Supporting Information

Probing the reactivity of *o*-phthalaldehydic acid/methyl ester: Synthesis of *N*-isoindolinones and 3-arylaminophthalides

Sreeman K. Mamidyala* and Matthew A. Cooper*

Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072 Australia Email: <u>s.mamidyala@uq.edu.au</u>; <u>m.cooper@uq.edu.au</u>

Contents

General	2
Experimental procedures	2
Characterisation of compounds	4
References	10
LCMS data	11
Copies of 1H NMR and 13C NMR spectra	18

General

Reagents and anhydrous solvents (THF, dichloromethane, and acetonitrile) were used as received. Triphenylphosphine, polymer-bound (100-200 mesh, 1.6 mmol/g) was purchased from Sigma-Aldrich. Reaction progress was monitored by TLC using Merck silica gel 60 F-254 with UV detection. Silica gel 60 (Merck 40–63 μ m) was used for column chromatography. The following stain solutions have been used in addition to UV light with fluorescent TLC plates: phosphomolybdic acid, anisaldehyde/EtOH. Reactions requiring anhydrous conditions were performed under nitrogen. NMR data were collected and calibrated in *d4*-MeOH or CDCl₃ at 298K on a Varian Unity 400 MHz Hz spectrometer. HPLC and routine mass spectra were acquired on an Agilent Technologies 1200 Series instrument, fitted with a G1316A UV-Vis detector, 1200 Series ELSD and 6110 quadrupole ESI-MS. High resolution mass spectrometry (HRMS) was performed on the Bruker MicroTOF mass spectrometer.

Experimental procedures

Preparation of *o*-phthalaldehydic acid methyl ester derivatives¹

Scheme 1. i) $SOCl_2$, reflux, 3 h; ii) Et_2NH , CH_2Cl_2 , 0 °C - RT, 12 h; iii) s-BuLi/TMEDA, -78 °C, DMF; iv) AcOH/HCl, reflux, 12 h; v) DBU-MeI, MeCN, RT.

Preparation of aromatic azides²

A solution of aromatic amines (4.0 mmol) in CH₃CN (8 mL) was cooled to 0°C in an ice bath. To this stirred mixture was added *t*-BuONO (6.0 mmol) followed by TMSN₃ (6.0 mmol) drop wise. The resulting solution was stirred at room temperature for 1 h. The reaction mixture was concentrated under vacuum and the crude product was purified by silica gel chromatography (hexane) to give the azides **2** in quantitative yields.

Preparation of benzylic and aliphatic azides

To a solution of benzylic/aliphatic halides (4.0 mmol) in THF (10 mL) was added NaN₃ (8.0 mmol) in water (1.0 ml). The resulting solution was stirred at 80 $^{\circ}$ C for 3 h. The reaction mixture diluted with EtOAc (20 mL) and washed with water (20 ml) and brine (20 mL). The organic layer was separated dried (MgSO₄) and concentrated under vacuum to give the azides **2** in quantitative yields.

General procedure for the synthesis of *N*-isoindolinones through aza-Wittig/cyclisation reaction

Method A: using triphenylphosphine

To a stirred solution of *o*-phthalaldehydic acid methyl ester **1** (0.2 mmol) and azides **2** (0.3 mmol) in dry THF (5.0 mL) was added triphenylphosphine (0.4 mmol). The mixture was stirred at room temperature for 6 h. NaBH₃CN (0.4 mmol) was added and the reaction mixture was stirred at room temperature under nitrogen. The solvent was removed under reduced pressure and the residue was dissolved in EtOAc, washed with water and brine. The organic layer was dried over MgSO₄ and concentrated. Purification by flash column chromatography (EtOAc/hexanes) gave the products.

Method B: using polymer-bound triphenylphosphine

To a stirred solution of *o*-phthalaldehydic acid methylester **1** (0.2 mmol) and azides **2** (0.4 mmol) in dry THF (5.0 mL) was added polymer-bound triphenylphosphine (0.4 mmol). The mixture was stirred at room temperature for 3 h. The resin was filtered, NaBH₃CN (0.4 mmol) was added and the reaction mixture was stirred at reflux temperature under nitrogen. The solvent was removed under reduced pressure and the residue was dissolved in EtOAc, washed with water and brine. The organic layer was dried over MgSO₄ and concentrated. Purification by flash column chromatography (EtOAc/hexanes) gave the products.

Synthesis of 3-arylaminophthalides through aza-Wittig/cyclisation reaction using polymer-bound triphenylphosphine

To a stirred solution of o-phthalaldehydic acid **5** (0.2 mmol) and azides **2** (0.4 mmol) in dry MeOH (5.0 mL) was added polymer-bound triphenylphosphine (0.4 mmol). The mixture was stirred at reflux temperature for 5 h. The resin was filtered and the solvent was evaporated to dryness. The crude residue was recrystallised using dry MeOH to obtain the 3-arylamino phthalides **6**.

Synthesis of 3-arylaminophthalides using known procedure for the comparison of spectral data³

A solution of *o*-phthalaldehydic acid **5** (0.2 mmol) and aromatic amines (0.2 mmol) in dry MeOH (5.0 mL) was refluxed for 30 min. The solvent was evaporated to dryness and crude residue was recrystallised using dry MeOH to obtain the 3-arylamino phthalides.

Characterisation of compounds

¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd (merged), J = 8.0 Hz, 1H), 7.05 – 7.37 (m, 5H), 6.93 (d, J = 8.0 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 4.75 (s, 2H), 4.20 (s, 2H), 3.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 157.5, 144.0, 137.3, 133.0, 128.7, 128.2, 127.5, 114.8, 110.0, 55.8, 48.9, 46.1; HRMS (ESI) calcd. for C₁₆H₁₆NO₂ [M+H]⁺ 254.1176, found 254.1186.

Compound 4b

¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd (merged), J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 4.71 (s, 2H), 4.19 (s, 2H), 3.98 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 157.5, 144.0, 137.2, 134.3, 133.0, 132.9, 132.8, 129.4, 128.3, 120.0, 114.9, 110.1, 55.8, 48.9, 45.8, 21.1; HRMS (ESI) calcd. for C₁₇H₁₈NO₂ [M+H]⁺ 268.1332, found 268.1344.

Compound 4c

¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.83 (m, 4H), 7.35 – 7. 49 (m, 4H), 6.84 – 6.92 (m, 2H), 4.88 (s, 2H), 4.19 (s, 2H), 3.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 157.5, 144.0, 134.8, 133.3, 133.0, 132.8, 128.6, 127.7, 126.9, 126.8, 126.2, 125.9, 119.8, 114.9, 110.1, 55.8, 49.0, 46.3; HRMS (ESI) calcd. for C₂₀H₁₈NO₂ [M+H]⁺ 304.1332, found 304.1336.

Compound 4d OMe O

¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 4.0 Hz, 1H), 7.63 (dd, J = 8.0 Hz, 1H), 7.46 (dd (merged), J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.18 (dd, J = 8.0, 4.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 4.88 (s, 2H), 4.40 (s, 2H), 3.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 157.6, 157.3, 149.1, 144.3, 137.1, 133.1, 122.8, 122.5, 119.7, 114.9, 110.1, 55.8, 49.8, 48.1; HRMS (ESI) calcd. for C₂₀H₂₅N₂O₄ [M+H]⁺ 255.1128, found 255.1141.

Compound 4e

¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd (merged), J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 4.36 (s, 2H), 4.04 (q, J = 8.0 Hz, 2H), 3.98 (s, 3H), 3.60 (t, J = 8.0 Hz, 2H), 2.37 (t, J = 8.0 Hz, 2H), 1.70 – 2.06 (m, 2H), 1.20 (t, J = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 168.1, 157.0, 143.9, 133.3, 119.7, 115.3, 110.3, 60.6, 56.0, 49.7, 41.6, 31.4, 23.6, 14.1; ESI-MS: m/z 278.1 [(M+H)⁺, 100); HRMS (ESI) calcd. for C₁₅H₂₀NO₄ [M+H]⁺ 278.1387, found 278.1434.

Compound 4f

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.52 (dd (merged), *J* = 8.0 Hz, 1H), 7.40 (dd, *J* = 8.0 Hz, 2H), 7.15 (dd, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 4.80 (s, 2H), 4.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 157.9, 142.8, 139.7, 133.7, 129.0, 124.0, 119.2, 114.6, 110.3, 55.9, 50.1; HRMS (ESI) calcd. for C₁₅H₁₄NO₂ [M+H]⁺ 240.1019, found 240.1027.

Compound 4g

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.50 (dd (merged), *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 1H), 4.75 (s, 2H), 3.99 (s, 3H), 3.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 157.8, 156.2, 142.8, 133.4, 132.9, 121.1, 121.1, 114.6, 114.2, 110.3, 55.9, 55.5, 50.5; HRMS (ESI) calcd. for C₁₆H₁₆NO₃ [M+H]⁺ 270.1125, found 270.1136.

Compound 4h

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz 2H), 7.48 (dd (merged), *J* = 8.0 Hz, 1H), 7.26 – 7.37 (m, 2H), 6.98 – 7.07 (m, 5H), 6.85 – 6.96 (m, 2H), 4.71 (s, 2H), 3.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 157.8, 157.4, 153.34, 142.8, 135.2, 133.7, 129.7, 123.1, 120.9, 119.5, 118.5, 114.6, 110.4, 55.9, 50.3; HRMS (ESI) calcd. for C₂₁H₁₈NO₃ [M+H]⁺ 332.1281, found 332.1264.

Compound 4i

¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 8.0, 4.0 Hz 2H), 7.52 (dd (merged), *J* = 8.0 Hz, 1H), 7.02 - 7.14 (m, 3H), 6.93 (d, *J* = 8.0 Hz, 1H), 4.76 (s, 2H), 4.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 160.4, 157.9, 142.6, 133.8, 120.9, 115.8, 115.5, 114.6, 110.4, 55.9, 50.3; HRMS (ESI) calcd. for C₁₅H₁₃NO₂ [M+H]⁺ 258.0925, found 258.0936.

Compound 4j

¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.53 (dd (merged), J = 8.0 Hz, 1H), 7.29 (dd, J = 8.0 Hz, 1H), 7.20 (dd, J = 8.2, 2.2 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.71 (dd, J = 8.2, 2.2 Hz, 1H), 4.78 (s, 2H), 4.01 (s, 3H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 160.2, 157.9, 142.7, 141.0, 133.8, 129.5, 114.6, 110.5, 110.4, 110.3, 104.6, 104.6, 55.9, 55.3, 50.2; HRMS (ESI) calcd. for C₁₆H₁₆NO₃ [M+H]⁺ 270.1125, found 270.1133.

Compound 4k

¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.54 (dd (merged), *J* = 8.0 Hz, 1H), 7.32 (dd, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 8.0, Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 4.78 (s, 2H), 4.01 (s, 3H); ¹³C NMR (101 MHz, cdcl₃) δ 166.1, 157.8, 142.4, 140.6, 134.6, 133.9, 129.8, 123.7, 119.8, 118.8, 116.6, 114.4, 110.3, 55.7, 49.8; HRMS (ESI) calcd. for C₁₅H₁₃ClNO₂ [M+H]⁺ 274.0629, found 274.0632.

Compound 4l

¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.51 (dd (merged), J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 4.78 (s, 2H), 4.00 (s, 3H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 157.9, 142.9, 139.6, 138.8, 133.7, 128.8, 124.9, 120.5, 120.1, 116.3, 114.6, 110.3, 55.9, 50.2, 21.7; HRMS (ESI) calcd. for C₁₆H₁₆NO₂ [M+H]⁺ 254.1176, found 254.1188.

Compound 3m

¹H NMR (400 MHz, CDCl₃) δ 7.33 (dd (merged), *J* = 8.0 Hz, 1H), 7.09 (dd, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.72 (dd, *J* = 8.0 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 4.34 (s, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 2.50 (q, *J* = 7.5 Hz, 2H), 1.24 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 156.7, 145.2, 138.4, 130.9, 127.8, 127.8, 126.9, 122.8, 120.6, 117.5, 110.3, 110.2, 56.0, 55.9, 52.4, 52.3, 46.3, 23.7, 12.9; HRMS (ESI) calcd. for C₁₈H₂₂NO₃ [M+H]⁺ 300.1594, found 300.1601.

¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd (merged), J = 8.0 Hz, 1H), 6.96 – 7.06 (m, 3H), 6.86 (d, J = 8.0 Hz, 1H), 6.68 – 6.78 (m, 1H), 6.60 (dd, J = 8.0, 1.4 Hz, 1H), 5.14 (br s, 1H), 4.33 (d, J = 4.4 Hz, 2H), 3.85 (s, 6H), 3.75 – 3.90 (m, 4H), 2.86 – 2.95 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 156.6, 142.7, 138.6, 130.6, 125.2, 124.7, 122.3, 119.9, 119.5, 118.5, 117.1, 115.1, 110.4, 110.0, 67.5, 55.9, 51.7, 51.3, 46.0; HRMS (ESI) calcd. for C₂₀H₂₅N₂O₄ [M+H]⁺ 357.1809, found 357.1814.

Compound 4ab

¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.42 (s, 1H), 6.41 (s, 2H), 4.67 (s, 2H), 4.13 (s, 2H), 3.93 (s, 3H), 3.82 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 164.2, 158.4, 145.9, 137.1, 134.5, 129.3, 128.2, 113.3, 99.1, 99.0, 98.2, 98.1, 55.9, 55.7, 49.0, 45.7, 21.1; HRMS (ESI) calcd. for C₁₈H₂₀NO₃ [M+H]⁺ 298.1438, found 268.1381.

¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.72 (s, 1H), 6.68 (s, 1H), 4.68 (s, 2H), 4.13 (s, 2H), 3.95 (s, 3H), 2.39 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 157.2, 144.3, 143.9, 137.1, 134.4, 129.3, 128.2, 117.5, 115.5, 115.5, 111.0, 111.0, 55.8, 48.8, 45.8, 22.2, 21.1; HRMS (ESI) calcd. for C₁₈H₂₀NO₂ [M+H]⁺ 282.1489, found 282.1480.

Compound 4cb OMe 0 Me

¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.91 (s, 1H), 6.87 (s, 1H), 4.68 (s, 2H), 4.16 (s, 2H), 3.96 (s, 3H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 157.7, 145.1, 138.7, 137.3, 133.9, 129.4, 128.2, 118.7, 115.3, 111.1, 56.1, 48.6, 45.8, 21.1; HRMS (ESI) calcd. for C₁₇H₁₇NO₂ [M+H]⁺ 302.0942, found 302.0869.

Compound 6f

¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd (merged), J = 8.0 Hz, 1H), 7.28 (dd, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.88 – 6.98 (m, 3H), 6.71 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 158.2, 148.0, 143.6, 136.4, 129.3, 120.7, 114.9, 114.9, 114.7, 112.3, 85.8, 55.9; HRMS (ESI) calcd. for C₁₅H₁₄NO₃ [M+H]⁺ 256.0968, found 256.0986.

Compound 6g

¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd (merged), J = 8.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.91 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H), 6.61 (d, J = 12.0 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 3.99 (s, 3H), 3.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 158.3, 154.5, 148.2, 137.3, 136.4, 117.3, 115.0, 114.8, 112.3, 87.4, 56.1, 55.6; ESI-MS: m/z 286.0 [(M+H)⁺, 100]; HRMS (ESI) calcd. for C₁₆H₁₆NO₄ [M+H]⁺ 286.1074, found 286.1127.

¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd (merged), J = 8.0 Hz, 1H), 7.11 – 7.23 (m, 2H), 7.04 (d, J = 8.0 Hz, 1H), 6.70 (d, J = 12.0 Hz, 1H), 6.43 – 6.57 (m, 3H), 4.64 (d, J = 12.0 Hz, 1H), 4.01 (s, 3H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 160.8, 158.4, 148.0, 145.1, 136.5, 130.2, 115.0, 114.8, 112.5, 107.6, 106.2, 101.2, 85.8, 56.1, 55.2; ESI-MS: m/z 286.0 [(M+H)⁺, 100]; HRMS (ESI) calcd. for C₁₆H₁₆NO₄ [M+H]⁺ 286.1074, found 286.1122.

Compound 6m

¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd (merged), J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.12 – 7.19 (m, 2H), 7.06 (d, J = 8.0 Hz, 1H), 6.89 – 7.00 (m, 1H), 6.72 (d, J = 12.0 Hz, 1H), 4.49 (d, J = 12.0 Hz, 1H), 4.03 (s, 3H), 2.43 – 2.60 (m, 2H), 1.24 (t, J = 7.5 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 158.4, 148.5, 141.4, 136.6, 129.9, 128.4, 127.2, 121.1, 115.1, 114.8, 114.1, 112.5, 86.4, 56.2, 23.9, 13.1; ESI-MS: m/z 284.1 [(M+H)⁺, 100]; 286.1074 HRMS (ESI) calcd. for C₁₇H₁₈NO₄ [M+H]⁺ 284.1281, found 284.1352.

References

- 1. S. K. Mamidyala, S. Ramu, J. X. Huang, A. A. Robertson and M. A. Cooper, *Bioorg. Med. Chem. Lett.*, 2013, 23, 1667-1670.
- a)A. D. M. Karine Barral, and John E. Moses, Org. Lett., 2007, 9, 1809-1811; b)S. N. P. Jagattaran Das, Riti Awasthi, C. Prasad Narasimhulu, Sanjay Trehan, Synthesis, 2005, 1801-1806.
- 3. Y. Kubota, Tatsuno, T, *Chem. Pharm. Bull.*, 1971, **19**, 1226-1223.

Copies of 1H NMR and 13C NMR spectra

