Designing ternary cocrystals with hydrogen bonds and halogen bonds

Srinu Tothadi and Gautam R. Desiraju*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India.

Supporting Information

Content

1	List of crystal structures (Table 1)	Page S2
2	Experimental details	Page S3
3	A list of "unsuccessful" experiments (Table 2)	Page S5
4	Crystallographic data and structure refinement parameters for the compounds in this study (Table 3)	Page S7
5	List of byproducts in the ternary/binary cocrystallization experiments	Page S8
6	Powder X-ray diffraction (PXRD)	Page S10

Table 1. List of crystal structures

	Cocrystals/solvates	
1	4-Nitrobenzamide: 1,4-diiodobenzene (1)	Binary cocrystal
2	4-Iodobenzamide: 1,4-dinitrobenzene (2)	Binary cocrystal
3	4-Nitrobenzamide: oxalic acid:	Ternary cocrystal
	1,4-diiodobenzene (3)	
4	4-Nitrobenzamide: fumaric acid:	Ternary cocrystal
	1,4-diiodobenzene (4)	
5	4-Nitrobenzamide: oxalic acid:	Ternary cocrystal
	1-bromo-4-iodobenzene (5)	
6	4-Nitrobenzamide: 1,4-dioxane (6)	Solvate
7	4-Nitrobenzamide: adipic acid (7)	Binary cocrystal
8	4-Nitrobenzamide: benzoic acid (8)	Binary cocrystal
9	4-Nitrobenzamide: succinic acid (9)	Binary cocrystal
10	3,5-Dinitrobenzamide: 1,4-diiodobenzene (10)	Binary cocrystal

Experimental details

Crystallization.

4-Nitrobenzamide: oxalic acid: 1,4-diiodobenzene cocrystal (3). 4-Nitrobenzamide, oxalic acid, and 1,4-diiodobenzene were taken in a 2:1:1 molar ratio and ground after adding 2-3 drops of EtOH (solvent drop grinding). The ground sample was dissolved in a minimum amount of MeOH and then filtered. The filtrate was kept for slow evaporation. Yellow coloured good quality crystals, suitable for diffraction, were obtained after five days.

4-Nitrobenzamide: fumaric acid: 1,4-diiodobenzene cocrystal (**4**). 4-Nitrobenzamide, fumaric acid and 1,4-diiodobenzene were taken in a 2:1:1 molar ratio and ground after adding 2-3 drops of EtOH. The ground sample was dissolved in a minimum amount of MeOH and filtered. The filtrate was kept for slow evaporation. Yellow coloured, good quality, diamond shape crystals, suitable for diffraction, were obtained after four days.

4-Nitrobenzamide: fumaric acid: 1-bromo-4-iodobenzene cocrystal (5). 4-Nitrobenzamide, fumaric acid and 1-bromo-4-iodobenzene were taken in a 2:1:1 molar ratio and ground after adding 2-3 drops of EtOH. The ground sample was dissolved in a 1:1 mixture of MeOH/MeNO₂ and subsequently filtered. Filtrate was kept for slow evaporation. Yellow coloured, good quality crystals, suitable for diffraction, were obtained after four days.

Single crystal X-ray crystallography.

Single crystal X-ray data for all binary and ternary cocrystals were collected on a Rigaku Mercury375/M CCD (XtaLAB mini) diffractometer using graphite monochromated Mo–Kα radiation at 150 K. The data were processed with the Rigaku Crystal clear software. Refinement

of coordinates and anisotropic thermal parameters of nonhydrogen atoms were performed with the full-matrix least-squares method. The different treatment of H atoms in any structure depends on the data quality. Most of the hydrogen atoms in NH_2 and OH are located from difference Fourier maps. In case where the data were good C-H atoms were located from difference Fourier maps. If there are some problems with the C–H distance then H-atom positions were calculated using the riding model. PLATON was used to prepare material for publication, and Mercury version 3.0 was utilized for molecular representations and packing diagrams. The structure solution and refinement proceeded uneventfully for all compounds except cocrystal **1**. In this case there was some problem in the refinement which led to one or two atoms having unrealistic adp values and some unacceptably large peaks near the iodine atom in the difference Fourier maps. Several attempts were made to resolve these issues, without success. Possibly, these problems arose from poor crystal quality, unresolved chicken-wire problems and the presence of the iodine atom in the molecule. Efforts are ongoing to resolve these issues and structure 1 has been mentioned here because it provides some supporting evidence for the crystal engineering arguments and strategies put forward in this paper.

CSD Analysis criteria

CSD structural data analysis was carried out with version 5.34 (November 2012, including two updates). The analysis was confined to purely organic compounds. The geometrical parameters and constraints were given using ConQuest 1.15. Unique intermolecular interactions were considered with longer and shorter I…O₂N non-bonded interactions, D₁ and D₂. For reference, $3.0 < D_1 < 6.5$ Å and $2.9 < D_2 < 4.7$ Å.

No	Compound	Solvent used	Space	Result	R-factor
		for	group		(%)
		crystallization			
1	4-nitrobenzamide:	MeOH		4-nitrobenzamide	
	malonic acid:			(form I) (reported)	
	1-bromo-4-iodobenzene				
2	4-nitrobenzamide:	MeNO ₂	PĪ	4-nitrobenzamide:	8.3
	pimelic acid:			1,4-diiodobenzene (1)	
	1,4-diiodobenzene				
3	4-iodobenzamide:	MeNO ₂	<i>C</i> 2/ <i>m</i>	4-iodobenzamide:	1.6
	oxalic acid:			1,4-dinitrobenzene (2)	
	1,4-dinitrobenzene				
4	4-nitrobenzamide:	1,4-dioxane	PĪ	4-nitrobenzamide: 1,4-	3.8
	fumaric acid:			dioxane (6)	
	1,4-diiodobenzene				
5	4-nitrobenzamide:	МеОН		4-nitrobenzamide	
	fumaric acid:			(form II) (reported)	
	1,4-diiodotetrafluorobenzene			_	
6	4-nitrobenzamide:	МеОН		4-nitrobenzamide	
	glutaric acid:			(form II) (reported)	
	1,4-diiodotetrafluorobenzene			_	
7	4-nitrobenzamide:	MeNO ₂	$P2_{1}/c$	4-nitrobenzamide:	3.4
	adipic acid: 1,4-diiodobenzene	(batch I)		adipic acid (7)	
8	4-nitrobenzamide:	MeNO ₂		1,4-diiodobenzene	
	adipic acid:	(batch II)		(reported)	
	1,4-diiodobenzene				
9	4-nitrobenzamide:	MeOH		azelaic acid	
	azelaic acid:			(reported)	
	1,4-diiodobenzene				
10	4-nitrobenzamide:	MeCN		4-nitrobenzamide	
	sebacic acid:			(form I) (reported)	
	1,4-diiodobenzene				
11	4-nitrobenzamide:	MeCN		new cell but data quality	
	sebacic acid:			is poor	
	1,4-diiodobenzene				
12	4-nitrobenzamide:	MeOH		1-bromo-4-iodobenzene	
	sebacic acid:			(reported)	
	1-bromo-4-iodobenzene				
13	4-nitrobenzamide:	МеОН	$P2_1/c$	4-nitrobenzamide:	5.8
	benzoic acid:			benzoic acid (8)	
	1,4-diiodobenzene				
14	4-nitrobenzamide:	МеОН		4-nitrobenzamide	
	1-adamantanecarboxylic acid:			(form I) (reported)	
	1,4-diiodobenzene				

Table 2. A list of "unsuccessful" experiments

15	4-nitrobenzamide:	МеОН		1-bromo-4-iodobenzene	
	sebacic acid:	(batch I)		(reported)	
	1-bromo-4-iodobenzene				
16	4-nitrobenzamide:	МеОН		4-nitrobenzamide	
	sebacic acid:	(batch II)		(form II) (reported)	
	1-bromo-4-iodobenzene	``´´			
17	4-nitrobenzamide:	МеОН		$(oxalic acid)_2:(H_2O)_3$	
	oxalic acid:	(batch I)		(reported)	
	1,4-dibromo tetrafluorobenzene				
18	4-nitrobenzamide:	МеОН		4-nitrobenzamide	
	oxalic acid:	(batch II)		(form II) (reported)	
	1,4-dibromotetrafluorobenzene	``´´			
19	4-nitrobenzamide:	MeNO ₂	C2/c	4-nitrobenzamide:	3.3
	succinic acid:	_		succinic acid (9)	
	1-bromo-4-iodobenzene				
20	3,5-dinitrobenzamide:	МеОН	$P\bar{1}$	3,5-dinitrobenzamide:	5.3
	fumaric acid:			1,4-diiodobenzene (10)	
	1,4-diiodobenzene:				
21	4-nitrobenzamide:	МеОН		4-nitrobenzamide	
	1,4-diiodobenzene			(form I) (reported)	
22	4-nitrobenzamide:	1,4-dioxane		1,4-diiodobenzene	
	pimelic acid:1,4-diiodobenzene			(reported)	
23	4-nitrobenzamide:	THF		4-nitrobenzamide	
	fumaric acid:			(form II) (reported)	
	1,4-diiodotetrafluorobenzene				
24	4-nitrobenzamide:	МеОН		4-nitrobenzamide	
	1,4-diiodotetrafluorobenzene	(batch I)		(form II) (reported)	
25	4-nitrobenzamide:	MeOH		4-nitrobenzamide	
	1,4-diiodotetrafluorobenzene	(batch II)		(form I) (reported)	
26	4-nitrobenzamide:	МеОН		1-bromo-4-iodobenzene	
	1-bromo-4-iodobenzene			(reported)	
27	4-nitrobenzamide:	МеОН		1,4-bromobenzene	
	1,4-bromobenzene			(reported)	
28	4-nitrobenzamide:	THF		4-nitrobenzamide	
	1-bromo-4-iodobenzene			(form II) (reported)	
29	4-idobenzamide:	МеОН		different cell but data	
	oxalic acid			quality is poor	

	6	7	8	9	10
	4NBZ:	4NBZ:AA	4NBZ:BA	4NBZ:SA	35DNBZ:
	DIOXANE				14DIBZ
Formula	$(C_7H_6N_2O_3)$.	$(C7H_6N_2O_3)$ ·	$(C_7H_6N_2O_3)$	$(C_7H_6N_2O \cdot$	$2(C_7H_5N_3O_5)$ ·
готтина	$0.5(C_4H_8O_2)$	$0.5(C_6H_{10}O_4)$	$(C_7H_6O_2)$ ·	$0.5(C_4H_6O_4)$	(C_6H4I_2)
Formula weight	210.19	239.21	288.26	225.18	752.17
Crystal System	Triclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	PĪ	$P2_{1}/c$	$P2_{1}/c$	$C2_{1}/c$	PĪ
a (Å)	6.9143(9)	6.3620(9)	7.3472(12)	31.134(8)	9.5268(13)
b (Å)	7.4292(10)	13.8657(19)	19.841(3)	5.1606(13)	9.6155(13)
c (Å)	10.0061(13)	13.6664(17)	9.2185(15)	12.670(3)	13.8866(19)
α (°)	94.403(7)	90	90	90	81.082(6)
β (°)	95.082(7)	116.646(7)	106.837(7)	107.206(7)	70.278(5)
γ (°)	111.305(8)	90	90	90	88.850(6)
$V(A^3)$	473.68(11)	1077.5(3)	1286.2(4)	1944.6(8)	1182.3(3)
Ζ	2	4	4	8	2
$\rho_{calc} (gcm^{-3})$	1.474	1.475	1.489	1.538	2.113
F(000)	220.0	500.0	600.0	936.0	724.0
$\mu(mm^{-1})$	0.118	0.120	0.115	0.128	2.730
Temp(K)	150	150	150	150	150
Total ref.	4747	10650	8432	9260	8053
Unique ref.	2149	2464	2927	2235	5321
Observed ref. $(I >$	1971	2191	1929	2020	4435
$2\sigma(I)$					
R	0.0387	0.0342	0.0583	0.0336	0.0528
wR2	0.1100	0.0889	0.1438	0.0891	0.1502
S	1.025	1.066	0.997	1.074	1.111
CCDC No.	940333	940329	940330	940331	940332

Table 3: Crystallographic data and structure refinement parameters for compounds in this study not mentioned in the main paper¹

¹4NBZ, 4-nitrobenzamide; DIOXANE, 1,4-dioxane; AA, adipic acid; BA, benzoic acid; SA, succinic acid; 35DNBZ, 3,5-dinitrobenzamide; 14DIBZ, 1,4-diiodobenzene;

List of byproducts in the ternary/binary cocrystallization experiments

Figure S1. 4-Nitrobenzamide: 1,4-dioxane solvate (6). Two successive amide…amide dimers are connected by 1,4-dioxane molecule. See (a) V. S. S. Kumar, S. S. Kuduva and G. R. Desiraju, *J. Chem. Soc.*, *Perkin Trans.* 2, 1999, 1069–1073. (b) S. Tothadi and G. R. Desiraju, *Acta Cryst.* 2012. E68, o2661.

Figure S2. 4-Nitrobenzamide: adipic acid cocrystal (7). Molecules are packed with the acid…amide heterosynthon. Notice that the O atom of the NO_2 group is involved in crystal packing *via* N–H…O and C–H…O two point synthons.

Figure S3. 4-Nitrobenzamide: benzoic acid cocrystal (8). Molecules are packed with acid…amide heterosynthon and N–H…O and C–H…O interactions.

Figure S5. 4-Nitrobenzamide: succnic acid cocrystal (9) forms acid...amide dimer. Molecules are further packed with N-H...O and C-H...O interactions.

Figure S6. 3,5-Dinitrobenzamide: 1,4-diiodobenzene cocrystal (10). Iodine forms unsymmetrical (Q) contacts with NO₂. Notice that the amide functional group forms tetramers (not amide…amide dimers)

Powder X-ray diffraction (PXRD). X-ray powder diffraction data (PXRD), for all ternary cocrystals were collected on a Philips X'pert Pro X-ray powder diffractometer equipped with X'cellerator detector. The scan range was $2\theta = 5$ to 40° .

Figure S7. PXRD pattern of 2:1:1 Ternary cocrystal of 4-nitrobenzamide: oxalic acid: 1,4diiodobenzene, **3**. Experimental powder pattern (red) simulated powder pattern (blue)

Figure S8. PXRD pattern of 2:1:1 Ternary cocrystal of 4-nitrobenzamide: fumaric acid: 1,4diiodobenzene, **4**. Experimental powder pattern (red) simulated powder pattern (blue)

Figure S9. PXRD pattern of 2:1:1 Ternary cocrystal of 4-nitrobenzamide: oxalic acid: 1-bromo 4-iodobenzene, **5**. Experimental powder pattern (red) simulated powder pattern (blue)