2R/S,3S)-1-Methyl-5-oxo-2-(2-oxopropyl)pyrrolidin-3-yl acetate (S-4)

(-)-(2S,3S)-S-3

95\%

trans/ cis $=2.5: 1$

To an ice-bath cooled solution of (2S, 3S)-S-3 (775 mg, 3.61 mmol) and trimethyl(prop-1-en-2-yloxy)silane ($0.9 \mathrm{~mL}, 5.42 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ was added TIPSOTf ${ }^{2}(0.097 \mathrm{~mL}, 0.36 \mathrm{mmol})$. After being stirred for 1 h at $0^{\circ} \mathrm{C}$, the reaction was stirred for 3 h at room temperature. The reaction was quenched with saturated aqueous NaHCO_{3} solution (5 mL). The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine (2 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with EtOAc to afford compound S-4 (732 mg, 95\%) as an inseparable diastereomeric mixture in a ratio of 2.5: 1 (${ }^{1} \mathrm{H}$ NMR). Colorless oil. IR (film) $v_{\max }$: 2929, 1734, 1687, 1403, 1372, 1232, 1166, $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two diastereomers, major $(\mathrm{M}) /$ minor $(\mathrm{m})=2.5$: 1, data read from the spectrum of the diastereomeric mixture) $\delta_{\mathrm{H}} 1.98(\mathrm{~s}, 0.9 \mathrm{H}, \mathrm{m}), 2.02(\mathrm{~s}$, $2.1 \mathrm{H}, \mathrm{M}), 2.16(\mathrm{~s}, 2.1 \mathrm{H}, \mathrm{M}), 2.18(\mathrm{~s}, 0.9 \mathrm{H}, \mathrm{m}), 2.29-2.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{M}+\mathrm{m}), 2.67-2.85$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{M}+\mathrm{m}), 3.81-3.85(\mathrm{~m}, 0.7 \mathrm{H}, \mathrm{M}), 4.18-4.24(\mathrm{~m}, 0.3 \mathrm{H}, \mathrm{m}), 4.91-4.96(\mathrm{~m}, 0.7 \mathrm{H}$, M), 5.34-5.40 (m, 0.3H, m); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}(\text { major })} 20.9,27.8,30.5$, 36.5, 44.0, 62.2, 71.6, 170.5, 171.6, 204.9; $\delta_{\mathrm{C}(\text { minor })} 20.6,27.5,30.3,37.3,40.9,57.7$, 67.9, 169.6, 171.6, 204.9; MS (ESI) $\mathrm{m} / \mathrm{z} 236\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 236.0899$; found: 236.0904.
(2R/S,3aS,6aS)-Ethoxy-2,4-dimethyltetrahydro-2H-furo[3,2-b]pyrrol-5(3H)-one (S-6)

To an ice-bath cooled solution of S-4 ($343 \mathrm{mg}, 1.61 \mathrm{mmol}$) in anhydrous ethanol (6 mL) was added dropwise acetyl chloride ($0.28 \mathrm{~mL}, 4.03 \mathrm{mmol}$). After being stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction was stirred overnight at room temperature. The solution was neutralized with solid NaHCO_{3} until $\mathrm{pH}=7$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with EtOAc to afford compound (4S,5R)-S-5 (185 mg, 67\%) as a single isomer, and diastereomeric mixture S-6 (90 mg, 28\%) in a ratio of 1.3: $1\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$, which is only partially separable by flash chromatography.

Compound (4S,5R)-S-5: white solid. M.p. $60-62{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{20}-57.8$ (c 1.9, CHCl_{3}); IR (film) $v_{\text {max }}: 3393,2929,1711,1672,1403,1365,1248,1162,1034 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{dd}, J=17.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}$, $J=18.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=17.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=18.2$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{ddd}, J=9.7,4.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.7,30.6,38.8,45.3,64.7,70.2,172.6,207.2$; MS (ESI) m/z $194\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 194.0793; found: 194.0796.

S-6-Major diastereomer: colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-11.9$ (c $0.6, \mathrm{CHCl}_{3}$); IR (film) $v_{\text {max }}$: 2980, 2929, 1660, 1438, 1400, 1259, 1217, 1150, $1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{dd}, J=13.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (dd, $J=13.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=18.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73 (s, 3H), 3.43-3.53 (m, 2H), 4.23 (ddd, $J=7.8,6.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.58(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 16.0,22.1,28.1,38.1,44.1,56.9,65.8,75.1$, 109.1, 173.7; MS (ESI) m/z 222 (M+Na ${ }^{+}, 100 \%$); HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}$
$\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$222.1106; found: 222.1102. S-6-Minor diastereomer: colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}$ +80.9 (c 0.4, CHCl_{3}); IR (film) $v_{\text {max }}$: 2976, 2933, 1680, 1440, 1310, 1256, 1154, 1041 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{dd}$, $J=14.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J$ $=17.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.48(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{dd}, J=6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.74-4.78 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 15.7,22.4,28.1,40.0,41.6,57.1$, 65.6, 76.8, 109.1, 173.1; MS (ESI) m/z 222 (M+Na ${ }^{+}$, 100\%); HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$222.1106; found: 222.1100.
(4S,5R)-4-(tert-Butyldimethylsilyloxy)-1-methyl-5-(2-oxopropan-1-yl)pyrrolidin-2 -one (19)

To an ice-bath cooled solution of ($4 S, 5 R$)-S-5 ($144 \mathrm{mg}, 0.84 \mathrm{mmol}$) and imidazole ($172 \mathrm{mg}, 2.52 \mathrm{mmol}$) in anhydrous THF (6 mL) was added a THF solution of TBDMSCl ($253 \mathrm{mg}, 1.68 \mathrm{mmol}$). After being stirred for 2 days at room temperature, the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine (2 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with $\mathrm{EtOAc} / \mathrm{PE}(1: 1)$ to afford compound (4S,5R)-19 (220 mg, 92\%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}+3.8$ (c 2.6, CHCl_{3}); IR (film) $v_{\max }$: 2953, 2929, 2851, 1692, 1396, 1384, 1360, 1256, 1080, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 2.20-2.28(\mathrm{~m}, 4 \mathrm{H}), 2.50(\mathrm{dd}, J=$ 17.3, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $J=17.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.3,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{ddd}, J=7.7,5.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dt}, J=6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta-4.8,17.9,25.6,27.9,30.6,40.0,44.3,65.2,70.3,172.5$, 205.4; MS (ESI) $m / z 308\left(M+\mathrm{Na}^{+}, 100 \%\right)$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}$
$\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 308.1658$; found: 308.1652.
(1S, 5R, 6S)-6-(Tert-butyldimethylsilyloxy)-1-chloro-8-methyl-8-azabicyclo[3.2.1] octan-3-one (21)

To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of compound ($4 S, 5 R$)-19 ($888 \mathrm{mg}, 3.12 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ was added the $\mathrm{Et}_{3} \mathrm{~N}(1.08 \mathrm{~mL}, 7.8 \mathrm{mmol})$ and TBSOTf ($1.43 \mathrm{~mL}, 6.24 \mathrm{mmol}$). After being stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was allowed warmed to room temperature and stirred overnight. Then the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 15 mL). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give an orange residue. The residue was used in the next without purification. The crude product and 2,6-tert-butyl-4-methylpyridine ($959 \mathrm{mg}, 4.68 \mathrm{mmol}$) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and cooled to -78 ${ }^{\circ} \mathrm{C}$, then the $\mathrm{Tf}_{2} \mathrm{O}(0.62 \mathrm{~mL}, 3.74 \mathrm{mmol})$ was added dropwise. After stirring at the same temperature for 40 min , a solution of $\mathrm{ZnCl}_{2}\left(3.2 \mathrm{~mL}, 3.2 \mathrm{mmol}, 1 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added dropwise. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , then the mixture was warmed to room temperature slowly and keep stirring for 1 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give a brown oil, which was purified by flash chromatography (eluent: $\mathrm{EtOAc} / \mathrm{PE}=1 / 12$) to give the desired product $(1 S, 5 R, 6 S)-21$ as a white solid ($607 \mathrm{mg}, 65 \%$ over two steps). M.p. $56-58{ }^{\circ} \mathrm{C}$ (EtOAc/PE); $[\alpha]_{\mathrm{D}}{ }^{20}-23$ (c 1.1, CHCl_{3}); IR (film) $v_{\text {max }}$: 3412, 2952, 2925, 2855, 1711, $1598,1462,1384,1252,1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.86$ $(\mathrm{s}, 9 \mathrm{H}), 2.10-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.70(\mathrm{~m}, 6 \mathrm{H}), 3.00(\mathrm{dd}, J=15.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=7.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta-4.8,-4.7,18.2,25.8,30.6,39.1,52.3,52.5,66.8,72.4,85.7,204.4$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{ClNO}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 326.1319 and 328.1290 ; found: 326.1323 and 328.1290.
(1R,5R,6S)-6-(tert-Butyldimethylsilyloxy)-8-methyl-8-azabicyclo[3.2.1]octan-3-
One (2)

To a solution of 1-chlorotropane derivative ($1 S, 5 R, 6 S$)-21 ($318 \mathrm{mg}, 1.05 \mathrm{mmol}$) and ACCN $(307 \mathrm{mg}, 1.26 \mathrm{mmol})$ in anhydrous toluene $(5 \mathrm{~mL})$ was added $\mathrm{Bu}_{3} \mathrm{SnH}(0.84$ $\mathrm{mL}, 3.15 \mathrm{mmol}$) and the mixture was stirred at $85{ }^{\circ} \mathrm{C}$ for 5 h . After removing the solvent under reduced pressure, the residue was purified by flash chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 4)$ to give $(1 R, 5 R, 6 S)-2(221 \mathrm{mg}$, yield: $80 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}+24.0\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (film) $v_{\max }$: 2952, 2935, 2856, 1717, 1471, 1463, $1255,1115,1079,869,838,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04(\mathrm{~s}, 6 \mathrm{H})$, 0.86 (s, 9H), 2.01-2.16 (m, 3H), 2.22 (ddd, $J=1.9,1.915 .9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.69(\mathrm{~m}$, $5 \mathrm{H}), 3.30-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.62(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=3.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta-4.82,-4.81,18.1,25.8,38.2,41.3,44.4,46.3,60.8,69.5,77.0$, 208.6; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 270.1884; found: 270.1880 .

(E)-((1S,3S,5R,6S)-3-Hydroxy-8-methyl-8-azabicyclo[3.2.1]octan-6-yl)

3-(3,4,5-trimethoxyphenyl)acrylate (22)

A suspension of $(1 R, 5 R, 6 S)-2(8.1 \mathrm{mg}, 0.030 \mathrm{mmol})$ and $\mathrm{PtO}_{2}(4 \mathrm{mg})$ in EtOH $(1 \mathrm{~mL})$ was hydrogenated at room temperature under 50 atm of hydrogen for 30 h . The
mixture was filtered through a pad of Celite, and the solvent was removed under reduced pressure. The residue was dissolved in 1 mL of acetone and to the resulting solution was added p-toluenesulfonic acid monohydrate ($23 \mathrm{mg}, 0.120 \mathrm{mmol}$). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . Then saturated aqueous NaHCO_{3} was added till $\mathrm{pH}=8$. The solvent was removed under reduced pressure, and the crude product was used in the next step without purification.

To a solution of the crude diol $\mathbf{1}$ in toluene $(1.5 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.042 \mathrm{~mL}, 0.30$ mmol) and (E)-3-(3,4,5-trimethoxyphenyl)acryloyl chloride ($\mathrm{TmcCl}, 46 \mathrm{mg}, 0.18$ $\mathrm{mmol})$. The reaction mixture was refluxed overnight. The mixture was cooled down to $0{ }^{\circ} \mathrm{C}$, and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=40 / 1\right)$ on silica gel to give compound $(1 S, 3 S, 5 R, 6 S)-22(11 \mathrm{mg}, 90 \%$ over 3 steps $)$ as a white solid. M.p. $50-53^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{3}$ M.p. $\left.48-50{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}+24.0\left(c 0.2, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. $\left.^{3}[\alpha]_{\mathrm{D}}{ }^{25}+29.8\left(c 1.0, \mathrm{CHCl}_{3}\right)\right\}$; IR (film) $v_{\text {max }}: 2921,2843,1708,1633,1584,1504,1463,1415,1330,1275,1220,1172,1152$, $1127,1005,768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.68(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{dd}, J=7.8,14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.47-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.90(\mathrm{~m}, 9 \mathrm{H}), 4.14(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (dd, $J=2.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, ~ J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 7.58(\mathrm{~s}, J=15.9 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.5,35.5,36.5,38.8,56.3,59.8,61.1,64.2,66.0$, 79.4, 105.5, 117.9, 130.1, 140.3, 144.8, 153.6, 167.0; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 378.1911$; found: 378.1915.

(+)-(1S,3S,5R,6S)-Pervilleine B (3)

To a solution of $(1 S, 3 S, 5 R, 6 S)-22(11 \mathrm{mg}, 0.027 \mathrm{mmol})$ and DMAP $(2 \mathrm{mg})$ in toluene $(3 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.037 \mathrm{~mL}, 0.27 \mathrm{mmol})$ and 3,4,5-trimethoxybenzoyl chloride ($\mathrm{TmbCl}, 18 \mathrm{mg}, 0.080 \mathrm{mmol}$). The reaction mixture was refluxed overnight. After reaction was finished, the mixture was cooled down to $0{ }^{\circ} \mathrm{C}$, and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc $(3 \times 3 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $=30 / 1)$ on silica gel to give $(1 S, 3 S, 5 R, 6 S)$-pervilleine B(3) ($16 \mathrm{mg}, 94 \%$) as a white amorphous solid. M.p. $42-46{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4}$ M.p. $40-42{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{20}+27.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$ $\left\{\right.$ lit. $\left.{ }^{4}[\alpha]_{\mathrm{D}}{ }^{20}-22.5\left(c 0.25, \mathrm{CHCl}_{3}\right)\right\}$; IR (film) $v_{\text {max }}$: 2921, 2843, 1708, 1633, 1584, 1504, 1463, 1415, 1330, 1275, 1220, 1172, 1152, 1127, 1005, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.73(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.19(\mathrm{~m}$, $3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H})$, 3.99-3.86 (m, 18H), $5.34(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=7.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.2,32.6,37.3,38.4,56.2,56.3,59.1,60.9,61.0,64.9,67.7,79.0$, 105.3, 106.7, 117.6, 125.4, 129.8, 140.2, 142.3, 144.6, 153.1, 153.5, 165.3, 166.5; MS (ESI) $m / z 572\left(M+H^{+}, 100 \%\right)$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{10}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$: 572.2490; found: 572.2493.

References:

1. P. Q. Huang, S. L. Wang, J. L. Ye, Y. P. Ruan, Y. Q. Huang, H. Zheng and J. X. Gao, Tetrahedron, 1998, 54, 12547-12560.
2. R. B. Othman, T. Bousquet, A. Fousse, M. Othman and V. Dalla, Org. Lett., 2005,

7, 2825.
3. K. Kulkarni, A. Y. Zhao, A. W. Purcell and P. Perlmutter, Synlett, 2008, 2209.
4. G. L. Silva, B. Cui, D. Chávez, M. You, H. Chai, P. Rasoanaivo, S. M. Lynn, M. J.

O'Neill, J. A. Lewis, J. M. Besterman, A. Monks, N. R. Farnsworth, G. A. Cordell, J.
M. Pezzuto and A. D. Kinghorn, J. Nat. Prod., 2001, 64, 1514.

CDC13
2010.04.17
号
|

SL1a,b
$\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

HSY-335-C13
${ }_{2011.11 .2}$

HSY-271b-C13
2010.06.07

HSY-235-H1
CDC13
2010.04.26

HSY-429-H1
CDC13
2012.02.22

11b

HSY-324-C13
HSY- 32
CDC13
CDCl3
2012.2.

11b

	1	1	1	1	1	1	1	1	1		
200	180	160	140	120	100	80	60	40	20	0	ppm

HSY-274-H
2010.06.09

$$
\begin{aligned}
& \text { HSY-443-H1 } \\
& \text { CDC13 } \\
& 2012.03 .04
\end{aligned}
$$

2012.12.18

HSY-206A-H1
CDC13
2010.08 .11

HSY-407-3-C13
CDC13
2011.12 .29
i.

18
$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

(-)-(S)-S-1

TSC-238aa-C13

S-4
trans/ cis $=2.5: 1$

,

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\right)$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

HSY-409-H1
CDC13.
2011.12 .30

(+)-(1R,5R,6S)-2

HSY-692-C13
CDC13
2013.03 .05

(+)-(1S,3S,5R,6S)-22

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

