Supporting Information

The influence of π -conjugated moieties on the thermodynamics of cooperatively self-assembling tricarboxamides

Fátima García,^a Peter A. Korevaar,^b Arno Verlee, E. W. Meijer,^b Anja R. A. Palmans,^{b,*} and Luis Sánchez^{a,*}

^aDepartamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain).

^bLaboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Contents:

1 Materials and methods	S-2
2 Supplementary Figures	S-2
Cooling curves of compounds 1 and (R)-3	S-2
Van't Hoff analysis of compounds 1, (S)-2 and (R)-3	S-2
Majority rules of compounds (S)-2 and (R)-3	S-3

1.- Materials and Methods section

Synthesis

The oligo(phenylene ethynylene) tricarboxamides **1**, (*S*)-**2** and (*R*)-**3**; *N*,*N*',*N*''-tris[(S)-3,7-dimethyloctyl]benzene-1,3,5-carboxamide ((*S*)-**4**) and N, N', N''- tris[(S)-3,7-dimethyloctyl]benzene-1,3,5-tris(carbothioamide) (**BTTA**) were synthesized and characterized in accordance with published procedures.^{S-1} The solvent, MCH, was obtained from Aldrich in spectrophotometric grade (99%) and used as received.

Optical spectroscopy

UV-vis and Circular Dichroism measurements were performed on a Jasco J-815 spectropolarimeter where the sensitivity, time constant and scan rate were chosen appropriately. Corresponding temperature-dependent measurements were performed with a PFD-425S/15 Peltier-type temperature controller with a temperature range of 263–383 K and a cooling rate of 60 K/min. In all experiments the linear dichroism was also measured and in all cases no linear dichroism was observed.

S-1 (a) F. García, P. M. Viruela, E. Matesanz, E. Ortí, and L. Sánchez, *Chem. Eur. J.* 2011, **17**, 7755; (b) M. M. J. Smulders, A. P. H. J. Schenning and E. W. Meijer, *J. Am. Chem. Soc.* 2008, **130**, 606; (c) T. Mes, S. Cantekin, D. W. R. Balkenende, M. M. M. Frissen, M. A. J. Gillissen, B. F. M. de Waal, I. K. Voets, E. W. Meijer and A. R. A. Palmans, *Chem. Eur. J.* 2013, *DOI:* 10.1002/chem.201204273.

Figure S1. UV-Vis and CD cooling curves of compounds **1** measured at 315 nm (a), and **(***R***)-3** measured at 301 nm (b) in MCH. The red lines in (a) and (b) correspond to the fit to the one-component EQ model reported in reference 4a.

Van't Hoff analysis

Plotting the $1/T_e$ versus the natural logarithm of the concentration allows the construction of a van't Hoff plot. From the linear regression of the data, the enthalpy ΔH and entropy ΔS associated with the self-assembly process can be determined, and the free energy ΔG and the corresponding equilibrium constant K can be calculated (Figure S2).^{S-1b} The results are summarised in Table S1.

Table S1. Temperatures of elongation T_e and thermodynamic parameters obtained from the van't Hoff plot for compounds 1-4 in MCH.

Compound	Concentration [µM]	$T_{\rm e}[{\rm K}]$	ΔH [kJ/mol]	ΔS [kJ/mol.K]	ΔG^{a} [kJ/mol]
1	16.40	336.8	-56.4	-0.076	-33.6
	13.12	331.7			
	9.85	326.8			
	6.56	322.4			
(<i>S</i>)-2	15.20	341.4	-66.4	-0.102	-35.9
	12.60	337.7			
	9.12	334.6			
	6.08	328.2			
(<i>R</i>)-3	16.90	336.5	-67.0	-0.108	-34.9
	12.70	332.6			
	9.50	328.8			
	6.75	324.1			
(<i>S</i>)-4	41.0	342.8	-73.0	-0.129	-34.5
	27.0	337.0			
	25.0	335.7			
	14.0	328.2			
	12.0	327.6			

a: determined at 298 K

Fig. S2. van't Hoff plots of 1 (a), (S)-2 (b), (R)-3 (c) and the linear fits to obtain the thermodynamic parameters.

Majority Rules experiments

To perform the MR experiment, we mix (*S*)-2 and (*R*)-3 in different ratios at a constant total concentration of 12 μ M in MCH at 293 K. The resulting CD values in the two maxima of the bisignated Cotton effect, at 280 nm and 304 nm, display a non-linear dependence on the enantiomeric excess, *ee.* Beyond a value of *ee* = 30%, the net helicity is dominated by the major enantiomer.

Fig. S3 (a) CD spectra of mixtures of *(S)-2* (b) and *(R)-3* (MCH, 293 K, 1.2×10^{-5} M). (b) Changes in the CD intensity against the *e.e.* observed upon adding increasing aliquots of *(S)-2* to a solution of *(R)-3* (MCH, 293 K, total concentration = 1.2×10^{-5} M). The red lines represent the fitting to the EQ model.