Supporting Informations for

Zn²⁺-Induced Conformational Changes in a Binaphthyl-Pyrene Derivative Monitored by Using Fluorescence and CD Spectroscopy

Fang Wang,^{‡,a,d} Jong Hun Moon,^{‡b} Raju Nandhakumar,^{‡a,c} Baotao Kang,^b
 Dabin Kim,^a Kwan Mook Kim^{*a} Jin Yong Lee^{*c} and Juyoung Yoon^{*a}

^aDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea

^bDepartment of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea

^cDepartment of chemistry, Karunya University, Karunya Nagar, Coimbatore-641 114.TamiNadu, INDIA

^dDepartment of Chemistry, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

jyoon@ewha.ac.kr; jinylee@skku.edu; kkmook@ewha.ac.kr

[†]These authors contributed equally

Synthetic scheme	S2 Page
Figure S1 S	S3 Page
Figure S2	S3 Page
Figure S3 S	54 Page
Figure S4	S4 Page
Figure S5	S5Page
Figure S6	S5 Page
Figure S7	S6 Page
Figure S8	S6 Page
Figure S9 S	S7 Page
Figure S10	S8 Page
Figure S11	S9 Page

Synthetic Scheme :

Synthesis of compound 1 :

Compound 2^{1} (0.300 g, 4.11 mmol), Pyrene methylamine hydrochloride (0.242 g, 0.90 mmol) and triethylamine (0.125 g, 1.23 mmol) were dissolved in a co-solvent of absolute ethanol (25 mL) and methylene chloride (5 mL). The mixture was degassed with nitrogen and then heated under reflux for five hours. After cooled to room temperature, the precipitate was separated and washed with ethanol (ice cold) several times to afford the desired product **1**.

MP : $205 {}^{0}C$, Yield : 80%

¹H NMR (CDCl₃, 250 MHz) : δ (ppm): 13.17 (s, 2H), 8.28 (s, 2H), 8.03 (d, 2H, *J*=7.32), 7.97-7.91(m, 4H), 7.87-7.78 (m, 12H), 7.66-7.57 (m, 6H), 7.29-7.13 (m, 14H), 6.56 (s, 3H), 6.36 (s, 1H), 5.17 (q, 4H), 4.70 (s, 4H). ¹³C NMR (CDCl₃, 62.9 MHz) : δ (ppm): 165.67, 154.64, 154.23, 137.22, 135.53, 133.93, 133.36, 131.14, 130.86, 130.78, 130.63, 129.57, 128.81, 128.69, 128.16, 128.00, 127.34, 127.27, 126.83, 126.57, 125.93, 125.60, 125.34, 125.21, 125.06, 124.82, 124.71, 124.57, 123.85, 123.25, 122.79, 120.98, 119.96, 117.43, 115.96, 70.93, 60.64.FAB-MS m/z= 1157.4326 (M+H)⁺, calcd for C₈₄H₅₆N₂O₄=1156.4240.

¹Y.Zhou, J. Kim, R.Nandhakumar, M. Kim, E. Cho, Y. Kim, C. Lee, S. Han, D. Kim, K. Kim, J. Kim, J. Yoon. *Chem. Comm.*, **2010**.46.6512-6514

Figure S1. ¹H NMR (250 MHz) spectrum of compound 1.

Figure S2. ¹³C NMR (62.9 MHz) spectrum of compound 1.

Figure S3. Fab mass of compound 1.

Figure S4: Fluorescence at 559 nm of **1** and Zn^{2+} in DMSO-HEPES buffer (0.02 M, pH = 7.4) (9:1, v/v) with a total concentration of $[1] + [Zn^{2+}] = 100\mu$ M, indicating a 2:1 metal-ligand ratio of the complexation between **1** and Zn^{2+} .

Figure S5: Normalized fluorescene response of **1** (0.1 μ M) to changing Zn²⁺ concentrations in DMSO-HEPES buffer (0.02 M, pH = 7.4) (9:1, v/v)

Figure S6. Reversible responses of **1** to Zn^{2+} in DMSO-HEPES buffer (0.02 M, pH = 7.4) (9:1, v/v): (a) 10 μ M **1**; (b) 10 μ M **1** with 100 μ M Zn^{2+} ; (c) 10 μ M **1** with 100 μ M Zn^{2+} and then addition of 20 μ M EDTA (sodium salt); (d) 10 μ M **1** with 100 μ M Zn^{2+} , 20 μ M EDTA and then addition of 200 μ M Zn^{2+} .

Figure S7. Fluorescent changes at 545 nm of **1** (10 μ M) with 10 equiv. of Zn²⁺ between pH 6 and 8 in DMSO-HEPES (9:1, v/v).

Figure S8. Absorbance titrations of **1** (10 μ M) with Zn²⁺ in DMSO-HEPES buffer(0.02 M, pH= 7.4) (9:1, v/v).(inside: digital photographs of the **1** solution (10 μ M) in the presence of Zn²⁺ (100 μ M). Solvent: DMSO-HEPES (pH 7.4, 9:1, v/v))

More details of Reference 11 (in the main text):

Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.
L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,
Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark,
M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.
W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J.
J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D.
J. Gaussian, Inc., Wallingford CT, 2009

Figure S9. Calculated CD spectra as a function of the dihedral angle θ (Ca-Cb-Cb'-Ca') of **1** and after attachment of Zn²⁺ ions.

Figure S11. Calculated frontier orbital energy diagrams and electron transfer processes in 1 (a) and $1+(Zn^{2+})_2$ (b) induced by light absorption