Supporting Information

Organocatalytic Asymmetric Multicomponent Cascade Reaction via 1,3-Proton

Shift and [3+2] Cycloaddition: An Efficient Strategy for the Synthesis of

Oxindole Derivatives

Li Tian, Xiu-Qin Hu, Yun-Han Li, and Peng-Fei Xu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

E-mail: xupf@lzu.edu.cn

Contents

1.	General information		S2
2.	General procedure for the synthesis of spiro[indoline-3,2'-pyrroli	din]-2-one	S 3
3.	Additional optimization for the cascade reaction	S3	-S4
4.	Characterization data of spiro[indoline-3,2'-pyrrolidin]-2-one	S4-	- S 12
5.	X-ray Crystallographic data of 4f		S13
6.	¹ H NMR and ¹³ C NMR spectra	S14-	-S49
7.	HPLC spectra	S50-	-S67

1. General information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography (TLC) was performed on silicycle silica gel plates with F-254 indicator and the compounds were visualized by irradiation with UV light. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz ¹H, 100 MHz ¹³C). The spectra were recorded in CDCl₃ as solvent at room temperature, ¹H and ¹³CNMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) (δ = 77.00 ppm) or TMS (¹H) (δ = 0 ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. IR spectra were recorded using Nicolet NEXUS 670 FT-IR instrument and are reported in wavenumbers (cm⁻¹). HRMS were performed on Thermo Scientific Orbitrap Elite mass instrument (ESI). Enantiomeric excess values were determined by HPLC employing a Daicel Chirapak AD-H on Waters 600 Delta or Agilent 1100 series and eluting with *i*-PrOH and *n*-hexane solution. Optical rotation was measured on the Perkin Elmer 341 polarimeter with $\lceil \alpha \rceil_{\rm D}$ values reported in degrees; concentration (c) is reported in g/100 mL.

2. General procedure for the synthesis of spiro[indoline-3,2'-pyrrolidin]-2-one

To a solution of catalyst **5i** (0.01 mmol or 0.02 mmol), isatins **1** (0.2 mmol), nitroalkene **3** (1 mmol) and MgSO₄ (1 mmol) in dry CH₂Cl₂ (0.5 mL) was added freshly distilled benzylamine **2** (0.2 mmol) under stirring. After refluxing for 12–24 h, the reaction was completed. The rest of nitroalkene **3** could be recycled easily when purifying the crude mixture by flash chromatography on silica gel to afford product **4**.

	1c Bn	0 + 2a	^{VH} 2 + Ph 3a	NO ₂ 5i (10 mo solvent, ad	bl %) dditive	NO ₂ [™] Ph ℃	
entry	5i (mol %)	solvent	$T(^{o}C)$	time (h)	yield $(\%)^b$	d.r. ^c	ee $(\%)^d$
1	10	CHCl ₃	10	12	71	10:1	69
2	10	$C_2H_4Cl_2$	10	12	72	11:1	71
3	10	xylene	10	12	57	8:1	73
4	10	CH_2Cl_2	0	24	68	12:1	76
5	10	CH_2Cl_2	-10	36	70	n.d.	67
6	20	CH_2Cl_2	10	4	80	8:1	70
7	15	CH_2Cl_2	10	4	70	10:1	73
8	5	CH_2Cl_2	10	15	72	11:1	76
9	3	CH_2Cl_2	reflux	5	66	n.d.	72
10	1	CH_2Cl_2	reflux	12	<20	n.d.	n.d.
11^e	10	CH_2Cl_2	10	4	74	12:1	60
12^{f}	10	CH_2Cl_2	reflux	1.5	75	9:1	78
$13^{g,h}$	5	CH_2Cl_2	reflux	12	78	9:1	82
$14^{g,h,i}$	5	CH ₂ Cl ₂	reflux	12	76	10:1	81

3. Additional optimization for the cascade reaction ^{*a*}

^{*a*} Unless otherwise specified, the reaction was carried out with **1** (0.2 mmol), **2a** (0.2 mmol), **3a** (0.2mmol), and **5i** (10 mol %), in the indicated solvent (1.0 mL) at 10 °C. ^{*b*} The yields were the combined yields of the mixtures of diastereomers after flash chromatography. ^{*c*} Determined by ¹H NMR analysis of the crude products. ^{*d*} Determined by chiral-phase HPLC analysis (AD-H column). ^{*e*} 50 mg 4ÅMs was added. ^{*f*} 0.6mmol 3a was added. ^{*g*} 120 mg

MgSO₄ was added. ^h 1mmol 3a was added. ⁱ By using of 2.0 mL CH₂Cl₂.

4. Characterization data of spiro[indoline-3,2'-pyrrolidin]-2-one

(2'R, 3'S, 4'S, 5'S)-1-benzyl-4'-nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin]-2-one (4a): white solid; $[\alpha]_{D}^{20} = -29.2$ (*c* 0.513, CH₂Cl₂); mp 166-168 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 12.1 min, t_{R(minor)} = 38.2 min, ee : 86%; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6Hz, 2H), 7.55-7.53 (m, 1H), 7.45-7.36 (m, 3H), 7.24-7.02 (m, 10H), 6.89 (d, *J* = 6.8Hz, 2H), 6.50-6.48 (m, 1H), 6.24-6.18 (m, 1H), 5.55 (d, *J* = 9.2, 1H), 5.13 (d, *J* = 16.0Hz, 1H), 4.93 (d, *J* = 12.0Hz, 1H), 4.57 (d, *J* = 15.6Hz, 1H), 2.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 142.0, 137.3, 134.7, 131.7, 129.8, 129.5, 128.9, 128.6, 128.5, 128.3, 128.10, 128.05, 127.7, 127.4, 126.8, 124.1, 122.7, 109.8, 91.6, 71.2, 63.1, 56.3, 44.0; IR (KBr): 3440.6, 1958.1, 1703.7, 1612.4, 1550.5, 1468.5, 1370.8, 1179.9, 747.8, 697.1 cm⁻¹; HRMS (ESI) for C₃₀H₂₅N₃O₃ [M+H]⁺ calcd 476.1969, found 476.1979.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-4'-nitro-5'-phenyl-3'-(p-tolyl)spiro[indoline-3,2'-pyrrolidin]-2 -one (4b): white solid; $[\alpha]_{D}^{20} = -45.0$ (*c* 0.200, CH₂Cl₂); mp 172-174 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda =$ 254 nm; t_{R(major)} = 12.0 min, t_{R(minor)} = 29.9 min, ee : 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.2Hz, 2H), 7.52-7.50 (m, 1H), 7.41-7.38 (m, 2H), 7.35-7.32 (m, 1H), 7.22-7.18 (m, 1H), 7.16-7.12 (m, 2H), 7.11-7.07 (m, 2H), 6.88-6.82 (m, 6H), 6.46-6.44 (m, 1H), 6.13 (dd, *J* = 10.0Hz, 12.0Hz, 1H), 5.50 (t, *J* = 7.6Hz, 1H), 5.12 (d, *J* = 16.0Hz, 1H), 4.84 (d, *J* = 12.0Hz, 1H), 4.52 (d, *J* = 16.0Hz, 1H), 2.91 (d, *J* = 7.2Hz, 1H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 142.1, 137.8, 137.4, 134.7, 130.0, 129.5, 129.1, 128.9, 128.6, 128.5, 128.1, 127.8, 127.4, 126.8, 124.1, 122.7, 109.9, 91.8, 71.2, 63.1, 56.1, 44.0, 21.0; IR (KBr): 3438.7, 1958.9, 1719.3, 1613.7, 1555.0, 1468.4, 1367.4, 1177.5, 754.2, 699.6 cm⁻¹; HRMS (ESI) for C₃₁H₂₇N₃O₃ [M+H]⁺ calcd 490.2125, found 490.2138.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(3,4-dimethylphenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'pyrrolidin]-2-one (4c): white solid; $[\alpha]_{D}^{20} = -78.6$ (*c* 0.280, CH₂Cl₂); mp 168-170 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 10.6 min, t_{R(minor)} = 36.8 min, ee : 86%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.2Hz, 2H), 7.53-7.51 (m, 1H), 7.40-7.37 (m, 2H), 7.34-7.31 (m, 1H), 7.20-7.16 (m, 1H), 7.13-7.06 (m, 4H), 6.80-6.77 (m, 4H), 6.69 (d, J = 8.0Hz, 1H), 6.43-6.41 (m, 1H), 6.12 (dd, J = 9.6Hz, 11.6Hz, 1H), 5.49 (t, J = 7.2Hz, 1H), 5.16 (d, J = 16.0Hz, 1H), 4.81 (d, J = 12.0Hz, 1H), 4.48 (d, J = 16.0Hz, 1H), 2.91 (d, J = 6.8Hz, 1H), 2.10 (s, 3H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 142.1, 137.4, 136.6, 136.4, 134.7, 130.1, 129.9, 129.5, 129.4, 129.0, 128.9, 128.5, 127.7, 127.3, 126.6, 125.2, 124.1, 122.6, 109.9, 91.9, 71.2, 63.0, 56.1, 44.0, 19.5, 19.3; IR (KBr): 3440.6, 1958.7, 1721.2, 1612.6, 1554.8, 1467.9, 1366.2, 1178.8, 750.7, 699.7 cm⁻¹; HRMS (ESI) for C₃H₂₉N₃O₃ [M+H]⁺ calcd 504.2282, found 504.2296.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(3-methoxyphenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyr-rolidin]-2-one (4d): white solid; $[\alpha]_{D}^{20} = -40.5$ (*c* 0.888, CH₂Cl₂); mp 160-162 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 230$ nm; t_{R(major)} = 16.1 min, t_{R(minor)} = 54.9 min, ee : 87%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.2Hz, 2H), 7.52-7.50 (m, 1H), 7.41-7.38 (m, 2H), 7.35-7.32 (m, 1H), 7.19-7.14 (m, 3H), 7.11-7.08 (m, 2H), 6.95 (t, J = 8.0Hz 1H), 6.84 (d, J = 6.4Hz, 2H), 6.67 (dd, J = 2.0Hz, 8.4Hz, 1H), 6.60 (d, J = 7.6Hz, 1H), 6.53 (d, J = 1.6Hz, 1H), 6.47-6.45 (m, 1H), 6.13 (dd, J = 9.6Hz, 11.6Hz, 1H), 5.51 (d, J = 9.6Hz, 1H), 5.12 (d, J = 16.0Hz, 1H), 4.86 (d, J = 12.0Hz, 1H), 4.52 (d, J = 16.0Hz, 1H), 3.52 (s, 3H), 2.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 159.4, 142.2, 137.3, 134.6, 133.2, 129.9, 129.5, 129.4, 128.9, 128.6, 128.5, 127.7, 127.4, 126.6, 124.1, 122.7, 120.5, 114.3, 113.4, 109.9, 91.7, 71.2, 63.1, 56.3, 55.0, 44.0; IR (KBr): 3441.0, 1957.6, 1714.1, 1610.6, 1554.1, 1467.1, 1365.8, 1176.2, 744.4, 699.8 cm⁻¹; HRMS (ESI) for C₃₁H₂₇N₃O₄ [M+H] ⁺ calcd 506.2074, found 506.2093.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(naphthalen-2-yl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyr-rolidin]-2-one (4e): white solid; $[\alpha]_{D}^{20} = -58.3$ (*c* 0.120, CH₂Cl₂); mp 120-122 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 12.8 min, t_{R(minor)} = 27.8 min, ee : 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.2Hz, 2H), 7.69-7.67 (m, 1H), 7.63-7.59 (m, 3H), 7.48-7.34 (m, 6H), 7.12-6.99 (m, 4H), 6.72 (t, J = 8.0Hz 2H), 6.62 (d, J = 7.6Hz, 2H), 6.35 (d, J = 7.2Hz, 1H), 6.28 (dd, J = 9.6Hz, 12.0Hz, 1H), 5.59 (t, J = 6.4Hz, 1H), 5.13 (d, J = 16.0Hz, 1H), 5.05 (d, J = 11.6Hz, 1H), 4.45 (d, J = 16.0Hz, 1H), 2.98 (d, J = 6.4Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 142.1, 137.3, 134.4, 133.0, 132.9, 129.9, 129.6, 129.2, 129.0, 128.6, 128.5, 128.4, 128.1, 128.0, 127.8, 127.4, 127.3, 126.4, 126.3, 126.2, 124.9, 124.2, 122.8, 110.0, 91.8, 71.4, 63.3, 56.6, 44.0; IR (KBr): 3438.8, 1958.5, 1718.3, 1613.1, 1554.9, 1468.2, 1367.4, 1177.7, 749.8, 699.6 cm⁻¹; HRMS (ESI) for C₃₄H₂₇N₃O₃ [M+H]⁺ calcd 526.2125, found 526.2140.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(4-bromophenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyr -rolidin]-2-one (4f): white solid; $[\alpha]_{D}^{20} = -20.0$ (*c* 0.848, CH₂Cl₂); mp 158-160 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 230$ nm; t_{R(major)} = 18.1 min, t_{R(minor)} = 22.2 min, ee : 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 6.8Hz, 2H), 7.51-7.49 (m, 1H), 7.42-7.33 (m, 3H), 7.24-7.19 (m, 3H), 7.16-7.08 (m, 4H), 6.84-6.80 (m, 4H), 6.51 (d, J = 7.2Hz, 1H), 6.08 (dd, J = 9.6Hz, 12.0Hz, 1H), 5.51 (d, J = 9.6Hz, 1H), 5.11 (d, J = 16.0Hz, 1H), 4.80 (d, J = 11.6Hz, 1H), 4.51 (d, J = 16.0Hz, 1H), 2.90 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 142.1, 137.2, 134.6, 131.5, 130.7, 129.9, 129.8, 129.5, 129.0, 128.6, 128.5, 127.8, 127.6, 126.8, 124.0, 122.9, 122.4, 110.0, 91.3, 70.9, 62.9, 55.7, 44.0; IR (KBr): 3439.0, 1958.2, 1717.4, 1612.6, 1554.5, 1489.4, 1366.0, 1176.6, 754.7, 700.0 cm⁻¹; HRMS (ESI) for C₃₀H₂₄BrN₃O₃ [M+H]⁺ calcd 554.1074, found 554.1091.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(4-chlorophenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyr -rolidin]-2-one (4g): white solid; $[\alpha]_{D}^{20} = -19.4$ (*c* 0.412, CH₂Cl₂); mp 167-169 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 18.1 min, t_{R(minor)} = 24.6 min, ee : 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.2Hz, 2H), 7.51-7.50 (m, 1H), 7.42-7.33 (m, 3H), 7.23-7.16 (m, 3H), 7.15-7.09 (m, 2H), 6.99 (d, J = 8.4Hz, 2H), 6.89 (d, J = 8.4Hz, 2H), 6.83 (d, J = 6.4Hz, 2H), 6.51 (d, J = 7.2Hz, 1H), 6.08 (dd, J = 9.6Hz, 12.0Hz, 1H), 5.51 (d, J = 9.2Hz, 1H), 5.10 (d, J = 16.0Hz, 1H), 4.82 (d, J = 12.0Hz, 1H), 4.52 (d, J = 16.0Hz, 1H), 2.90 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 142.1, 137.2, 134.6, 134.2, 130.2, 129.8, 129.6, 129.1, 128.6, 128.59, 128.58, 127.8, 127.6, 126.8, 124.0, 122.9, 110.0, 91.4, 71.0, 63.0, 55.6, 44.0; IR (KBr): 3440.7, 1957.8, 1721.5, 1613.0, 1554.7, 1468.3, 1366.9, 1178.6, 754.3, 699.6 cm⁻¹; HRMS (ESI) for C₃₀H₂₄ClN₃O₃ [M+H] ⁺ calcd 510.1579, found 510.1596.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(furan-2-yl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin] -2-one (4h): white solid; $[\alpha]_{D}^{20} = -36.4$ (*c* 0.834, CH₂Cl₂); mp 165-167 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 230$ nm; t_{R(major)} = 12.6 min, t_{R(minor)} = 54.1 min, ee : 78%; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.2Hz, 2H), 7.41-7.34 (m, 4H), 7.30-7.22 (m, 5H), 7.13 (t, *J* = 7.6Hz, 1H), 7.03-6.97 (m, 2H), 6.64 (d, *J* = 8.0Hz, 1H), 6.12 (t, *J* = 9.6Hz, 1H), 6.02 (dd, *J* = 2.0Hz, 2.8Hz, 1H), 5.90 (d, *J* = 3.2Hz, 1H), 5.46 (t, *J* = 8.8Hz, 1H), 5.16 (d, *J* = 16.0Hz, 1H), 5.01(d, *J* = 10.0Hz, 1H), 4.72 (d, *J* = 16.0Hz, 1H), 3.00 (d, *J* = 8.4Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 147.2, 142.4, 142.2, 136.3, 135.1, 129.5, 129.4, 129.0, 128.7, 128.6, 127.7, 127.5, 127.3, 124.3, 122.7, 110.1, 109.6, 108.1, 91.4, 70.4, 64.2, 50.9, 44.2; IR (KBr): 3440.4, 1957.9, 1713.3, 1612.4, 1555.2, 1468.4, 1370.3, 1180.6, 736.7, 698.3 cm⁻¹; HRMS (ESI) for C₂₈H₂₃N₃O₄ [M+H]⁺ calcd 466.1761, found 466.1771.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(4-fluorophenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyr-rolidin]-2-one (4i): white solid; $[\alpha]_{D}^{20} = -31.1$ (*c* 0.418, CH₂Cl₂); mp 173-175 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 14.5 min, t_{R(minor)} = 30.5 min, ee : 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.2Hz, 2H), 7.50 (d, J = 6.8Hz, 1H), 7.43-7.33 (m, 3H), 7.23-7.16 (m, 3H), 7.14-7.08 (m, 2H), 6.94 (dd, J = 5.2Hz, 8.4Hz, 2H), 6.87 (d, J = 6.4Hz, 2H), 6.71 (t, J = 8.4Hz, 2H), 6.52 (d, J = 7.6Hz, 1H), 6.08 (dd, J = 9.6Hz, 12.0Hz, 1H), 5.51 (d, J = 9.2Hz, 1H), 5.08 (d, J = 16.0Hz, 1H), 4.84 (d, J = 12.0Hz, 1H), 4.55 (d, J = 16.0Hz, 1H), 2.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 163.7, 161.2, 142.1, 137.3, 134.7, 129.9, 129.84, 129.77, 129.7, 129.1, 128.7, 128.6, 127.8, 127.7, 127.59, 127.56, 126.9, 124.0, 122.9, 115.5, 115.3, 110.0, 91.7, 71.1, 63.1, 55.6, 44.1; IR (KBr): 3438.8, 1958.2, 1721.4, 1613.3, 1553.9, 1468.7, 1367.3, 1179.5, 755.2, 700.5 cm⁻¹; HRMS (ESI) for C₃₀H₂₄FN₃O₃ [M+H]⁺ calcd 494.1874, found 494.1892.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-5'-(2-fluorophenyl)-3'-(3-methoxyphenyl)-4'-nitrospiro[indoline-3,2'-pyrrolidin]-2-one (4j): white solid; $[\alpha]_{D}^{20} = -66.4$ (*c* 0.256, CH₂Cl₂); mp 173-175 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 11.1 min, t_{R(minor)} = 28.8 min, ee : 85%; ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.08 (m, 1H), 7.54-7.52 (m, 1H), 7.35-7.27 (m, 2H), 7.23-7.14 (m, 3H), 7.12-7.03 (m, 3H), 6.98 (t, *J* = 8.0Hz, 1H), 6.89-6.87 (m, 2H), 6.69-6.67 (m, 1H), 6.62 (d, *J* = 7.6Hz 1H), 6.54-6.49 (m, 2H), 6.17 (dd, *J* = 9.2Hz, 10.8Hz, 1H), 5.90 (d, *J* = 9.2Hz, 1H), 5.14 (d, *J* = 16.0Hz, 1H), 4.87 (d, *J* = 10.8Hz, 1H), 4.57 (d, *J* = 16.0Hz, 1H), 3.55 (s, 3H), 2.93 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 161.5, 159.5, 159.1, 142.3, 134.7, 133.4, 130.43, 130.35, 129.7, 129.5, 129.33, 129.30, 128.7, 127.5, 126.7, 124.62, 124.58, 124.3, 124.2, 124.1, 122.8, 120.6, 115.2, 114.9, 114.3, 113.4, 110.0, 91.7, 71.4, 57.3, 56.61, 56.56, 55.1, 44.1; IR (KBr): 3442.4, 1957.7, 1711.4, 1607.1, 1553.1, 1465.3, 1364.7, 1174.9, 759.3, 700.2 cm⁻¹; HRMS (ESI) for C₃₁H₂₆FN₃O₄ [M+H]⁺ calcd 524.1980, found 524.1999.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-5'-(4-fluorophenyl)-3'-(3-methoxyphenyl)-4'-nitrospiro[indoline-3,2'-pyrrolidin]-2-one (4k): white solid; $[\alpha]_{D}^{20} = -35.8$ (*c* 0.614, CH₂Cl₂); mp 186-188 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 20.0 min, t_{R(minor)} = 45.0 min, ee : 86%; ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.73 (m, 2H), 7.51-7.49 (m, 1H), 7.20-7.13 (m, 3H), 7.12-7.05 (m, 4H), 6.95 (t, *J* = 8.0Hz, 1H), 6.85-6.83 (m, 2H), 6.67 (dd, *J* = 2.0Hz, 8.0Hz, 1H), 6.58 (d, *J* = 7.6Hz 1H), 6.51 (s, 1H), 6.48-6.46 (m, 1H), 6.11 (dd, *J* = 9.6Hz, 11.6Hz, 1H), 5.50 (d, *J* = 9.6Hz, 1H), 5.12 (d, *J* = 16.0Hz, 1H), 4.82 (d, *J* = 12.0Hz, 1H), 4.54 (d, *J* = 16.0Hz, 1H), 3.53 (s, 3H), 2.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 164.2, 161.8, 159.4, 142.2, 134.6, 133.4, 133.3, 133.0, 130.0, 129.66, 129.65, 129.6, 129.4, 128.7, 127.5, 126.6, 124.0, 122.8, 120.5, 115.6, 115.4, 114.3, 113.4, 110.0, 91.3, 71.0, 62.0, 55.7, 55.0, 44.1; IR (KBr): 3441.8, 1957.2, 1714.2, 1606.8, 1554.9, 1467.5, 1366.9, 1176.9, 755.5, 698.0 cm⁻¹; HRMS (ESI) for C₃₁H₂₆FN₃O₄ [M+H]⁺ calcd 524.1980, found 524.1994.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-5'-(4-bromophenyl)-3'-(3-methoxyphenyl)-4'-nitrospiro[indoline -3,2'-pyrrolidin]-2-one (4l): white solid; $[\alpha]_{D}^{20} = -35.1$ (*c* 0.570, CH₂Cl₂); mp 190-192 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 23.6 min, t_{R(minor)} = 61.5 min, ee : 86%; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4Hz, 2H), 7.52-7.48 (m, 3H), 7.20-7.14 (m, 3H), 7.12-7.08 (m, 2H), 6.95 (t, J = 8.0Hz, 1H), 6.84-6.82 (m, 2H), 6.67 (dd, J = 2.0Hz, 8.0Hz, 1H), 6.58 (d, J = 8.0Hz, 1H), 6.51-6.46 (m, 2H), 6.12 (dd, J = 9.6Hz, 12.0Hz, 1H), 5.46 (d, J = 9.2Hz, 1H), 5.12 (d, J = 16.0Hz, 1H), 4.80 (d, J = 12.0Hz, 1H), 4.52 (d, J = 16.0Hz, 1H), 3.53 (s, 3H), 2.82 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 159.4, 142.2, 136.7, 134.6, 132.9, 131.6, 129.9, 129.7, 129.5, 129.4, 128.7, 127.5, 126.6, 124.0, 123.1, 122.8, 120.5, 114.4, 113.4, 110.0, 91.1, 70.9, 62.0, 55.7, 55.0, 44.0; IR (KBr): 3439.8, 1954.7, 1716.5, 1605.4, 1555.4, 1467.2, 1364.0, 1175.8, 755.7, 697.8 cm⁻¹; HRMS (ESI) for C₃₁H₂₆BrN₃O₄ [M+H]⁺ calcd 584.1179, found 584.1203.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(3-methoxyphenyl)-4'-nitro-5'-(p-tolyl)spiro[indoline-3,2'pyrrolidin]-2-one (4m): white solid; $[\alpha]_{D}^{20} = -40.6$ (*c* 0.616, CH₂Cl₂); mp 188-190 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 17.7 min, t_{R(minor)} = 56.2 min, ee : 81%; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6Hz, 2H), 7.52-7.50 (m, 1H), 7.21-7.16 (m, 5H), 7.12-7.06 (m, 2H), 6.95 (t, J = 8.0Hz, 1H), 6.84 (d, J = 6.8Hz, 2H), 6.67 (dd, J = 2.4Hz, 8.4Hz, 1H), 6.59 (d, J = 7.6Hz 1H), 6.52 (s, 1H), 6.47-6.45 (m, 1H), 6.11 (dd, J = 9.6Hz, 11.6Hz, 1H), 5.48 (d, J = 9.2Hz, 1H), 5.13 (d, J = 16.0Hz, 1H), 4.84 (d, J = 12.0Hz, 1H), 4.53 (d, J = 16.0Hz, 1H), 3.53 (s, 3H), 2.95 (s, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 159.4, 142.2, 138.8, 134.7, 134.1, 133.4, 130.0, 129.5, 129.34, 129.27, 128.7, 127.6, 127.4, 126.6, 124.1, 122.7, 120.6, 114.3, 113.4, 109.9, 92.1, 71.3, 63.3, 56.6, 55.0, 44.0, 21.2; IR (KBr): 3441.0, 1957.3, 1716.1, 1604.4, 1553.9, 1466.2, 1363.8, 1259.8, 1175.6, 740.8, 698.8 cm⁻¹; HRMS (ESI) for C₃₂H₂₉N₃O₄ [M+H]⁺ calcd 520.2231, found 520.2246.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-3'-(3-methoxyphenyl)-5'-(4-methoxyphenyl)-4'-nitrospiro[indoline-3,2'-pyrrolidin]-2-one (4n): white solid, $[\alpha]_{D}^{20} = -32.6$ (*c* 0.644, CH₂Cl₂); mp 162-164 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 22.2 min, t_{R(minor)} = 75.2 min, ee : 77%; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4Hz, 2H), 7.52-7.50 (m, 1H), 7.19-7.08 (m, 5H), 6.97-6.90 (m, 3H), 6.83 (d, J = 6.4Hz, 2H), 6.7 (d, J = 6.8Hz, 1H), 6.59 (d, J = 7.6Hz, 1H), 6.52 (s, 1H), 6.47-6.45 (m, 1H), 6.12-6.07 (m, 1H), 5.47 (d, J = 9.6Hz, 1H), 5.13 (d, J = 16.0Hz, 1H), 4.84 (d, J = 11.6Hz, 1H), 4.53 (d, J = 16.0Hz, 1H), 3.78 (s, 3H), 3.52 (s, 3H), 2.90 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 160.0, 159.4, 142.2, 134.6, 133.3, 130.0, 129.5, 129.3, 129.2, 129.0, 128.6, 127.4, 126.6, 124.1, 122.7, 120.1, 114.3, 113.9, 113.4, 109.9, 91.8, 71.1, 62.8, 56.3, 55.2, 55.0, 44.0; IR (KBr): 3442.7, 1957.4, 1719.4, 1610.7, 1554.2, 1467.2, 1367.2, 1176.5, 753.9, 697.5 cm⁻¹; HRMS (ESI) for C₃₂H₂₉N₃O₅ [M+H]⁺ calcd 536.2180, found 536.2194.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-5-chloro-4'-nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin] -2-one (4o): white solid; $[\alpha]_{D}^{20} = -67.6$ (*c* 0.444, CH₂Cl₂); mp 98-100 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda =$ 267 nm; t_{R(major)} = 10.2 min, t_{R(minor)} = 38.7 min, ee : 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.2Hz, 2H), 7.46 (d, *J* = 2.0Hz, 1H), 7.43-7.40 (m, 2H), 7.38-7.34 (m, 1H), 7.22-7.13 (m, 4H), 7.10-7.05 (m, 3H), 7.00 (d, *J* = 7.2Hz, 2H), 6.86 (d, *J* = 6.8Hz, 2H), 6.37 (d, *J* = 8.4Hz, 1H), 6.13 (dd, *J* = 9.6Hz, 12.0Hz, 1H), 5.49 (d, *J* = 9.2Hz, 1H), 5.07 (d, *J* = 15.6Hz, 1H), 4.89 (d, *J* = 11.6Hz, 1H), 4.55 (d, *J* = 16.0Hz, 1H), 2.94 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 140.6, 137.0, 134.3, 131.7, 131.4, 129.4, 129.1, 128.8, 128.64, 128.58, 128.3, 128.2, 128.1, 127.73, 127.70, 126.9, 124.6, 110.8, 91.3, 71.4, 63.3, 56.4, 44.2; IR (KBr): 3442.9, 1955.7, 1712.6, 1609.6, 1553.6, 1455.7, 1357.1, 1174.6, 745.3, 698.4 cm⁻¹; HRMS (ESI) for C₃₀H₂₄ClN₃O₃ [M+H]⁺ calcd 510.1579, found 510.1585.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-5-methyl-4'-nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin] -2-one (4p): white solid; $[\alpha]_{D}^{20} = -72.3$ (*c* 0.650, CH₂Cl₂); mp 176-178 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 254$ nm; t_{R(major)} = 15.5 min, t_{R(minor)} = 46.6 min, ee : 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.2Hz, 2H), 7.45-7.35 (m, 4H), 7.20-7.14 (m, 4H), 7.09-7.02 (m, 4H), 6.94-6.86 (m, 3H), 6.37 (d, *J* = 8.0Hz, 1H), 6.21 (t, *J* = 10.8Hz, 1H), 5.55 (d, *J* = 9.2Hz, 1H), 5.11 (d, *J* = 16.0Hz, 1H), 4.91 (d, *J* = 12.0Hz, 1H), 4.55 (d, *J* = 16.0Hz, 1H), 2.97 (s, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 139.7, 137.4, 134.8, 132.3, 131.8, 129.9, 129.7, 128.9, 128.6, 128.5, 128.3, 128.2, 128.0, 127.8, 127.4, 126.8, 124.8, 109.6, 91.6, 71.3, 63.1, 56.2, 44.0, 21.2; IR (KBr): 3445.2, 1958.3, 1709.3, 1615.5, 1553.4, 1494.3, 1367.4, 1165.7, 746.1, 698.9 cm⁻¹; HRMS (ESI) for C₃₁H₂₇N₃O₃ [M+H] ⁺ calcd 490.2125, found 490.2141.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-6-chloro-4'-nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin] -2-one (4q): white solid; $[\alpha]_{D}^{20} = -25.2$ (*c* 0.220, CH₂Cl₂); mp 190-192 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 220$ nm; t_{R(major)} = 19.0 min, t_{R(minor)} = 35.3 min, ee : 81%; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.2Hz, 2H), 7.42-7.33 (m, 4H), 7.25-7.13 (m, 4H), 7.08-7.04 (m, 3H), 6.98 (d, *J* = 7.6Hz, 2H), 6.88-6.86 (m, 2H), 6.46 (d, *J* = 1.6Hz, 1H), 6.12 (dd, *J* = 9.6Hz, 12.0Hz, 1H), 5.47 (d, *J* = 9.6Hz, 1H), 5.07 (d, *J* = 16.0Hz, 1H), 4.88 (d, *J* = 11.6Hz, 1H), 4.52 (d, *J* = 16.0Hz, 1H), 2.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 143.4, 137.1, 135.2, 134.1, 131.5, 129.1, 128.8, 128.59, 128.56, 128.4, 128.3, 128.0, 127.72, 127.69, 126.8, 125.0, 122.6, 110.4, 91.4, 70.9, 63.2, 56.3, 44.2; IR (KBr): 3440.0, 1957.8, 1729.0, 1608.3, 1554.4, 1490.8, 1372.8, 1179.7, 744.7, 699.7 cm⁻¹; HRMS (ESI) for C₃₀H₂₄ClN₃O₃ [M+H]⁺ calcd 510.1579, found 510.1596.

(2'R, 3'S, 4'S, 5'S)-1-benzyl-6-bromo-4'-nitro-3',5'-diphenylspiro[indoline-3,2'-pyrrolidin] -2-one (4r): white solid; $[\alpha]_{D}^{20} = -24.2$ (*c* 0.784, CH₂Cl₂); mp 194-196 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: *i*-PrOH = 60:40), 1.0 mL/min, $\lambda = 220$ nm; t_{R(major)} = 19.4 min, t_{R(minor)} = 35.3 min, ee : 83%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.2Hz, 2H), 7.42-7.38 (m, 2H), 7.36-7.33 (m, 2H), 7.23-7.16 (m, 4H), 7.13 (d, *J* = 7.2Hz, 1H), 7.06 (t, *J* = 7.6Hz, 2H), 6.97 (d, *J* = 7.2Hz, 2H), 6.87 (d, *J* = 6.4Hz, 2H), 6.61 (d, *J* = 1.6Hz, 1H), 6.11 (dd, *J* = 9.6Hz, 11.6Hz, 1H), 5.46 (d, *J* = 9.2Hz, 1H), 5.06 (d, *J* = 16.0Hz, 1H), 4.87 (d, *J* = 11.6Hz, 1H), 4.51 (d, *J* = 16.0Hz, 1H), 2.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 143.5, 137.1, 134.1, 131.5, 129.0, 128.9, 128.8, 128.6, 128.3, 128.0, 127.72, 127.69, 126.8, 125.6, 125.3, 123.1, 113.1, 91.4, 91.0, 63.2, 56.2, 44.2; IR (KBr): 3440.1, 1956.0, 1726.9, 1604.3, 1554.2, 1487.0, 1372.0, 1179.1, 740.9, 699.5 cm⁻¹; HRMS (ESI) for C₃₀H₂₄BrN₃O₃ [M+H] ⁺ calcd 554.1074, found 554.1090.

5. X-ray Crystallographic data of 4f

Empirical formula	$C_{30}H_{24}N_3O_3Br$
Formula weight	554.43
Temperature/K	293 (2)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	11. 4213 (5)
b/Å	13. 1929 (4)
c/Å	17.2730(5)
α /°	90.00
β /°	90.00
γ /°	90.00
Volume/Å ³	2602. 68 (16)
Ζ	4
$ ho_{calc} mg/mm^3$	1.415
m/mm^{-1}	1.616
F (000)	1136.0
Crystal size/mm ³	$0.28 \times 0.16 \times 0.11$
2Θ range for data collection	5.92 to 52.74°
Index ranges	$-8 \leqslant h \leqslant 14, \ -16 \leqslant k \leqslant 16, \ -21 \leqslant 1 \leqslant 21$
Reflections collected	9098
Independent reflections	5296[R(int) = 0.0404]
Data/restraints/parameters	5296/0/338
Goodness-of-fit on ${\rm F}^{\rm 2}$	1.025
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0530, wR_2 = 0.0731$
Final R indexes [all data]	$R_1 = 0.1025, wR_2 = 0.0883$
Largest diff. peak/hole / e Å $^{\!\!\!\!^{-3}}$	90. 33/-0. 37
Flack parameter	-0.005(8)

6. ¹H NMR and ¹³C NMR spectra

7. HPLC spectra

4a: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4b: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4c: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4d: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4e: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4f: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	18.050	4.47014e4	640.77966	90.9634
2	DAD 230.16 nm	22.214	4440.78760	65.06643	9.0366

4g: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4h: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

Реак	Processed	Retention	Реак Агеа	Peak Height	Реак Агеа
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230.16 nm	12.579	2.30265e4	461.59174	89.1013
2	DAD 230.16 nm	54.069	2816.54028	17.76291	10.8987

4i: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4j: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4k: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

41: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4m: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

4n: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

40: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

Peak	Processed	Retention	Deals Area	Peak Height	Peak Area
	Channel	Time (min)	Peak Alea		(%)
1	DAD 267.0 nm	10.224	2653916	99482	50.29
2	DAD 267.0 nm	38.246	2623623	22777	49.71

Peak	Processed	Retention	Deals Arras	Peak Height	Peak Area
	Channel	Time (min)	r eak Alea		(%)
1	DAD 267.0 nm	10.178	8577802	324371	90.15
2	DAD 267.0 nm	38.691	937612	8975	9.85

4p: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

Peak	Processed	Retention	Deals Area	Peak Area Peak Height	Peak Area
	Channel	Time (min)	Реак Агеа		(%)
1	DAD 220.0 nm	19.056	46567278	849449	50.50
2	DAD 220.0 nm	35.357	45654100	418713	49.50

Peak	Processed	Retention	Deals Area	Peak Height	Peak Area
	Channel	Time (min)	reak Alea		(%)
1	DAD 220.0 nm	18.991	19842084	375894	90.37
2	DAD 220.0 nm	35.318	2114554	22573	9.63

4r: HPLC analysis using chiral AD-H Column (*n*-hexane:*i*-PrOH =60:40, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Area Peak Height	Peak Area
	Channel	Time (min)			(%)
1	DAD 220.0 nm	19.258	16030804	303396	50.33
2	DAD 220.0 nm	34.847	15821678	157327	49.67

Peak	Processed	Retention	Dool: Aroo	Area Peak Height	Peak Area
	Channel	Time (min)	r eak Alea		(%)
1	DAD 220.0 nm	19.363	40797263	772608	91.64
2	DAD 220.0 nm	35.267	3723816	38152	8.36