Electronic Supporting Information

Palladium-Catalyzed Regio- and Chemoselective *ortho*-Benzylation of C-H Bond Using a Functionalizable Primary Amide Directing Group: A Concise Synthesis of Dibenzo[*b*,*e*]azepin-6-ones

Joydev K. Laha,* Pooja U. Shah and Krupal P. Jethava

Department of Pharmaceutical Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar, Punjab 160062 INDIA

Table of Contents

1. Additional information on report	SC-2
2. General experimental procedure	SC-8
3. Characterization data	SC-9
4. References	SC-18
5. Copies of ¹ H , ¹³ C and ³¹ P NMR spectra	SC-20

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Additional Information on report: Development of an efficient method for the synthesis of functionalized diarylmethanes^{1,2} is considered an active research area in direct C-H functionalization. A classical still widely used approach to prepare these structural motifs is Lewis-acid mediated Friedel-Crafts (or S_EAr) reactions of arenes with benzylic electrophiles.³ While valuable these processes often suffer from several limitations including restrictions to electron-rich arenes, stumpy tolerance to acidsensitive functional groups, and low chemo- and regioselectivities. Remarkably, some of these limitations have been addressed in the Friedel-Crafts benzylation of activated and deactivated arenes using Lewis acid BF₃·OEt₂.⁴ Recently, transition-metal catalyzed cross-coupling reactions of a stoichiometric organometallic aryl with benzyl halides have emerged as alternatives to the Friedel-Crafts reactions.⁵ However, these cross-coupling reactions call for pre-functionalization adding synthetic steps to the preparation of organometallic reagents and demand improved functional groups compatibility. To overcome these drawbacks, transition-metal catalyzed direct benzylation⁶ of electron-deficient arenes and heteroarenes have been successfully developed, which includes palladium-catalyzed direct benzylation of arenes,^{7,8} pentafluoroarenes (Scheme 1),⁹ xanthenes,¹⁰ azoles,^{11,12} oxazol(in)es,¹² or heteroarenes^{7,13} (Scheme 2), ruthenium-catalyzed direct benzylation of arenes containing a heterocycle (Scheme 3),¹⁴ and cobalt-catalyzed direct benzylation of N-pyridinylindole (only one example) with benzyl phosphate (**Scheme 4**).¹⁵

Notably, palladium-catalyzed asymmetric direct benzylation of 3-aryl oxindoles¹⁶ and azlactones¹⁷ have also been realized (**Scheme 5**).

While a wide variety of functional groups have been evaluated as directing group in arene C-H functionalizations, only a few example of *ortho*-benzylation directed by a secondary amide containing an 8-aminoquinoline moiety have appeared. The nickel-^{18a} or palladium-^{18b} catalyzed direct alkylation of *ortho* C-H bond in secondary benzamides containing an 8-aminoquinoline moiety as a bidentate directing-group has been developed, wherein a few examples of *ortho*-benzylation have been included (**Scheme 6**).

At the outset, choice of the appropriate benzylic electrophile for palladium-catalyzed direct benzylation of benzamides was crucial. While transition metal-catalyzed direct benzylation of electron-deficient arenes or (hetero)arenes was successfully achieved with benzyl chloride, only a limited success was documented with benzyl bromide.^{9,13a} Initial efforts directed to the development of palladium-catalyzed direct benzylation of benzamides with benzyl chloride invariably gave N-benzylated benzamides as major isolated product (**Scheme 7**).

We, therefore, chose 3-methoxybenzyl bromide (2) in our optimization study. The reason for choosing 2 as electrophile was two-fold: (1) it is readily available in our laboratory, (2) n^3 -benzyl-palladium species generated in situ from 2 by oxidative addition of Pd^0 would be stabilized by the presence of an electrondonating group.^{5,6} We began our optimization study using a reaction condition used for the direct benzylation of electron-deficient arenes.⁹ Thus, reaction of **1** with **2** did not afford the diarylmethane **3** under the condition described in the literature (Table A, entry 1). However, reaction of 1 with 2 in the presence of 10 mol% Pd(OAc)₂, 20 mol% of a trialkylphosphine (PCy₃) or triarylphosphine (PPh₃) ligand, and a strong base (NaOBu-t) afforded the desired benzylated product 3 only in detectable amount together with substantial amount of N-benzylated product (30-35%) and other unidentified by-products (entry 2). In addition, use of a mild base Cs_2CO_3 in combination with PCy_3 also produced only a trace amount of diarylmethane 3, but significantly reduced the amount of N-benzylated product (entry 3). Instead, use of Cs₂CO₃ with PPh₃ produced3 in 30% yield though a significant amount of starting material remained unreacted even after prolonging the reaction to 36 h (entry 4). Other triarylphosphine ligands $[L1 = P(o-Tol)_3 \text{ or Xant-Phos, BINAP}]$ or biaryldialkylphosphine ligands [L2 = P(biphen-2yl)Cy₂, Jhon-Phos, S-Phos, X-Phos, or DPPP] didn't offer any improvement (entry 5-7). The effect of other bases [K2CO3, Na2CO3, KOAc, K2HPO4, TEA, DBU, or DBN] was also examined, but the formation of diarylmethane **3** was observed in 5-20% in these cases (entry 8). Increasing the temperature from 110[°] to 140 [°]C using other solvents [*o*-xylene, DMA, DMF, or DME] was detrimental (entry 9). However, the yield of 3was increased to 45% using dioxane as the solvent (entry 10). A lower catalyst loading (5 mol%) was somewhat better to suppress the formation of undesired products at the cost of unreacted starting material. Thus, compound 3 was best obtained in 60% yield by heating 1 and 2 in the presence of 5 mol% Pd(OAc)₂, 10 mol% PPh₃ and 1.2 equiv Cs_2CO_3 in dioxane at 110 ⁰C (entry 11). It should be noted here in addition to the desired diarylmethane 3, the formation of N-benzylated, N,Cdibenzylated derivatives, and other unidentified products account for the mass balance of conversion of benzamide into products. For example, 3-trifluoromethylbenzamide produced diarylmethane 6 in 68% yield together with N-benzylated (SC-1) and N,C-dibenzylated (SC-2) derivatives in 8% and 11% yields, respectively (Scheme 8).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Table A: Optimization study for the direct benzylation^a

[a] Reagents and conditions: **1** (0.2 mmol), **2** (0.2 mmol), Pd(OAc)₂ (0.02 mmol), PPh₃ (0.04 mmol), base (1.2 mmol), solvent (500 mM), temp.110 0 C, 18 h. [b] Pivalic acid (1.2 equiv) as additive. [c] Temp 140 0 C, [d] Used Pd(OAc)₂ (0.01 mmol) and PPh₃ (0.02 mmol). [e] Used **2** (2 equiv.), [f] **1** (0.2 mmol), **2** (0.6mmol), base (0.6 mmol), Pd(OAc)₂ (5 mol%), Pivalic acid (20 mol%) [g] Used 1.25-2.50 mol% Pd(OAc)₂ and 2.5-5.0 mol% PPh₃. [h] Used Pd(PPh₃)₄ (0.02 mmol). [i] Employed secondary benzamide (*N*-methylbenzamide or *N*-phenylbenzamide) as one of the coupling partners using 5 mol% Pd(OAc)₂ and 10 mol% PPh₃

Attempt for complete conversion of starting material into products using excess 2 (2 equiv) was not beneficial (entry 12). However reported experimental condition^{18b} resulted in only 20% yield (entry 13). Similarly, further lowering of the catalyst loading to 2.5 mol% or 1.25 mol% was deleterious (entry 14). Replacing $Pd(OAc)_{2}by Pd(PPh_{3})_{4}$ resulted in slightly reduced yield of 3 (entry 15). The optimized condition excluding PPh₃ gave the desired *ortho*-benzylated benzamide in reduced yield (38% vs. 60%) with increased amount of byproduct (C,C-dibenzylated benzamide and C,N-dibenzylated benzamide) (entry 16). A similar observation (reflecting reduced yield) was also recorded in the reaction of 3trifuorobenzamide and 3-methoxybenzyl bromide under the optimized condition excluding PPh₃ (42% vs. 68%). To understand the role of Ph₃P in this reaction, we performed the following control experiments. An experiment involving reaction of Ph₃P and benzyl bromide in dioxane at 110 ^oC for 30 min did not show the presence of Ph₃P on TLC and formed a white colored insoluble material, which indicated the formation of benzyl triphenylphosphonium salt. Another control experiment including Pd(OAc)₂, Ph₃P, and benzyl bromide in dioxane at 110 °C for 1-2 h also did not reveal the presence of Ph₃P. ³¹P NMR of these reactions also suggested the absence of Ph₃P (³¹P NMR Spectra Exp-A and Exp-B, respectively). Remarkably, reaction of a secondary benzamide (N-methylbenzamide or N-phenylbenzamide) with 2 did not give the corresponding direct benzylated product under the best condition (entry 17).

Only a few examples of direct benzylation of activated C-H bonds in (hetero)arenes using 2-, 3- or 4chlorobenzyl chloride has been documented, which demonstrated chemical selectivity at benzyl chloride over aryl chloride.^{13,14} This may be rationalized of the poor reactivity of aryl chloride compared to benzyl chloride leading to chemoselective direct benzylation.

Experimental

General Information: Unless otherwise noted, all reagents and solvents were purchased from commercial sources and used as received. All palladium-catalyzed reactions were degassed with argon and performed in a screw-capped vial. Unless specified, the proton and carbon NMR spectra were obtained in CDCl₃ using a 400 MHz spectrometer and are reported in δ units. Coupling constants (*J* values) are reported in Hz. Column chromatography was performed on silica gel (100-200 or 230-400 mesh). High Resolution Mass Spectra (HRMS) were obtained using Bruker-Maxis. IR spectra were obtained using Perkin Elmer-Spectrum II instrument. All melting points were taken using a melting point apparatus equipped with a calibrated thermometer and are uncorrected. New compounds were characterized by melting point, ¹H NMR, ¹³CNMR, IR, and HRMS data.

All benzamides and benzyl bromides were purchased from commercial vendors.

General procedure for the palladium-catalyzed direct benzylation of primary benzamides: In an oven-dried screw cap vial equipped with a magnetic stir bar, benzamide (122 mg, 1 mmol) was dissolved in dioxane (2 mL) under nitrogen followed by the addition of Cs_2CO_3 (390 mg, 1.2 mmol), 3-methoxy benzylbromide (201 mg, 1 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol) and PPh₃ (26 mg, 0.10 mmol). The resulting reaction mixture was heated at 110 °C for 18 h. The reaction mixture was allowed to cool to room temperature and extracted with ethyl acetate (2 x 50 mL). The organic layers were combined, dried (Na₂SO₄), concentrated under reduced pressure, and purified by column chromatography on silica using(ethyl acetate/ hexane = 1:4) as an eluent to give the desired product.

General procedure for the palladium-catalyzed interamolecular *N*-arylation of 2-(2-bromobenzyl) benzamides: In an oven-dried screw cap vial equipped with a magnetic stir bar, 2-(2-bromobenzyl) benzamide (0.25 mmol) was dissolved in dioxane (2 mL) under nitrogen followed by the addition of Cs_2CO_3 (161 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol) and Xant-Phos (20 mg, 0.034 mmol). The resulting reaction mixture was heated at 110 0 C for 18 h. The reaction mixture was allowed to cool to room temperature and extracted with ethyl acetate (2 x 50 mL). The organic layers were combined, dried (Na₂SO₄), concentrated under reduced pressure, and purified by column chromatography on silica gel using (ethyl acetate/ hexane = 1:7) as an eluent to give the cyclized compound.

Characterization Data

2-(3-Methoxybenzyl)benzamide (**3**): white solid; mp: 109 0 C; ¹H NMR: δ 7.50 (d, *J*=7.3 Hz, 1H), 7.37 (d, *J*=7.5 Hz, 1H), 7.16 - 7.32 (m, 3H), 6.72 - 6.77 (m, 3H), 5.90 (br. s, 1H), 5.70 (br. s, 1H), 4.21 (s, 2 H), 3.75 (s, 3H); {}^{13}C NMR: δ 172.0, 159.7, 142.3, 138.7, 135.3, 131.2, 130.5, 129.5, 127.4, 126.4, 121.3, 114.8, 111.4, 55.1, 38.8; HRMS obsd 242.1175, calcd 242.1181 for C₁₅H₁₆NO₂ (M⁺+H); IR (KBr): 3371, 3178, 1648, 1626, 1626, 1261, 646, 556 cm⁻¹.

2-(3-Methoxybenzyl)-5-methylbenzamide (**4**): white solid; ¹H NMR: δ 7.32 (s, 1H), 7.18 - 7.21 (m, 2H), 7.11 - 7.13 (m, 1H), 6.74 - 6.80 (m, 3H), 5.65 (br. s., 2H), 4.18 (s, 2H), 3.77 (s, 3H), 2.35 (s, 3H); ¹³C NMR: δ 171.8, 159.7, 142.6, 136.1, 135.4, 135.1, 131.2, 131.1, 129.4, 128.1, 121.2, 114.6, 111.3, 55.1, 38.4, 20.8; HRMS obsd 255.1257, calcd 255.1259 for C₁₆H₁₇NO₂(M⁺+H); IR (KBr): 3370, 3182, 1654, 1324, 1260, 996, 695, 548 cm⁻¹.

5-Methoxy-2-(3-methoxybenzyl)benzamide (5): white solid; mp: 79 0 C; ¹H NMR: δ 7.17 - 7.22 (m, 1H), 7.16 (d, *J*=8.5 Hz, 1H), 7.05 (d, *J*= 3.0 Hz, 1H), 6.93 (dd, *J*=8.4, 2.9 Hz, 1H), 6.68 - 6.79 (m, 3H), 5.58 - 5.83 (m, 2H), 4.15 (s, 2H), 3.82 (s, 3H), 3.77 (s, 3H); ¹³C NMR: δ 171.5, 159.5, 157.9, 142.0, 136.5,132.3, 130.2, 129.1, 121.1, 116.1, 114.6, 112.8, 111.3, 55.4, 55.1, 38.0; HRMS obsd 295.1140, calcd 295.1140 for C₁₆H₁₇NNaO₃ (M⁺+Na); IR (KBr): 3369, 3184, 2834, 1648, 1334, 1158, 1039, 920, 753, 655, 556 cm⁻¹.

2-(3-Methoxybenzyl)-5-(trifluoromethyl)benzamide (6): pale yellow solid; mp: 133 0 C; ¹H NMR: δ 7.75 (s, 1H), 7.63 (d, *J*=8.0 Hz, 1H), 7.38 (d, *J*=7.8 Hz, 1H), 7.23 (t, *J*=7.8 Hz, 1H), 6.73 - 6.83 (m, 3H), 5.81 (br. s, 1H), 5.73 (br. s, 1H), 4.27 (s, 2H), 3.79 (s, 3H); ¹³C NMR: δ 170.3, 159.8, 142.9, 142.9, 141.1, 135.9, 131.6, 129.7, 128.7, 127.1, 124.3, 121.3, 114.9, 111.6, 55.1, 38.6; HRMS obsd 309.0980, calcd 309.0977 for C₁₆H₁₄F₃NO₂ (M⁺); IR (KBr): 3370, 3182, 1654, 1324, 1260, 996, 695, 548 cm⁻¹.

4-Fluoro-2-(3-methoxybenzyl)benzamide (7): white solid; mp: 87 ⁰C; ¹H NMR: δ 7.50 (dd, *J*=8.3, 5.8 Hz, 1H), 7.22 (t, *J*=7.8 Hz, 1H), 6.89 - 6.99 (m, 2H), 6.74 - 6.78 (m, 3H), 5.93 (br. s, 1H), 5.73 (br. s, 1H), 4.22 (s, 2H), 3.78 (d, *J*=0.8 Hz, 3H); ¹³C NMR: δ 171.0, 164.9, 162.4, 159.8, 142.3, 141.4, 131.4, 129.6, 121.3, 118.0, 115.0, 113.5, 111.6, 55.2, 38.7; HRMS obsd 260.1082, calcd 260.1087 for C₁₅H₁₅FNO₂ (M⁺+H); IR (KBr): 3367, 3184, 2834, 1647, 1584, 1401, 1261, 968, 694, 556 cm⁻¹.

3,5-difluoro-2-(3-methoxybenzyl)benzamide (8): white solid; ¹H NMR: δ 7.16 (t, *J*= 8.0 Hz, 1H), 7.02 (d, *J*= 7.3 Hz, 1H), 6.93 - 6.88 (m, 1H), 6.76- 6.70 (3, 3H), 6.20 (br. S, 1H), 5.72 (br. S, 1H), 4.16 (s, 2H), 3.75 (s, 3H); ¹³C NMR: δ 169.5, 162.4, 159.8, 141.0, 138.3, 129.6, 122.0, 120.6, 114.3, 111.4, 110.5, 105.8, 55.1, 30.8; HRMS obsd 300.0819 calcd 300.0812 for C₁₅H₁₃F₂NNaO₂ (M⁺+Na); IR (KBr): 3369, 3092, 2927, 1647, 1618, 1460, 1129, 879, 753, 609 cm⁻¹

5-Methyl-2-(3-(trifluoromethyl)benzyl)benzamide (9): white solid; mp: 157 ⁰C; ¹H NMR: δ7.42 - 7.44 (m, 2H), 7.34 - 7.38 (m, 2H), 7.29 (s, 1H), 7.20 (d, *J*=8.0 Hz, 1H), 7.12 (d, *J*=7.8 Hz, 1H), 5.74 (br. s, 1H),

5.66 (br. s, 1H), 4.27 (s, 2H), 2.36 (s, 3H); ¹³C NMR: δ 171.8, 142.0, 136.5, 135.5, 134.9, 132.4, 131.4, 131.1, 128.8, 127.9, 125.6, 125.5, 123.0, 122.9, 38.1, 20.9; HRMS: obsd 294.1107, calcd 294.1106 for C₁₆H₁₅F₃NO (M⁺+ H); IR (KBr): 3372, 3187, 2919, 1647, 1334, 1111, 872, 656, 584 cm⁻¹.

5-Methoxy-2-(3-(trifluoromethyl)benzyl)benzamide (10): white solid; mp:135⁰C; ¹H NMR: δ 7.45 (s, 2H), 7.37 - 7.39 (m, 2H), 7.14 (d, *J*=8.5 Hz, 1H), 7.03 (d, *J*=2.5 Hz, 1H), 6.94 (dd, *J*=8.5, 2.5 Hz, 1H), 5.76 (s, 1H), 5.67 (s, 1H), 4.24 (s, 2H), 3.81 (s, 3H); ¹³C NMR: δ 171.3, 158.0, 142.2, 136.0, 132.3, 130.2, 128.8, 125.4, 122.9, 116.0, 113.0, 55.5, 37.7; HRMS obsd 333.0912, calcd 333.0908 for C₁₆H₁₄F₃NNaO₂ (M⁺+Na); IR (KBr): 3374, 3188, 1646, 1336, 1115, 701, 661, 537 cm⁻¹.

3,4,5-trimethoxy-2-(3-(trifluoromethyl)benzyl)benzamide (11): white solid; ¹H NMR: δ 7.49 (s, 1H), 7.40-7.34 (m, 3H), 6.84 (s, 1H), 5.5 (br.s, 2H), 4.23 (s, 2H), 3.89 (s, 6H), 3.70 (s, 3H); ¹³C NMR: δ 171.2, 152.6, 152.2, 144.1, 142.4, 131.9, 131.1, 128.6, 125.3, 125.2, 124.6, 122.6, 106.5, 60.8, 56.1, 32.1; HRMS obsd 392.1086 calcd 392.1086 for C₁₈H₁₈F₃NNaO₄ (M⁺+Na); IR (KBr): 3371, 3186, 1647, 1340, 1112, 703, 667, 541 cm⁻¹.

2-(2-Bromobenzyl)-5-methylbenzamide(12): white solid; mp:141⁰C; ¹H NMR: δ 7.58 (d, *J*=8.3 Hz, 1H), 7.35 (s, 1 H), 7.21 – 7.25 (m, 1H), 7.18 (d, *J*=1H), 7.07 - 7.12 (m, 2H), 6.98 (d, *J*=7.8 Hz, 1H), 5.66 (br. s, 1H), 5.71 (br. s, 1H), 4.31 (s, 2H), 2.36 (s, 3H); ¹³C NMR: δ 171.8, 140.2, 136.2, 135.3, 134.5, 132.8,

131.3, 130.6, 128.9, 128.5, 127.9, 127.5, 125.0, 38.6, 20.9; HRMS obsd 303.0256, calcd 303.0259 for $C_{15}H_{14}BrNO (M^+)$; IR (KBr): 3372, 3178, 1647, 1604, 1598, 742, 654, 608 cm⁻¹.

2-(2-Bromobenzyl)-5-methoxybenzamide (13): white solid; mp: 152 0 C; ¹H NMR: δ 6.56 (d, *J*=7.7 Hz, 1H), 7.20 - 7.24 (m, 1H), 7.05 - 7.10 (m, 3H), 7.01 (d, *J*=8.5 Hz, 1H), 6.91 (dd, *J*=8.5, 2.8 Hz, 1H) , 5.83 (br. s, 1H), 5.74 (br. s, 1H), 4.26 (s, 2H), 3.81 (s, 3H); ¹³C NMR: δ 171.4, 157.9, 140.3, 136.4, 132.8, 131.9, 130.9, 129.2, 127.9, 127.5, 124.9, 116.1, 112.8, 55.4, 38.3; HRMS obsd 343.0109, calcd 342.0106 for C₁₅H₁₄BrNNaO₂ (M⁺+Na); IR (KBr): 3375, 3186, 1646, 1504, 1241, 1030, 745, 544 cm⁻¹.

2-(2-Bromobenzyl)-5-(trifluoromethyl)benzamide (14): white solid; mp:140 0 C; ¹H NMR: δ 7.77 (s, 1H), 7.60 (d, *J*=8.0 Hz, 2H), 7.25 - 7.29 (m, 1H), 7.13 - 7.20 (m, 3H), 5.93 (br. s, 1H), 5.83(br. s, 1H), 4.41 (s, 2H); ¹³C NMR: δ 170.2, 138.9, 135.9, 133.1, 131.3, 130.9, 129.0, 128.4, 127.7, 127.1, 127.0, 125.0, 124.1, 124.0, 38.9; HRMS obsd 356.9971, calcd 356.9976 for C₁₅H₁₁BrF₃NO (M⁺); IR (KBr): 3379, 3186, 1648, 1610, 1323, 1123, 712, 656 cm⁻¹.

2-(2-Bromobenzyl)-4-methoxybenzamide (15): white solid; mp: 155 0 C; ¹H NMR: δ 7.58 (dd, *J*=8.3, 1.3 Hz, 1H), 7.53 (d, *J*=8.5 Hz, 1H), 7.22 - 7.26 (m, 1H), 7.09 - 7.12 (m, 2H), 6.80 (dd, *J*=8.5, 2.5 Hz, 1H), 6.61 (d, *J*=2.5 Hz, 1H), 5.66 (br. s, 2H), 4.39 (s, 2H), 3.77 (s, 3H); ¹³C NMR: δ 171.4, 161.2, 140.4, 140.0, 132.8, 131.1, 129.3, 128.0, 128.5, 127.6, 125.0, 116.5, 111.3, 55.3, 39.3; HRMS obsd 342.0107, calcd 342.0106 for C₁₅H₁₄BrNNaO₂ (M⁺+Na); IR (KBr): 3184, 1641, 1541, 1275, 1260, 764, 749 cm⁻¹.

2-(2-bromobenzyl)-3,5-difluorobenzamide (16): white solid; ¹H NMR: δ 7.55 (d, *J*= 7.3 Hz, 1H), 7.15 (t, *J*= 7.6 Hz, 1H), 7.10- 7.03 (m, 2H), 6.97-6.92 (m, 1H), 6.79 (d, *J*= 8 Hz, 1H), 6.16 (br.s, 1H), 5.66 (br.s, 1H), 4.24 (s, 2H); ¹³C NMR: δ 169.1, 162.7, 160.2, 138.5, 132.8, 129, 128.0, 127.5, 124.5, 120.9, 110.9, 105.9, 53.4, 31.8; HRMS obsd 347.9812 calcd 347.9812 for C₁₄H₁₀BrF₂NaO (M⁺+Na); IR (KBr): 3371, 3082, 2922, 1650, 1611, 1473, 1119, 859, 680, 607 cm⁻¹.

2-(6-Bromobenzo[*d*][1,3]dioxol-5-yl)methyl)benzamide (17): white solid; mp: 182 0 C; ¹H NMR: δ 7.52 (dd, *J*=7.7, 1.4 Hz, 1H), 7.37 (td, *J*=7.5, 1.5 Hz, 1H), 7.28 - 7.32 (m, 1H), 7.11 (d, *J*=7.0 Hz, 1H), 7.04 (s, 1H), 6.62 (s, 1H), 5.95 (s, 2H), 5.80 (br. s, 2H), 4.27(s, 2H); {}^{13}C NMR: δ 171.6, 147.5, 146.9, 138.0, 135.2, 133.0, 130.6, 130.5, 127.2, 126.5, 115.0, 112.7, 110.8, 101.6, 38.6; HRMS obsd 355.9898, calcd 355.9898 for C₁₅H₁₂BrNNaO₃ (M⁺+Na); IR (KBr): 3360, 3190, 1645, 1617, 1468, 1261, 935, 764, 642, 595 cm⁻¹.

2-(6-Bromobenzo[*d*][**1,3**]**dioxol-5-yl**)**methyl**)-**5-methylbenzamide** (**18**): white solid; mp: 208 0 C; ¹H NMR: δ 7.34 (s, 1H), 7.18 (d, *J*=7.5 Hz, 1H), 7.04 (s, 1H), 7.00 (d, *J*=8.0 Hz, 1H), 6.60 (s,1H), 5.94 (s, 2H), 5.72 (br. s, 1H), 5.72 (br. s, 1H), 5.67 (br. s, 1H), 4.21 (s, 2H), 2.36 (s, 3H); ¹³C NMR (DMSO-d₆, 400 MHz): δ 171.6, 147.6, 147.1, 137.1, 136.3, 134.6, 133.7, 130.5, 129.8, 128.3, 114.5, 112.6, 111.1, 102.2, 37.8, 20.9; HRMS obsd 370.0057, calcd 370.0055 for C₁₆H₁₄BrNNaO₃ (M⁺+Na); IR (KBr): 3370, 3186, 2921, 2362, 1648, 1478, 1245, 935, 680, 585 cm⁻¹.

2-(6-Bromobenzo[*d*][1,3]dioxol-5-yl)methyl)-4-methoxybenzamide (19): white solid; mp: 186 0 C; ¹H NMR (DMSO-d₆, 400 MHz): δ 7.83 (s, 1H), 7.40 (s, 1H), 7.19 (s, 1H), 6.98 (t, *J*=1.5 Hz, 1H), 6.92 (d, *J*=1.5 Hz, 2H), 6.67 (s, 1H), 6.02 (s, 2H), 4.06 (s, 2H), 3.76 (m, 3H); ¹³C NMR (DMSO-d₆, 400 MHz): δ 171.1, 157.6, 147.6, 147.0, 138.1, 133.9, 131.2, 129.5, 115.6, 114.4, 113.3, 112.6, 111.0, 102.2, 55.6, 37.5; HRMS obsd 364.0177, calcd 364.0184 for C₁₆H₁₅BrNO₄ (M⁺+H); IR (KBr): 3361, 3180, 2925, 1652, 1517, 1485, 1244, 803, 702, 546 cm⁻¹.

2-(6-Bromobenzo[*d*][1,3]dioxol-5-yl)methyl)-4-fluorobenzamide (20): white solid; mp: 195 0 C; ¹H NMR: δ 7.51 (s, 1H), 6.96 - 7.03 (m, 2H), 6.75 - 6.65 (m, 2H), 5.96 (s, 2H), 5.72 (br. s, 2H), 4.26 (s, 2H); ¹³C NMR: δ 170.6, 162.5, 147.6, 147.2, 141.8, 132.3, 131.1, 129.3, 129.2, 117.2, 115.1, 113.5, 112.8, 110.8, 101.7, 38.6; HRMS obsd 373.9800, calcd 373.9804 for C₁₅H₁₁BrFNNaO₃ (M⁺+Na); IR (KBr): 3364, 3184, 1645, 1617, 1479, 1275, 920, 650, 588 cm⁻¹.

2-((6-bromobenzo[d][1,3]dioxol-5-yl)methyl)-3,5-difluorobenzamide (21): white solid; ¹H NMR: δ 7.10 (d, *J*= 7.2 Hz, 1H), 7.02 (s, 1H), 6.95 (t, *J*= 8.0 Hz, 1H), 6.33 (s, 1H), 5.91 (br. s, 3H), 5.65 (br. s, 1H), 4.15 (s, 2H); ¹³C NMR: δ 168.7, 147.5, 146.8, 138.7, 131.5, 114.5, 112.7, 110.9, 110.6, 109, 106.2, 106, 105.7, 101.6, 31.6, 31.5; HRMS obsd 391.9711 calcd 391.9710 for C₁₅H₁₀BrF₂NNaO₃ (M⁺+Na); IR (KBr): 3372, 3185, 1647, 1615, 1460, 1285, 921, 657, 589 cm⁻¹.

8-Methyl-5,11-Dihydrodibenzo[*b,e*]**azepin-6-one** (**22**): white solid; mp:150 ⁰C; ¹H NMR: δ 8.51 (br. s, 1H), 7.75 (s, 1H), 7.25 - 7.29 (m, 2H), 7.21 (td, *J*=7.6, 1.6 Hz, 1H), 7.17 (d, *J*=7.8 Hz, 1H), 7.09 - 7.14 (m, 1H), 7.07 (dd, *J*=7.8, 1.3 Hz, 1H), 3.93 (s, 2H), 2.35 (s, 3H); ¹³C NMR δ: 169.7, 138.6, 136.8, 136.1, 133.4, 133.3, 131.1, 128.2, 127.4, 127.2, 125.4, 120.8, 38.8, 20.9; HRMS obsd 224.1073, calcd 224.1075 for C₁₅H₁₄NO (M⁺+H); IR (KBr): 3435, 3173, 1671, 1363, 1139, 750, 561, 512, 488 cm⁻¹.

8-Methoxy-5,11-Dihydrodibenzo[*b,e*]azepin-6-one (23): pale yellow solid; mp:147 0 C; ¹H NMR: δ 8.6 (s, 1H), 7.46 (d, *J*= 2.8 Hz, 1H), 7.27 – 7.28 (m, 2H), 7.22 (dd, *J*=7.56, 1.4 Hz, 1H), 7.18 (d, *J*=8 Hz, 1H), 7.12 (td, *J*=7.4, 1.08 Hz, 1H), 7.08 (d, *J*=7.8 Hz, 1H), 7.00 (dd, *J*= 8.3, 2.8 Hz, 1H), 3.90 (s, 2H), 3.82 (s, 3H); ¹³C NMR: δ 169.5, 158.6, 135.9, 133.9, 133.6, 132.2, 128.5, 128.1, 127.4, 125.5, 120.8, 119.6, 114.3, 55.5, 38.3; HRMS obsd 240.1017, calcd 240.1025 for C₁₅H₁₄NO₂ (M⁺+H); IR (KBr): 3172, 3037, 2918, 1647, 1492, 1236, 1035, 846, 650, 539 cm⁻¹.

8-(Trifluoromethyl)-5,11-Dihydrodibenzo[*b,e*]**azepin-6-one (24**): off-whitesolid; ¹H NMR: δ 8.38 (br. s, 1H). 8.21 (s, 1H), 7.69 - 7.71 (m, 1H), 7.43 (d, *J*=8.0 Hz, 1 H), 7.31 (d, *J*=7.5 Hz, 1H), 7.25 (dd, *J*=7.7, 1.4 Hz, 1H), 7.14 - 7.18 (m, 1H), 7.09 (d, *J*=7.8 Hz, 1H), 4.03 (s, 2H); ¹³C NMR (DMSO-d₆, 400 MHz): δ 169.0, 145.0, 135.9, 132.3, 132.0, 129.9. 129.5, 129.0, 128.3, 128.0, 127.8, 125.8, 121.2, 39.0; HRMS obsd 300.0609, calcd 300.0612 for C₁₅H₁₀F₃NNaO (M⁺+Na).

5,11-Dihydrodibenzo[**2**, **3**-*d*]**1,3-dioxole**[*b*,*e*]**azepin-6-one** (**25**): off white solid; ¹H NMR: δ 8.14 (br. s, 1H), 7.91 (d, *J*=7.7, 1H), 7.45 (td, *J*= 7.5, 1.28 Hz, 1H), 7.33 (t, *J*=7.5, 1H), 7.24 (d, *J*=7.5, 1H), 6.75 (s, 1H), 6.59 (s, 1H), 5.93 (s, 2H), 3.84 (s, 2H); ¹³C NMR: δ 169.4, 146,8, 145.4, 141.9, 132.5, 131.3, 130.8, 127.1, 126.8, 107.9, 102.4, 101.5, 38.8; HRMS obsd 254.0810, calcd 254.0817for C₁₅H₁₂NO₃ (M⁺+H).

8-Methyl-5,11-Dihydrodibenzo[2, 3-*d***]1,3-dioxole[***b***,***e***]azepin-6-one (26): off white solid; ¹H NMR: δ 8.06 (br. s, 1H), 7.72 (s, 1H), 7.25 (s, 1H), 7.12 (d,** *J***=7.72, 1H), 6.74 (s, 1H), 6.57 (s, 1H), 5.92 (s, 2H), 3.79 (s, 2H), 2.35 (s, 3H); ¹³C NMR: δ 170.0, 146.8, 145.2, 139.2, 136.9, 133.6, 131.3, 129.9, 126.5, 108.0, 102.7, 101.5, 38.6, 20.5; HRMS obsd 267.0894, calcd 267.0895 for C₁₆H₁₄NO₃ (M⁺+H); IR (KBr): 3150, 1656, 1482, 1482, 1356, 1275, 750 cm⁻¹.**

9-Methoxy-5,11-Dihydrodibenzo[2,3-*d*]**1,3-dioxole**[*b,e*]**azepin-6-one** (27): white solid; ¹H NMR: δ 8.21 (br. s, 1H), 7.41 (d, *J*=2.7 Hz, 1H), 7.13 (d, *J*=8.4 Hz, 1H), 6.98 (dd, *J*=8.3, 2.7 Hz, 1H), 6.72 (s, 1H), 6.57 (s, 1H), 5.91 (s, 2H), 3.81 (s, 3H), 3.76(s, 2H); ¹³C NMR (DMSO-d₆, 400 MHz): δ 167.2, 161.9, 145.9, 144.0, 143.4, 131.8, 130.7, 125.7, 124.4, 112.2, 111.6, 107.7, 102.2, 101.1, 55.3, 37.4; HRMS obsd 306.0741, calcd 306.0742 for C₁₆H₁₃NNaO₄ (M⁺+Na).

N-(3-methoxybenzyl)-3-(trifluoromethyl)benzamide (SC-1): white yellow solid; ¹H NMR: δ 8.06 (s, 1H), 7.99 (d, *J*=7.8 Hz, 1H), 7.78 (d, *J*=7.8 Hz, 1H), 7.59 (t, *J*=7.8 Hz, 1H), 7.29 - 7.33 (m, 1H), 6.96 (d, *J*=7.5 Hz, 1H), 6.92 (s, 1H), 6.87 (dd, *J*=8.3, 2.5 Hz, 1H), 6.42 (br. s, 1H), 4.66 (d, *J*=5.8 Hz, 2H), 3.83 (s, 3H).

N,2-bis(3-methoxybenzyl)-5-(trifluoromethyl)benzamide (**SC-2**): light yellow solid, ¹H NMR: δ 7.66 (s, 1H), 7.61 (d, *J*=8.3 Hz, 1H), 7.37 (d, *J*=8.0 Hz, 1H), 7.25 (t, *J*=8.2 Hz, 1H), 7.15 - 7.21 (m, 1H), 6.82 - 6.87 (m, 1H), 6.78 - 6.81 (m, 2H), 6.73 - 6.78 (m, 1H), 6.67 - 6.72 (m, 2H), 5.92 (br. s, 1H), 4.50 (d, *J*=5.8 Hz, 2H), 4.23 (s, 2H), 3.80 (s, 3H), 3.76 (s, 3H).

2,6-bis(3-methoxybenzyl)benzamide (3c): off white solid; ¹H NMR: δ 7.26-7.18 (m, 3H), 7.06-7.04 (d, *J*= 8 Hz, 2H), 6.79-6.74 (m, 6H), 5.84 (br. s, 1H), 5.39 (br. s, 1H), 4.064 (s, 4H), 3.77 (s, 6H).

References

- a) H. H. Sun, V. J. Paul, W. Finical, *Phytochemistry*, 1983, 22, 743–745; b) C. Manzoni, M. R. Lovati, A. Bonelli, G. Galli, C. R. Sirtori, *Eur. J. Pharmacol.*, 1990, 190, 39–49; c) K. L. McPhail, D. E. A. Rivett, D. E. Lack, M. T. Davis-Coleman, *Tetrahedron*, 2000, 56, 9391–9398; d) M. G. -Nordberg, K. Kolmodin, J. Aquist, S. F. Queener, A. Hallberg, *J. Med. Chem.*, 2001, 44, 2391–2402; e) H. Hoshina, K. Maekawa, K. Taie, T. Igarashi, T. Sakurai, *Heterocycles*, 2003, 60, 1779–1786; f) C. Rose, O. Vtoraya, A. A. Pluzanska, N. Davidson, M. Gershanovich, R. Thomas, S. Johnson, J. J. Caicedo, H. Gervasio, G. Manikhas, F. B. Ayed, S. B. –Radoux, H. A. C. Rose, R. Lang, *Eur. J. Cancer*, 2003, 39, 2318–2327; g) R. A. Forsch, S. F. Queener, A. Rosowsky, *Bioorg. Med. Chem. Lett.*, 2004, 14, 1811– 1815; h) A. Howell, M. Dowsett, *Breast Cancer Res.* 2004, 6, 269–274; i) K. W. Bentley, *Nat. Prod. Rep.*, 2005, 22, 249–268; j) K. Mertins, I. Iovel, J. Kischel, A. Zapf, M. Beller, *Adv. Synth. Catal.*, 2006, 348, 691–695; k) A. N. Campbell, K. P. Cole, J. R. Martinelli, S. A. May, D. Mitchell, P. M. Pollock, K. A. Sullivan, *Org. Process Res. Dev.*, 2013, 17, 273–281.
- a) D. Philip, J. F. Stoddart, *Angew. Chem. Int. Ed.*, 1996, **35**, 1154–1196; b) J. C. Ma, D. A. Dougherty, *Chem. Rev.*, 1997, **97**, 1303–1324; c) M. M. Conn, J. Rebek, *Chem. Rev.* 1997, **97**, 1647–1668; d) A. Jasat, J. C. Sherman, *Chem. Rev.*, 1999, **99**, 931–968.
- 3. G. A. Olah. Friedel-Crafts and Related reactions, Wiley-Interscience: New York, 1964; Vol. II, Part 1.
- 4. G. Schäfer, J. W. Bode, Angew. Chem. Int. Ed., 2011, 50, 10913-10916.
- For review, see: a) B. Liégault, J. -L. Renaud, C. Bruneau, *Chem. Soc. Rev.*, 2008, **37**, 290–299; b) F. Zhao, Q. Tan, F. Xiao, S. Zhang, G. -J. Deng, *Org. Lett.*, 2013, **15**, 1520–1523.
- For review, see: a) L. Ackermann, *Chem. Commun.*, 2010, 46, 4866–4877; b) S. Messaoudi, J. -D. Brion, M. Alami, *Eur. J. Org. Chem.*, 2010, 6495–6516.
- 7. K. Mertins, I. Iovel, J. Kischel, A. Zapf, M. Beller, Angew. Chem. Int. Ed., 2005, 44, 238-242.
- 8. A. Martins, M. Lautens, Org. Lett., 2008, 10, 5095-5097.
- 9. S. Fan, C. -Y. He, X. Zhang, Chem. Commun., 2010, 46, 4926-4928.
- 10. S. Sahnoun, S. Messaoudi, J. -D. Brion, M. Alami, ChemCatChem, 2011, 3, 893-897.
- a) C. Verrier, C. Hoarau, F. Marsais, *Org. Biomol. Chem.*, 2009, **7**, 647–650; b) T. Mukai, K. Hirano, T. Satoh, M. Miura, *Org. Lett.*, 2010, **12**, 1360–1363; c) L. Ackermann, S. Barfusser, J. Pospech, *Org. Lett.*, 2010, **12**, 724–726; d) P.Xie, H. Huang, Y. Xie, S. Guo, C. Xia, *Adv. Synth. Catal.*, 2012, **354**, 1692–1700.
- 12. L. Ackermann, S. Barfusser, C. Kornhaass, A. R. Kapdi, Org. Lett., 2011, 13, 3082-3085.
- a) D. Lapointe, K. Fagnou, Org. Lett., 2009, 11, 4160–4163; b) S. J. Hwang, S. H. Cho and S. Chang, J. Am. Chem. Soc., 2008, 130, 16158-16159; c) . H. Mayr, B. Kempf and A. R. Ofial, Acc. Chem. Res., 2003, 36, 66-77; d) H. Mayer and M. Patz, Angew, Chem. Int. Ed. Engl., 1994, 33, 938-957.
- 14. L. Ackermann, P. Novak, Org. Lett., 2009, 11, 4966–4969.
- 15. W. Song, L. Ackermann, Angew. Chem. Int. Ed., 2012, 51, 8251-8254.

- 16. B. M. Trost, L. C. Czabaniuk, J. Am. Chem. Soc., 2010, 132, 15534-15536.
- 17. B. M. Trost, L. C. Czabaniuk, J. Am. Chem. Soc., 2012, 134, 5778-5781.
- 18. a) Y. Aihara, N. Chatani, J. Am. Chem. Soc., 2013, **135**, 5308–5311; b) D. Shabashov, O. Daugulis, J. Am. Chem. Soc., 2010, **132**, 3965–3972.

ps-109a C13CPD512 CDC13 {D:\FACULTY\JKUaha\2013\Mar} niper 38

ps-114-d PROTON CDCl3 {D:\FACULTY\JKLaha\2013\Apr} niper 39

ppm

kp-11e PROTON CDCl3 {D:\FACULTY\JKLaha\2013\May} niper 30

1.40

WDW SSB LB GB PC

ps-109a PROTON CDCl3 {D:\FACULTY\JKLaha\2013\Mar} niper 45

ps-108b PROTON CDCl3 {D:\FACULTY\JKLaha\2013\Mar} niper 79

1.40

ppm

