Supporting information for

Facile displacement of η⁵-cyclopentadienyl ligands from half-sandwich alkyl,NHC-nickel complexes: an original route to robust *cis*-C,C-nickel square planar complexes

Mickaël Henrion, Anna Magdalena Oertel, Vincent Ritleng* and Michael J. Chetcuti*

Laboratoire de Chimie Organométallique Appliquée, UMR CNRS 7509, Ecole européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.

vritleng@unistra.fr, michael.chetcuti@unistra.fr

Table of Contents

General information	S2
Synthesis and characterization of $[Ni{Mes-NHC-(CH_2)_2CH(CN)}(NCCH_3)_2]^+PF_6^-$ (2a)	S 3
Concentration dependence of the ¹ H NMR spectrum of 2a	S 5
Deuterium labeling experiment; reaction of 1a with DCl	S 7
Synthesis and characterization of [Ni{Mes-NHC-(CH ₂) ₂ CH(CN)}(acac)] (3a)	S 8
Synthesis and characterization of [Ni{Me-NHC-CH ₂ CH(CN)}(acac)] (3b)	S 11
Synthesis and characterization of [Ni(Mes ₂ NHC)(CH ₃)(acac)] (5a)	S 13
Synthesis and characterization of $[Ni(Mes_2NHC)(CH_2CN)(acac)]$ (5b)	S15
X-ray Diffraction Study of 3a . Structure Determination and Refinement	S17
Table S1. X-Ray Crystallographic Data and Data Collection Parameters for 3a	S18
Table S2. Selected Bond Lengths (Å) and Angles (°) for Complexes 1a and 3a	S19
References	S20

General information

All reactions were carried out using standard Schlenk or glovebox techniques under an atmosphere of dry argon. Solvents were distilled from appropriate drying agents under argon. Solution NMR spectra were recorded at 298 K on FT-Bruker Ultra Shield 300 and FT Bruker Spectrospin 400 spectrometers operating at 300.13 or 400.14 MHz for ¹H and at 75.47 or 100.61 MHz for ¹³C{¹H}. ¹H 2D COSY spectra were obtained for complexes **2a** and **3a**,**b** to help in the ¹H signal assignments. The assignments of ${}^{13}C{}^{1}H$ NMR spectra were made with the aid of DEPT ¹³C spectra for all compounds. The chemical shifts are referenced to the residual deuterated or ¹³C solvent peaks. Chemical shifts (δ) and coupling constants (J) are expressed in ppm and Hz respectively. Chemical shifts and full NMR spectra of 2a are given for $[2a] \sim 3.10^{-2}$ mol.L⁻¹ in CD₃CN. IR spectra of solid samples of all compounds were recorded on a FT-IR Nicolet 380 spectrometer equipped with a diamond SMART-iTR ATR. Vibrational frequencies are expressed in cm⁻¹. Elemental analyses were performed by the Service d'Analyses, de Mesures Physiques et de Spectroscopie Optique, UMR CNRS 7177, Institut de Chimie, Université de Strasbourg. Commercial compounds were used as received. $[Ni{Mes-NHC-(CH_2)_2CH(CN)}Cp]$ **1**a.¹ [Ni{Me-NHC-CH₂CH(CN)}Cp] **1b**² $[Ni{(Mes)_2NHC}(CH_3)Cp]$ 4a³ and $[Ni{(Mes)_2NHC}(CH_2CN)Cp]$ 4b¹ were prepared according to the published methods.

Synthesis of [Ni{Mes-NHC-(CH₂)₂CH(CN)}(NCCH₃)₂]⁺PF₆⁻ (2a)

To a dark green suspension of **1a** (300 mg, 0.798 mmol) and KPF₆ (147 mg, 0.799 mmol) in acetonitrile (5 mL) at room temperature was added drop-wise an equimolar amount of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (0.80 mL, 0.800 mmol). The reaction mixture readily turned ochre yellow and was stirred for 10 min before filtration on a Celite pad, which was subsequently rinsed with acetonitrile until the washings were colourless. Volatiles were evaporated under vacuum, and the resulting solid was washed with pentane (3 x 10 mL), diethyl ether (3 x 10 mL) and dried under vacuum at 50°C to afford 2a as a dark yellow solid (325 mg, 0.604 mmol, 76%). ¹H NMR (CD₃CN, 300.13 MHz): $\delta = 7.32$ (d, ³J = 1.8, 1H, NCH), 7.24 (s, 1H, m-H), 7.05 (s, 1H, m-H), 7.03 (d, ${}^{3}J = 1.8$, 1H, NCH), 4.13 and 4.03 (2m, 2 x 1H, NCH₂), 2.56 (s, 3H, p-Me), 2.38 (s, 3H, o-Me), 2.33, (m, 1H, CHCN), 2.03 (s, 3H, o-Me), 1.69 (m, 1H, NCH₂CH₂), 1.08 (m, 1H, NCH₂CH₂). Free CH₃CN that results from exchange with CD₃CN is seen as a singlet (at 1.96 ppm) on the downfield side of the multiplet due to residual CHD₂CN observed at 1.94 ppm. ¹³C{¹H} NMR (CD₃CN, 100.61 MHz): $\delta = 156.1$ (br., NCN); 140.3 (*p*- or *ipso*-C_{Ar}), 136.5, 136.2, 135.7 (*ipso*- or *p*-C_{Ar}, *o*-C_{Ar}) and CHCN), 130.4 and 130.0 (m-C_{Ar}), 125.4 and 123.6 (NCH), 50.6 (NCH₂), 29.2 (NCH₂CH₂), 21.1 (*p*-Me), 19.2 and 18.3 (*o*-Me), -2.0 (br., CHCN). IR [ATR]: v(C_{sp2}-H) 3176 (w), 3145 (w); v(C_{sp3}-H) 2923 (w), 2861 (w); v(CH₃CN) 2352(w), 2322 (w), 2293 (w); $v(C \equiv N)$ 2234 (m); v(P-F) 826 (s).

NMR spectra of [Ni{Mes-NHC-(CH₂)₂CH(CN)}(NCCH₃)₂]⁺PF₆⁻ (2a)^a

^{*a*} [2a] ~ 3.10^{-2} mol.L⁻¹ for the ¹H NMR spectrum

Concentration dependence of the ¹H NMR spectrum of (2a).

The ¹H NMR spectrum of **2a** is concentration dependent. Thus, while both *meta*-protons of the mesityl ring each appear as two relatively sharp singlets when $[2a] \sim 3.10^{-2} \text{ mol.L}^{-1}$, one signal of the *m*-protons shifts significantly to lower field when $[2a] \sim 0.15 \text{ mol.}L^{-1}$, and then appears as a very broad singlet (Figure S1A). Similar behaviour is observed for the two ortho-methyls of the mesityl ring. Thus, while both appear as two relatively sharp singlets when $[2a] \sim 3.10^{-2}$ mol.L⁻¹, one significantly shifts to lower field when $[2a] \sim 0.15$ mol.L⁻¹, and then appears as a very broad singlet (Figure S1B). Apart from the CHCN proton, whose chemical shift is also concentration dependent, all the other protons give well-resolved sharp signals and hardly change upon concentration variation. The exact reason of this behaviour is not well understood, but may well originate from enhanced intermolecular interactions at higher concentrations and/or from a fluxional process involving mesityl group rotation, that could be linked to the rate of acetonitrile exchange. The presence of free CH₃CN as a singlet on the downfield side of the multiplet due to residual CHD₂CN (Figure S1B) indicates that CH₃CN/CD₃CN exchange is indeed occuring, and a VT NMR experiment run in CD₃CN from +27°C to +75°C on a diluted solution of 2a indeed allowed to observe a slight broadening at high temperature (at +70 and +75°C) of the mesityl methyl groups that resonate at 2.6 and 2.1 ppm.

Figure S1A. Aromatic area of the ¹H NMR spectra (CD₃CN, 298 K) of 2a at [2a] $\sim 3.10^{-2}$

 $mol.L^{-1}$ (bottom) and 0.15 $mol.L^{-1}$ (top)

Figure S1B. Mesityl methyl groups area of the ¹H NMR spectra (CD₃CN, 298 K) of 2a at $[2a] \sim 3.10^{-2} \text{ mol.L}^{-1}$ (bottom) and 0.15 mol.L⁻¹ (top)

Deuterium labelling experiment; reaction of (1a) with DCl

To a dark green suspension of **1a** (50 mg, 0.133 mmol) and KPF₆ (25 mg, 0.133 mmol) in CD₃CN (2 mL) (C ~ 7.10⁻² mol.L⁻¹) at room temperature was added drop-wise a solution of DCl (35 wt.% in D₂O) diluted in CD₃CN to 1.0 M. The addition was stopped as soon as a colour change from dark green to ochre yellow was observed. The reaction mixture was then stirred for 5 min, before it was allowed to settle and a sample was removed with a syringe and directly analyzed by ¹H NMR. The obtained spectrum shows the presence of [Ni{Mes-NHC-(CH₂)₂CH(CN)}(NCCD₃)₂]⁺PF₆ **2a-D** and mono-deuterated cyclopentadiene C₄H₄CHD in a 1:1 ratio. ¹H NMR (CD₃CN, 300.13 MHz): δ = 7.33 (s, 2H, NCH and *m*-H), 7.07 (s, 1H, *m*-H), 7.04 (s, 1H, NCH), 6.56 and 6.48 (2d, ³J n.r, 2 x 2H, C₄H₄CHD), 4.11 and 4.02 (2m, 2 x 1H, NCH₂), 2.95 (br. s, 1H, C₄H₄CHD), 2.56 (s, 3H, *p*-Me), 2.41 (br. s, 4H, *o*-Me and CHCN), 2.03 (s, 3H, *o*-Me), 1.66 (br. s, 1H, NCH₂CH₃), 1.05 (br. s, 1H, NCH₂CH₂).

Synthesis of [Ni{Mes-NHC-(CH₂)₂CH(CN)}(acac)] (3a)

To a dark green suspension of 1a (1.00 g, 2.66 mmol) and KPF₆ (490 mg, 2.66 mmol) in acetonitrile (20 mL) at room temperature was added drop-wise an equimolar amount of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (2.66 mL, 2.66 mmol). The reaction mixture turned yellow and was stirred for 10 min before filtration on a Celite pad, which was subsequently rinsed with acetonitrile until the washings were colourless. Potassium acetylacetonate (368 mg, 2.66 mmol) was then added to the filtrate and the reaction mixture was stirred for 30 min. The resulting light green suspension was filtered through Celite and the solvent evaporated under vacuum. Recrystallization from a thf/pentane mixture then afforded **3a** as light green microcrystals (650 mg, 1.46 mmol, 55%) that were washed with pentane (3 x 10 mL) and dried under vacuum. Anal. Calcd for C₂₁H₂₅N₃NiO₂•¹/₂C₄H₈O: C, 61.91; H, 6.55; N, 9.42. Found: C, 61.99; H, 6.60; N, 9.30. [The crystals contain half a molecule of thf per formula unit, as shown by the NMR data and the X-ray diffraction study]. ¹H NMR (CD₂Cl₂, 400.14 MHz): $\delta = 7.04$ (d, ³J = 1.8, 1H, NCH), 7.04 (s, 1H, *m*-H), 6.88 (s, 1H, m-H), 6.70 (d, ${}^{3}J = 1.8$, 1H, NCH), 5.11 (s, 1H, CH[C(O)Me]₂), 4.13 (m, 1H, NCH₂), 4.01 (m, 1H, NCH₂), 3.68 (m, 2H, 0.5 thf), 2.59 (s, 3H, o-Me), 2.31 (s, 3H, p-Me), 2.10 (s, 3H, o-Me), 1.82 (m, 2H, 0.5 thf), 1.78-1.71 (m, 2H, CHCN and NCH₂CH₂), 1.74 (s, 3H, C(O)*Me*), 1.27 (s, 3H, C(O)*Me*), 1.15 (m, 1H, NCH₂CH₂). ¹H NMR (CD₃CN, 400.14 MHz): $\delta = 7.22$ (d, ${}^{3}J = 1.8$, 1H, NCH), 7.07 (s, 1H, m-H), 6.94 (s, 1H, m-H), 6.83 (d, ${}^{3}J = 1.8$, 1H, NCH), 5.15 (s, 1H, CH[C(O)Me]₂), 4.07 (2m, 2 x 1H, NCH₂), 3.65 (m, 2H, 0.5 thf), 2.51 (s, 3H, o-Me), 2.31 (s, 3H, p-Me), 2.08 (s, 3H, o-Me), 1.80 (m, 2H, 0.5 thf), 1.75 (dd, ${}^{3}J = 8.8, {}^{3}J$ = 7.6, 1H, CHCN, 1.70 (s, 3H, C(O)Me), 1.65 (m, 1H, NCH₂CH₂), 1.31 (s, 3H, C(O)Me), 1.01 (m, 1H, NCH₂CH₂). ¹³C{¹H} NMR (CD₃CN, 75.47 MHz): $\delta = 187.8$ and 186.8 (CO), 163.1 (NCN), 138.9 (*p*- or *ipso*- C_{Ar}), 138.1 (*ipso*- or *p*- C_{Ar}), 136.3 (*o*- C_{Ar}), 135.7 (CHCN),

129.6 (*m*-C_{Ar}), 124.4 and 122.5 (NCH), 100.7 (CH[C(O)Me]₂), 68.3 (thf), 50.9 (NCH₂), 30.8 (NCH₂CH₂), 27.0 and 25.2 (C(O)*Me*), 26.3 (thf), 21.1 (*p*-Me), 18.9 (*o*-Me), -2.2 (CHCN). IR [ATR]: $\nu(C_{sp2}$ -H) 3152 (w), 3121 (w), 3093 (w); $\nu(C_{sp3}$ -H) 2966 (w), 2916 (w), 2858 (w); $\nu(C\equiv N)$ 2187 (m); $\nu(C=O) + \nu(C=C)$ 1581 (m), 1520 (s).

NMR spectra of [Ni{Mes-NHC-(CH₂)₂CH(CN)}(acac)] (3a)

Synthesis of [Ni{Me-NHC-CH₂CH(CN)}(acac)] (3b)

To a dark green suspension of **1b** (300 mg, 1.16 mmol) and KPF_6 (214 mg, 1.16 mmol) in acetonitrile (5 mL) at room temperature was added drop-wise an equimolar amount of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (1.16 mL, 1.16 mmol). The reaction mixture turned yellow and was stirred for 10 min before filtration on a Celite pad, which was subsequently rinsed with acetonitrile until the washings were colourless. Potassium acetylacetonate (160 mg, 1.16 mmol) was then added to the filtrate and the reaction mixture was stirred for 30 min. The resulting light brown-green suspension was filtered through Celite and the solvent evaporated under vacuum. The residue was then redissolved in THF (5 mL), filtered through Celite again, and precipitated from a thf/pentane (1:4) mixture to afford **3b** as a yellow powder (235 mg, 0.805 mmol, 69%) that was washed with pentane (3 x 10 mL) and dried under vacuum. Anal. Calcd for C₁₂H₁₅N₃NiO₂: C, 49.37; H, 5.18; N, 14.39. Found: C, 49.47; H, 5.37; N, 14.10. ¹H NMR (CDCl₃, 300.13 MHz): $\delta = 6.78$ (d, ³J = 1.8, 1H, NCH), 6.58 (d, ${}^{3}J = 1.8$, 1H, NCH), 5.38 (s, 1H, CH[C(O)Me]₂), 3.79 (dd, ${}^{2}J = 12.2$, ${}^{3}J = 12.2$ 8.1, 1H, NCH₂), 3.72 (s, 3H, NCH₃), 3.51 (dd, ${}^{2}J = 12.2$, ${}^{3}J = 3.3$, 1H, NCH₂), 2.20 (dd, ${}^{3}J =$ 8.1, ${}^{3}J = 3.3$, 1H, CHCN), 1.88 (s, 3H, C(O)Me), 1.84 (s, 3H, C(O)Me). ${}^{13}C{}^{1}H$ NMR $(CDCl_3, 75.47 \text{ MHz})$: $\delta = 187.5$ and 185.9 (CO), 160.8 (NCN), 136.3 (CHCN), 123.8 and 117.3 (NCH), 100.5 (CH[C(O)Me]₂), 52.4 (NCH₂), 35.5 (NCH₃), 27.2 and 26.5 (C(O)Me), 4.0 (CHCN). IR [ATR]: v(C_{sp2}−H) 3147 (w), 3116 (w); v(C_{sp3}−H) 2940 (w); v(C≡N) 2185 (m); v(C=O) + v(C=C) 1575 (m), 1518 (s).

NMR spectra of [Ni{Me-NHC-CH₂CH(CN)}(acac)] (3b)

Synthesis of [Ni(Mes₂NHC)(CH₃)(acac)] (5a)

To a brownish suspension of 4a (300 mg, 0.677 mmol) and KPF₆ (125 mg, 0.679 mmol) in acetonitrile (5 mL) at room temperature was added drop-wise an equimolar amount of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (0.68 mL, 0.680 mmol). The reaction mixture turned yellow and was stirred for 10 min before filtration on a Celite pad, which was subsequently rinsed with acetonitrile until the washings were colourless. Potassium acetylacetonate (94 mg, 0.680 mmol) was then added to the filtrate and the reaction mixture was stirred for 30 min at room temperature. The resulting light brown suspension was filtered through Celite and the solvent evaporated under vacuum. The residue was then extracted in toluene (5 mL) and filtered through Celite again. Solvent evaporation afforded 5a as a yellow solid (228 mg, 0.478 mmol, 71%) that was washed with pentane (3 x 10 mL) and dried under vacuum. Anal. Calcd for C₂₇H₃₄N₂NiO₂: C, 67.95; H, 7.18; N, 5.87. Found: C, 67.98; H, 7.35; N, 5.65. ¹H NMR (CD₃CN, 300.13 MHz): $\delta = 7.12$ (s, 4H, *m*-H), 7.10 (s, 2H, NCH), 5.06 (s, 1H, CH[C(O)Me]₂), 2.40 (s, 6H, p-Me), 2,17 (s, 12H, o-Me), 1.54 (s, 3H, C(O)Me), 1.51 (s, 3H, C(O)Me), -1.13 (s, 3H, CH₃). ¹³C{¹H} NMR (CD₃CN, 75.47 MHz): $\delta = 186.6$ and 186.1 (CO), 179.5 (NCN), 139.6 (p- or ipso-C_{Ar}), 137.9 and 136.4 (br. o-C_{Ar}), 137.7 (ipso- or p-C_{Ar}), 129.9 (*m*-C_{Ar}), 124.3 (NCH), 100.0 (CH[C(O)Me]₂), 27.2 and 26.5 (C(O)Me), 21.2 (*p*-Me), 18.6 (br. *o*-Me), -13.7 (CH₃). IR [ATR]: ν (C_{sp2}-H) 3164 (w), 3134 (w), 3079 (w); $v(C_{sp3}-H)$ 2951 (m), 2917 (m), 2854 (m); v(C=O) + v(C=C) 1578 (s), 1515 (s).

NMR spectra of [Ni(Mes₂NHC)(CH₃)(acac)] (5a)

Synthesis of [Ni(Mes₂NHC)(CH₂CN)(acac)] (5b)

To a dark green suspension of 4b (500 mg, 1.07 mmol) and KPF₆ (197 mg, 1.07 mmol) in acetonitrile (10 mL) at room temperature was added drop-wise an equimolar amount of aqueous HCl (37%) diluted in acetonitrile to 1.0 M (1.07 mL, 1.07 mmol). The reaction mixture turned yellow and was stirred for 10 min before filtration on a Celite pad, which was subsequently rinsed with acetonitrile until the washings were colourless. Potassium acetylacetonate (148 mg, 1.07 mmol) was then added to the filtrate and the reaction mixture was stirred for 30 min. The resulting greenish suspension was filtered through Celite and the solvent evaporated under vacuum. The residue was then redissolved in THF (5 mL), filtered through Celite again, and recrystallized from a thf/pentane (1:4) mixture at 4°C to afford 5 as a yellow-green solid (378 mg, 0.753 mmol, 70%) that was washed with pentane (3 x 10 mL) and dried under vacuum. Anal. Calcd for C₂₈H₃₃N₃NiO₂: C, 66.96; H, 6.62; N, 8.37. Found: C, 67.12; H, 6.64; N, 8.26. ¹H NMR (CD₃CN, 300.13 MHz): $\delta = 7.17$ (s, 6H, *m*-H and NCH), 5.18 (s, 1H, CH[C(O)Me]₂), 2.41 (s, 6H, p-Me), 2,16 (br. s, 12H, o-Me), 1.60 (s, 3H, C(O)Me, 1.59 (s, 3H, C(O)Me), -0.13 (s, 2H, CH₂CN). ¹H NMR (CDCl₃, 300.13 MHz): $\delta =$ 7.10 (s, 4H, *m*-H), 6.95 (s, 2H, NCH), 5.06 (s, 1H, CH[C(O)Me]₂), 2.41 (s, 6H, *p*-Me), 2,23 (s, 12H, o-Me), 1.66 (s, 3H, C(O)Me), 1.53 (s, 3H, C(O)Me), -0.02 (s, 2H, CH₂CN).¹³C{¹H} NMR (CD₃CN, 75.47 MHz): δ = 187.0 and 186.9 (CO), 169.8 (NCN), 140.1 (*p*- or *ipso*-C_{Ar}), 137.6 and 136.0 (br. o-C_{Ar}), 136.7 (ipso- or p-C_{Ar}), 130.1 (m-C_{Ar}), 125.2 (NCH), 100.6 (CH[C(O)Me]₂), 26.9 and 26.1 (C(O)Me), 21.3 (p-Me), 18.4 (br. o-Me), -22.4 (CH₂CN). IR [ATR]: v(C_{sp2}-H) 3171 (w), 3128 (w), 3079 (w); v(C_{sp3}-H) 2957 (m), 2918 (m), 2859 (w); v(C=N) 2193 (m); v(C=O) + v(C=C) 1578 (s), 1519 (s).

NMR spectra of [Ni(Mes₂NHC)(CH₂CN)(acac)] (5b)

X-ray Diffraction Studies. Structure Determination and Refinement

A single crystal of **3a** suitable for X-ray diffraction studies was selected from a batch of crystals obtained at -28 °C from a thf/pentane solution. Diffraction data were collected at 173(2) K on a Bruker APEX II DUO KappaCCD area detector diffractometer equipped with an Oxford Cryosystem liquid N₂ device using Mo-K α radiation ($\lambda = 0.71073$ Å). A summary of crystal data, data collection parameters and structure refinements is given in Table S1 (see the Supporting Information). The crystal-detector distance was 38 mm. The cell parameters were determined (APEX2 software)⁴ from reflections taken from three sets of twelve frames, each at ten s exposure. The structure was solved using direct methods with SHELXS-97 and refined against F^2 for all reflections using the SHELXL-97 software.⁵ A semi-empirical absorption correction was applied using SADABS in APEX2.⁴ All non-hydrogen atoms were refined with anisotropic displacement parameters, using weighted full-matrix least-squares on F^2 . Hydrogen atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters.

Complex	3a
Empirical formula	$2(C_{21}H_{25}N_3NiO_2)\bullet C_4H_8O$
Formula weight	892.40
Crystal system	Tetragonal
Space group	I -4
<i>a</i> (Å)	18.4575(4)
<i>c</i> (Å)	13.1542(4)
$V(\text{\AA}^3)$	4481.36(19)
Ζ	4
D_{calcd} (Mg.m ⁻³)	1.323
Absorp coeff (mm ⁻¹)	0.891
Crystal habit, color	block, yellow
Crystal size (mm)	$0.20\times0.15\times0.10$
h, k, l_{\max}	24, 23, 17
T_{\min}, T_{\max}	0.842, 0.916
Reflns collected	29009
$R \left[I > 2\sigma(I) \right]$	0.0259
wR^2 (all data)	0.0677
GOF on F^2	1.048

Table S1. X-Ray Crystallographic Data and Data Collection Parameters for 3a

Table S2. Selected 1	Bond Lengths	(Å) and Angles	(°) for Compl	exes $\mathbf{1a}^{1,2}$ and	3a with Esd's
in Parentheses					
	1a ^{<i>a</i>}	$\mathbf{3a}^{a}$			

	1a	Ja
Ni-C1	1.8560(19)	1.8686(19)
Ni-C2	1.9718(19)	1.961(2)
Ni-O1	_	1.8835(14)
Ni-O2	_	1.8968(14)
C2–C3	1.438(3)	1.447(3)
C3-N3	1.143(3)	1.145(3)
C1-Ni-C2	93.95(8)	91.91(8)
O1-Ni-O2	_	93.29(6)
C1-Ni-O2	_	89.71(7)
C2-Ni-O1	_	84.97(7)
Ni-C2-C3	106.91(15)	107.00(13)
C2-C3-N3	177.7(3)	178.0(2)

^{*a*} The geometric parameters of the nickelacycle of 3a are almost identical to those of its half-sandwich precursor 1a.

References

1. A. M. Oertel, V. Ritleng, M. J. Chetcuti, L. F. Veiros, J. Am. Chem. Soc., 2010, 132, 13588.

2. A. M. Oertel, J. Freudenreich, J. Gein, V. Ritleng, L. F. Veiros, M. J. Chetcuti, *Organometallics*, 2011, **30**, 3400.

- 3. C. D. Abernethy, A. H. Cowley, R. A. Jones, J. Organomet. Chem., 2000, 596, 3.
- 4. "M86-E01078 APEX2 User Manual", Bruker AXS Inc., Madison, USA, 2006.
- 5. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.