Supporting Information for

Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines *via* asymmetric addition of silyl dienolates to fluorinated sulfinylimines

Yingle Liu^{*a*}, Jiawang Liu^{*a*}, Yangen Huang^{*a*} and Feng-Ling Qing^{**a,b*}

^{*a*}College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China

^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese

Academy of Science, 345 Lingling Road, Shanghai 200032, China

E-mail: flq@mail.sioc.ac.cn

Table of Contents

1) General remarks	.S3
2) The regioselectivities in Table 2 and 3	S3
3) Preparation of the known substrates 1a , 2a , 2b	S 4
4) General procedure for the synthesis of fluorinated aldimines 1b and 1c	.S4
5) General Procedure for the Synthesis of α -vinyl- β - trifluoromethyl- β - amino ester 3 (Table 2)	.S5
6) General Procedure for the Synthesis of δ-amino- α , β-unsaturated ester 4 (Table 3)	.88
7) Procedure for the Preparing of 5-7 (Scheme 2)S	11
8) Copies of ¹ H NMR and ¹³ C NMR Spectra for the New Product	514
9) ORTEP drawing of the X-ray crystallographic structure of 3b , 3d and 4e S	31
10) Chiral HPLC spectra of compound 5	\$32

1. General Remarks

¹H and ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer for solution in CDCl₃ with tetramethylsilane (TMS) as an internal standard; J-values are in Hz. Mass spectra were recorded by EI methods, and HRMS was measured on a Finnigan MA₊ mass spectrometer. THF and toluene were distilled from sodium (Na) under argon (N₂) atmosphere. CH₃CN and 1,2-dichloromethane were distilled from CaH₂ under argon (Ar) atmosphere. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF 254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

2. The regioselectivities in Table 2 and 3

3. Preparation of Substrates 1a, 2a, 2b.

(S,E)-2-methyl-N-(2, 2, 2-trifluoroethylidene)propane-2-sulfinamide **1a** was prepared according to the procedure of Mimura.¹ Substrates **2a** and **2b** were prepared using a literature procedure.²

4. General procedure for the synthesis of fluorinated aldimines 1b and 1c:

Ethyl 2, 2-difluoroacetate or ethyl 2-bromo-2,2-difluoroacetate (30 mmol) were dissolved in Et₂O (5 mL) and then this solution was added slowly to a solution of LiAlH₄ (342 mg, 9 mmol) in Et₂O (20 mL) at -78 °C for 10 min. After addition, the reaction mixture was stirred for 12 h at -78 °C. Then, concentrated sulfuric acid (1.4 mL) and ice water (40 mL) was added successively after the reaction mixture was warmed to 0 °C. The resulting mixture was extracted with ether (3 × 50 mL), washed with saturated NaCl solution and dried over anhydrous Na₂SO₄. After removal of the solvent, the crude product was added to a solution of (S)-*N-tert*-butanesulfinamide (3.8 mL, 30 mmol) in toluene, and the resulted mixture was refluxed to remove water by azeotropic distillation unitil no water was separated. After removal of toluene under reduced pressure, the residue was purified by distillation for **1b** and **1c** (the imines had only verified by ¹HNMR and ¹⁹FNMR because of the instability).

H. Mimura, K. Kawada, T. Yamashita, T. Sakamoto and Y. Kikugawa, J. Fluorine Chem., 2010, 131, 477; 2) B.
Bazán-Tejeda, G. Bluet, G. Broustal and J-M. Campagne, Chem. Eur. J. 2006, 12, 8358.

(S,Z)-N-(2,2-difluoroethylidene)-2-methylpropane-2-sulfinamide (1b). Colourless oil (40 %); bp 56-58 °C/3.8 mmHg; ¹H NMR (400 MHz, CDCl₃) δ 8.16–7.97 (m, 1H), 6.42–6.11 (m, 1H), 1.24 (s, 9H). ¹⁹F NMR (377 MHz, CDCl₃) δ -118.88 – -119.97 (m, 1F), -120.98 (ddd, *J* = 329.3, 54.5, 3.0 Hz, 1F).

(S,E)-N-(2-bromo-2,2-difluoroethylidene)-2-methylpropane-2-sulfinamide (1c). Colourless oil (21 %); bp 64-67 °C/2.9 mmHg; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (t, *J* = 5.0 Hz, 1H), 1.27 (s, 9H). ¹⁹F NMR (377 MHz, CDCl₃) δ -56.14 (dd, *J* = 158.0, 4.7 Hz, 1F), -56.81 (dd, *J* = 158.0, 5.6 Hz, 1F).

5. General Procedure for the Synthesis of α -vinyl- β -trifluoromethyl- β -amino ester

```
3.
```

AgBF₄ (9.7 mg, 0.05 mmol) and fluorinated aldimine **1a** (100 mg, 0.5 mmol) were charged in a dried tube under nitrogen, followed by addition of CH₂Cl₂ (1.0 mL). The solution was cooled to -50 °C, and the dienolate **2b** (112mg, 0.6 mmol) in CH₂Cl₂ (1mL) was added. After stirring for indicated time, brine (4 mL) was added, followed by extraction with CH₂Cl₂ (3 × 5 mL). The combined organic phases were dried with Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel to afford product **3a**. The ratio of diastereomers was determined by ¹⁹F or ¹H NMR of the crude reaction mixture.

(R)-ethyl 2-((S)-1-((S)-1,1-dimethylethylsulfinamido)-2,2,2-trifluoroethyl)but- O^{S} NH O $F_{3}C^{-}$ 3-enoate (3a). Column chromatography (petroleum ether : ethyl acetate = 2:1) on silica gel gave a pale yellow solid (83%): mp 60–61°C; [α]_D16.2 + 282.2 (c 0.40, CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 5.86 (dt, *J* = 18.0, 9.1 Hz, 1H), 5.34 (s, 1H), 5.30 (d, *J* = 7.0 Hz, 1H), 4.57 (d, *J* = 10.6 Hz, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 4.08–3.91 (m, 1H), 3.50 (dd, *J* = 8.3, 5.2 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 131.0, 124.4 (q, *J* = 284.4 Hz), 120.6, 61.6, 60.0 (q, J = 29.8 Hz), 57.5, 49.9, 22.5, 13.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -72.17 (d, J = 7.3 Hz, 3F). IR (KBr)_{max} 3276, 3088, 2979, 2868, 1733, 1637, 1466, 1268, 1182, 1125, 923 cm⁻¹; MS (EI) m/z 316.0 M⁺; HRMS (EI) m/z M⁺ calcd for C₁₂H₂₁F₃N₁O₃S₁, 316.1189; Found, 316.1190.

(R)-ethyl 2-((S)-1-((S)-1,1-dimethylethylsulfinamido)-2,2-difluoroethyl)but-3enoate (3b). Column chromatography (petroleum ether : ethyl acetate = 2:1) on silica gel gave a white solid (82%): mp 71–72°C; [α]_D13.8 +205.2 (c 0.69, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.10 (td, J = 55.2, 2.0 Hz, 1H), 5.95–5.81 (m, 1H), 5.35 (d, J = 11.7 Hz, 1H), 5.32 (d, J = 4.7 Hz, 1H), 4.32 (d, J = 10.7 Hz, 1H), 4.26–4.09 (m, 2H), 3.80 (dtdd, J = 17.1, 10.7, 6.5, 2.0 Hz, 1H), 3.48 (dd, J = 8.5, 6.6 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 131.6, 120.4, 115.2 (t, J = 247.1 Hz), 61.4, 60.4 (t, J = 22.3 Hz), 57.0, 49.6 (d, J= 3.3 Hz), 22.7, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.42 (ddd, J = 286.3, 54.8, 10.6 Hz, 1F), -129.18 (ddd, J = 286.2, 55.3, 16.8 Hz, 1F). IR (KBr)_{max} 3219, 3105, 2977, 2868, 1732, 1465, 1373, 1262, 1175, 1063, 928 cm⁻¹; MS (EI) m/z 320.1 [M + Na]⁺; HRMS (EI) m/z [M + Na]⁺ calcd for C₁₂H₂₁F₂N₁Na₁O₃S₁, 320.1102; Found, 320.1103.

(R)-ethyl 2-((S)-2-bromo-1-((S)-1,1-dimethylethylsulfinamido)-2,2difluoroethyl)but-3-enoate (3c). Column chromatography (petroleum ether : ethyl acetate = 2:1) on silica gel gave a white solid (70%): mp 58–60°C; [α]_D12.5 + 208.9 (c 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.97–5.75 (m, 1H), 5.33 (dd, *J* = 13.1, 9.4 Hz, 2H), 4.66 (d, *J* = 10.4 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.03–3.93 (m, 1H), 3.65 (d, *J* = 5.1 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 131.4, 123.5 (t, *J* = 313.5 Hz), 120.6, 66.9 (t, *J* = 22.8 Hz), 61.77, 57.7, 51.4, 22.7, 14.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -49.87 (d, *J* = 8.2 Hz, 2F). IR (KBr)_{max} 3220, 2972, 1730, 1466, 1374, 1292, 1181, 1089, 1023, 928, 744 cm⁻¹; MS (EI) m/z

398.0 $[M+Na]^+$; HRMS (EI) m/z $[M+Na]^+$ calcd for $C_{12}H_{20}Br_1F_2N_1Na_1O_3S_1$, 398.0208; Found, 398.0218.

(R)-tert-butyl 2-((S)-1-((S)-1,1-dimethylethylsulfinamido)-2,2,2trifluoroethyl)but-3-enoate (3d). Column chromatography (petroleum ether : ethyl F_3C G° G°

(R)-tert-butyl 2-((S)-1-((S)-1,1-dimethylethylsulfinamido)-2,2difluoroethyl)but-3-enoate (3e). Column chromatography (petroleum ether : ethyl $HF_2C + C^{0}Bu$ acetate = 2:1) on silica gel gave a yellow solid (77%): mp 78–80°C; [a]_D18.3 +348.0 (c 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.08 (t, J = 55.2 Hz, 1H), 5.92–5.78 (m, 1H), 5.31 (d, J = 10.5 Hz, 1H), 5.28 (d, J = 6.4 Hz, 1H), 4.48 (d, J = 10.6 Hz, 1H), 3.72 (d, J = 8.3 Hz, 1H), 3.42–3.30 (m, 1H), 1.46 (d, J = 2.7 Hz, 9H), 1.26 (d, J = 2.7 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 132.2, 119.8, 115.5 (t, J = 247.4 Hz), 82.1, 60.5 (t, J = 22.6 Hz), 57.0, 49.8, 27.9, 22.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -121.40 – -123.10 (m, 1F), -128.85 (ddd, J = 285.9, 55.6, 17.7 Hz, 1F). IR (KBr)_{max} 3368, 2980, 2933, 1690, 1466, 1398, 1308, 1235, 1039, 937, 865, 640 cm⁻¹; MS (EI) m/z 348.1 [M + Na]⁺; HRMS (EI) m/z [M + Na]⁺ calcd for C₁₄H₂₅F₂N₁Na₁O₃S₁, 348.1415; Found, 348.1420.

6. General Procedure for the Synthesis of δ -amino- α , β -unsaturated ester 4.

Dienolate **2a** (112mg, 0.6 mmol) was added to a solution of **1a** (100 mg, 0.5 mmol) in CH₂Cl₂ (2 mL) and the solution was cooled to - 78 °C under N₂. TMSOTf (90 μ L, 0.5 mmol) was added dropwise. After being stirred for indicated time at the same temperature, the reaction was quenched by addition of a saturated aqueous NaHCO₃ (4mL). The mixture was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to provide an oil residue. The **4a** was obtained by flash chromatography on silica gel. The ratio of diastereomers was determined by ¹⁹F or ¹H NMR of the crude reaction mixture.

(S, E)-ethyl 5-((S)-1,1-dimethylethylsulfinamido)-6,6,6-trifluorohex-2-

enoate (4a). Column chromatography (petroleum ether : ethyl acetate = 2:1) on silica gel gave a yellow oil (89 %): [α]_D19.0 -212.0 (c 0.57, CHCl₃); ¹H NMR

(400 MHz, CDCl₃) δ 6.94–6.71 (m, 1H), 5.92 (d, J = 15.6 Hz, 1H), 4.21 (d, J = 9.0 Hz, 1H), 4.14 (q, J =

7.1 Hz, 2H), 3.94–3.59 (m, 1H), 2.78–2.52 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 1.17 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 141.8, 125.3, 124.8 (q, J = 281.3 Hz), 60.4, 57.4 (q, J = 29.9 Hz), 57.3, 32.1, 22.5, 14.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -75.00 (d, J = 7.1 Hz, 3F). IR (KBr)_{max} 3266, 3178, 2975, 2872, 1716, 1655, 1474, 1370, 1270, 1175, 1127, 980 cm⁻¹; MS (EI) m/z 316.0 M⁺; HRMS (EI) m/z M⁺ calcd for C₁₂H₂₁F₃N₁O₃S₁, 316.1189; Found, 316.1190.

(S, E)-ethyl 5-((S)-1,1-dimethylethylsulfinamido)-6,6-difluorohex-2enoate (4b). Column chromatography (petroleum ether : ethyl acetate = 2:1) HF_2C on silica gel gave a yellow solid (92%): mp 50–51°C; [α]_D24.3 -37.5 (c 0.51, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.98–6.83 (m, 1H), 6.05 (t, J = 55.7 Hz, 1H), 5.93 (d, J = 15.4Hz, 1H), 4.19 (q, J = 6.0 Hz, 2H), 3.65 (s, 1H), 3.56 (d, J = 9.8 Hz, 1H), 2.67 (s, 1H), 2.56–2.35 (m, 1H), 1.28 (t, J = 6.9 Hz, 3H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 142.7, 124.9, 115.3 (t, J = 245.3 Hz), 60.4, 57.9 (t, J = 23.1 Hz), 56.8, 30.5, 22.5 (d, J = 12.1 Hz), 14.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -123.24 (ddd, J = 286.1, 55.2, 4.6 Hz, 1F), -134.20 (ddd, J = 286.0, 56.2, 19.5 Hz, 1F). IR (KBr)_{max} 3222, 2975, 2872, 1716, 1658, 1466, 1370, 1217, 1177, 1056, 981 cm⁻¹; MS (EI) m/z 320.1 [M + Na]⁺; HRMS (EI) m/z [M + Na]⁺ calcd for C₁₂H₂₁F₂N₁Na₁O₃S₁, 320.1102; Found, 320.1103.

(S, E)-ethyl 6-bromo-5-((S)-1,1-dimethylethylsulfinamido)-6,6difluorohex-2-enoate (4c). Column chromatography (petroleum ether : ethyl BrF₂C \rightarrow OEt acetate = 2:1) on silica gel gave a white oil (93%): [α]_D12.4 – 309.1 (c 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.95–6.81 (m, 1H), 5.97 (d, *J* = 15.6 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.92–3.75 (m, 1H), 3.69 (d, *J* = 9.2 Hz, 1H), 2.88–2.75 (m, 1H), 2.66–2.55 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 141.7, 125.7, 124.1 (t, *J* = 310.2 Hz), 64.1 (t, *J* = 23.3 Hz), 60.6, 57.5, 34.0, 22.6, 14.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -52.50 – -52.58 (m, 2F). IR (KBr)_{max} 3196, 2976, 2868, 1717, 1658, 1368, 1270, 1170, 1063, 984, 915 cm⁻¹; MS (EI) m/z

398.0 $[M+Na]^+$; HRMS (EI) m/z $[M+Na]^+$ calcd for $C_{12}H_{20}Br_1F_2N_1Na_1O_3S_1$, 398.0208; Found, 398.0218.

(S, E)-tert-butyl 5-((S)-1,1-dimethylethylsulfinamido)-6,6,6-trifluorohex-2-enoate (4d). Column chromatography (petroleum ether : ethyl acetate = 2:1) F_{3C} on silica gel gave a yellow solid (94%): mp 57–59°C; [α]_D19.5 + 77.9 (c 0.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.80–6.65 (m, 1H), 5.83 (d, *J* = 15.6 Hz, 1H), 4.10 (dd, *J* = 21.7, 8.3 Hz, 1H), 3.78 (dt, *J* = 21.0, 9.3 Hz, 1H), 2.69–2.60 (m, 1H), 2.59–2.48 (m, 1H), 1.41 (s, 9H), 1.16 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 140.5, 127.1, 124.8 (q, *J* = 283.1 Hz), 80.6, 57.6 (q, *J* = 30.1 Hz), 57.3, 32.0, 28.0, 22.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -75.08 (d, *J* = 7.1 Hz, 3F). IR (KBr)_{max} 3214, 3141, 2976, 2876, 1710, 1654, 1464, 1369, 1271, 1165, 1066, 983, 850 cm⁻¹; MS (EI) m/z 366.1 [M + Na]⁺; HRMS (EI) m/z [M + Na]⁺ calcd for C₁₄H₂₄F₃N₁Na₁O₃S₁, 366.1321; Found, 366.1306.

(S)-2-methyl-N-((S)-2,2,2-trifluoro-1-((S)-5-oxo-2,5-dihydrofuran-2yl)ethyl)propane-2-sulfinamide (4e). Column chromatography (dichloromethane : methanol = 25:1) on silica gel gave a yellow solid (97%): mp 108–110°C; [α]_D13.0 -172.1 (c 0.67, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 5.6 Hz, 1H), 6.35 (dd, J = 5.8, 1.9 Hz, 1H), 5.39 (dd, J = 3.6, 1.7 Hz, 1H), 4.33 (dqd, J = 11.4, 7.7, 3.9 Hz, 1H), 3.85 (d, J = 10.3 Hz, 1H), 1.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 152.9, 127.3, 126.0 (q, J = 280.7 Hz), 82.0, 61.3(q, J = 28.6 Hz), 60.0, 24.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -71.61 (d, J = 7.6 Hz, 3F). IR (KBr)_{max} 3207, 3113, 2962, 2872, 1764, 1467, 1363, 1261, 1175, 1134, 1063, 904, 821, 681 cm⁻¹; MS (EI) m/z 308.1 [M + Na]⁺, HRMS (EI) m/z [M + Na]⁺ calcd for C₁₀H₁₄F₃N₁Na₁O₃S₁, 308.0539; Found, 308.0533.

(S)-N-((S)-2,2-difluoro-1-((S)-5-oxo-2,5-dihydrofuran-2-yl)ethyl)-2-

O⁵NH HF₂C

methylpropane-2-sulfinamide (4f). Column chromatography (dichloromethane :

methanol = 25:1) on silica gel gave a yellow solid (86%): mp 103–104 °C; [α]_D13.2 -175.0 (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.52 (m, 1H), 6.30 (dd, *J* = 5.8, 2.0 Hz, 1H), 6.21 (dt, *J* = 2.4, 53.6 Hz 1H), 5.40 (dd, *J* = 4.1, 1.9 Hz, 1H), 4.11 – 3.98 (m, 1H), 3.56 (d, *J* = 10.3 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 154.3 (d, *J* = 3.9 Hz), 126.6, 116.9 (t, *J* = 246.0 Hz), 81.8, 61.7 (t, *J* = 22.1 Hz), 59.5. 24.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.85 (dd, *J* = 291.8, 51.5 Hz, 1F), -129.66 (dd, *J* = 289.2, 55.3 Hz, 1F). IR (KBr)_{max} 3195, 3109, 2965, 2880, 1759, 1466, 1366, 1161, 1062, 896, 817 cm⁻¹; MS (EI) m/z 390.1 [M + Na]⁺; HRMS (EI) m/z [M + Na]⁺ calcd for C₁₀H₁₅F₂N₁Na₁O₃S₁, 290.0633; Found, 290.0634.

(S)-N-((S)-2-bromo-2,2-difluoro-1-((S)-5-oxo-2,5-dihydrofuran-2-yl)ethyl)-2methylpropane-2-sulfinamide (4g). Column chromatography (dichloromethane : methanol = 40:1) on silica gel gave a pale yellow solid (91%): mp 107–108°C; [α]_D15.5 – 64.9 (c 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 4.8 Hz, 1H), 6.37 (d, J = 5.2 Hz, 1H), 5.60 (s, 1H), 4.47–4.37 (m, 1H), 3.52 (d, J = 10.2 Hz, 1H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 150.6, 125.3, 120.1 (t, J =308.4 Hz), 80.2, 66.0 (t, J = 23.0 Hz), 57.8, 22.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -51.07 (dd, J = 169.5, 7.7 Hz, 1F), -53.03 (dd, J = 169.6, 13.1 Hz, 1F). IR (KBr)_{max} 3196, 3109, 2958, 2872, 1762, 1466, 1164, 1080, 939, 901, 820 cm⁻¹; MS (EI) m/z 370.0 [M + Na]⁺; HRMS (EI) m/z [M + Na]⁺ calcd for C₁₀H₁₄Br₁F₂N₁Na₁O₃S₁, 367.9738; Found, 367.9744.

7. Procedures for the Preparing of 5-7.

A flask equipped with a magnetic stirrer bar was charged with 4 ml of diisopropyl ether, **4a** (315 mg, 1.0 mmol) and ethanol (5.7 mL) and then cooled to 0 °C. After the addition of acetyl chloride (235 mg, 3 mmol), the mixture was aged at 0 °C for 12h. Then the mixture was condensed in vacuo. The residue was dissolved with 5 ml of water and washed with dichloromethane. Then NaHCO₃ (1.4 mmol) was added to the aqueous layer and extracted twice with 8 ml of dichloromethane. The organic layer was

dried over MgSO₄ and the solvent was removed under reduced pressure.. The residue was purified by flash chromatography on silica gel to afford product **5**.

(S, E)-ethyl 5-amino-6,6,6-trifluorohex-2-enoate (S). Column $_{F_3C} \rightarrow_{OEt} = 0$ chromatography (petroleum ether : ethyl acetate = 10:1) on silica gel gave a yellow oil (80%): [a]_D15.1 – 112.0 (c 0.38, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.95–6.82 (m, 1H), 5.92 (dt, *J* = 15.6, 1.5 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.33–3.23 (m, 1H), 2.57 (dddd, *J* = 14.9, 6.9, 3.9, 1.6 Hz, 1H), 2.28 (dddd, *J* = 14.9, 9.3, 7.7, 1.4 Hz, 1H), 1.42 (s, 2H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 142.8, 126.1 (q, *J* = 281.7 Hz), 124.8, 60.4, 53.0 (q, *J* = 29.3 Hz), 32.7, 14.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -78.76 (d, *J* = 5.4 Hz, 3F). IR (KBr)_{max} 3403, 3334, 2984, 2945, 1718, 1658, 1441, 1376, 1266, 1168, 1127, 1042, 981, 862, 798 cm⁻¹;MS (EI) m/z 212.1 M⁺; HRMS (EI) m/z M⁺ calcd for C₈H₁₃F₃N₁O₂, 212.0893; Found, 212.0902.

In 6 ml of methanol, the **3a** (472 mg, 1.5 mmol) and Pd-black (159 mg, 10%) was hydrogenated for 72 h at room temperature. The mixture was filtered and the solvent was evaporated under reduced pressure. The residue was purified by Column chromatography on silica gel gave the **6**.

(S)-ethyl 5-((S)-1,1-dimethylethylsulfinamido)-6,6,6-trifluorohexanoate (G). Column chromatography (petroleum ether : ethyl acetate = 1.5:1) on silica F_{3C} (G). Column chromatography (petroleum ether : ethyl acetate = 1.5:1) on silica F_{3C} (G). Column chromatography (petroleum ether : ethyl acetate = 1.5:1) on silica MHz, CDCl₃) δ 4.12 (q, J = 7.1 Hz, 2H), 3.75 (d, J = 9.2 Hz, 1H), 3.69–3.57 (m, 1H), 2.34 (t, J = 6.4 Hz, 2H), 1.98–1.77 (m, 2H), 1.71 (dd, J = 18.1, 9.7 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.9, 125.2 (q, J = 282.7 Hz), 60.5, 58.0 (q, J = 29.8 Hz), 57.2, 33.4, 28.6, 22.5, 20.7, 14.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -75.18 (d, J = 6.4 Hz, 3F). IR (KBr)_{max} 3212, 2971, 2872, 1731, 1463, 1369, 1268, 1168, 1123, 1064, 853 cm⁻¹; MS (EI) m/z 340.1 [M + Na]⁺; HRMS (EI) m/z [M + Na]⁺ calcd for C₁₂H₂₂F₃N₁Na₁O₃S₁, 340.1165; Found, 340.1165.

To a solution of sulfinamide **6** (200 mg, 0.6 mmol) in MeOH (MeOH/HCl = 1:1, v/v) was added HCl (4 M in 1,4-dioxane, 10 equiv). The mixture was stirred at room temperature for 18 h and then concentrated under reduced pressure. The residue was dissolved in dry MeOH (0.2 M), and then K_2CO_3 (414 mg, 3 mmol) was added at room temperature. The mixture was stirred overnight. The crude was purified by flash chromatography on silica gel (dichloromethane : methanol = 25:1) to give 7.

(S)-6-(trifluoromethyl)piperidin-2-one (7). Column chromatography $F_{3}C^{V}$, N = 0 (dichloromethane : methanol = 40:1) on silica gel gave a pale yellow solid (77%): mp $57 - 58^{\circ}C$; [α]_D14.9 - 20.6 (c 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.12 (s, 1H), 4.04–3.87 (m, 1H), 2.40 (s, 2H), 2.11–1.98 (m, 2H), 1.93–1.83 (m, 1H), 1.80 (dd, J = 14.2, 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 124.62 (q, J = 281.1 Hz), 53.8 (q, J = 30.8 Hz), 31.2, 21.02, 18.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -77.74 (d, J = 6.8 Hz, 3F). IR (KBr)_{max} 3211, 3113, 2965, 1908, 1676, 1401, 1276, 1163, 1120, 1076, 797 cm⁻¹; MS (EI) m/z 190.0 [M + Na]⁺; HRMS (EI) m/z [M + Na]⁺ calcd for C₆H₈F₃N₁Na₁O₁, 190.0450; Found, 190.0446.

20

22

fl (ppm)

24

9. ORTEP drawing of the X-ray crystallographic structure of 3b, 3d, 4e.

CCDC 932085 contains the supplementary crystallographic data for the target compound **3b**. CCDC 932084 contains the supplementary crystallographic data for the target compound **3d**. CCDC 938431 contains the supplementary crystallographic data for the target compound **4e**. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

10. Chiral HPLC spectra of compound 5.

HPLC Report

no.	reakno	TD. Name	R. Lime	PeakHeight	PeakArea	PerCent	
1 2	1 2		12. 380 14. 077	787648.2 20187.1	12202587. 0 274047. 6	97.8035 2.1965	
Tota	1	- ML 25 07-0		807835.3	12476634.7	100.0000	