## **Electronic Supplementary Information**

## **Enhancing Excess Electron Transport in DNA**

Fazel Fakhari,<sup>1,2</sup> Yun-Yun K. Chen<sup>1</sup> and Steven E. Rokita<sup>1,2\*</sup>

Contribution from the <sup>1</sup>Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 USA and <sup>2</sup>Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218 USA (current address)

**General methods.** NMR spectra were recorded on a Bruker AM400, AM500, or AM600 spectrometer and referenced to residual protons in the deuterated solvents. Chemical shifts ( $\delta$ ) and coupling constants (*J*) are reported in parts per million (ppm) and Hertz (Hz), respectively. Mass spectrometry analysis was performed on a JEOL AccuToF-CS ESI-MS in the ESI<sup>+</sup> ionization mode and a Shimadzu Axima-CFR MALDI-TOF. HPLC purification of oligonucleotide conjugates employed a Jasco PU-980 and a reverse phase, Varian C18 Microsorb column. Photoirradiation was performed using a high-pressure Xe-arc (1000 W, Spectral Energy Co.) and a cutoff glass filter (335 nm, WG335, Schott).

**General materials.** All chemicals, reagents, and solvents of the highest commercial grade were used without further purification unless otherwise noted. All aqueous solutions were prepared with water purified to a resistivity of 17.8-18.0 M $\Omega$ .cm. Oligodeoxynucleotides were purchased from TriLink Biotechnologies (<sup>Br</sup>dU-containing DNA) and Integrated DNA Technologies. All <sup>Br</sup>dU-containing DNA was purified by denaturing gel electrophoresis before use. DNA concentration was calculated from its absorption at 260 nm and its  $\epsilon_{260}$  value provided by the vender.

Synthesis of *N*-(4-bromobutyloxy)phthalimide (1). Sodium carbonate (1.27 g, 12.0 mmol) and 1,4-dibromobutane (2.57 g, 12.0 mmol) were mixed with acetone (6 ml) in a round bottom flask and heated to reflux under a N<sub>2</sub> atmosphere. Hydroxyphthalimide (489 mg, 3.00 mmol) in acetone (30 ml) was then added dropwise over an hour. The reaction was refluxed for 20 h and then cooled and filtered. The filtrate was concentrated under reduced pressure. The desired product was isolated after silica gel flash chromatography (hexanes:ethyl acetate, 1:0 to 1:1) as a white powder in 95% yield (850 mg, 2.85 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (m, 2H) 7.76 (m, 2H), 4.24 (t, *J* = 12.2 Hz, 2H), 3.54 (t, *J* = 13.1 Hz, 2H), 2.15 (m, 2H), 1.94 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 136.1, 130.1, 124.5, 78.6, 35.1, 30.4, 28.1. HRMS *m*/*z* calcd for C<sub>12</sub>H<sub>12</sub>BrNO<sub>2</sub> 298.0065 found 298.0045 (M + H<sup>+</sup>); mp 68-70 °C.

Synthesis of 2a by alkylation of 1,5-diaminonaphthalene with *N*-(4-bromobutyloxy)phthalimide. The bromide 1 (298 mg, 1.00 mmol) in acetonitrile (10 ml) was added dropwise to a round bottom flask containing a mixture of 1,5-diaminonaphthalene (632 mg, 4.00 mmol), NaHCO<sub>3</sub> (420 mg, 5.00 mmol) and KI (83 mg, 0.50 mmol) in acetonitrile (10 ml). This mixture was refluxed under a N<sub>2</sub> atmosphere for 24 h. After cooling the reaction, the solvent was evaporated. The remaining dark red residue was suspended in water (10 ml), adjusted to pH 5 with 1 N HCl and extracted with dichloromethane (3 × 10 ml). The organic phases were combined, dried over MgSO4, filtered, and concentrated under reduced pressure. The desired product **2a** was isolated after silica gel flash chromatography (hexanes:ethyl acetate, 4:1 to 2:3) as an orange solid in 65% yield (244 mg). <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>CN)  $\delta$  7.60 (dd, *J* = 9.5 Hz, 2H), 6.76 (d, *J* = 7.3 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.25 (t, *J* = 7.9 Hz, 2H) 6.97 (d, *J* = 9.5 Hz, 2H), 6.76 (d, *J* = 7.3 Hz, 2H), 4.50 (s, 3H), 3.24 (m, 4H), 1.94 (m, 4H). <sup>13</sup>C NMR (500 MHz, CD<sub>3</sub>CN)  $\delta$  165.1, 149.3, 145.0, 130.5, 126.3, 126.1, 125.9, 118.7, 115.9, 115.7, 113.1, 110.0, 78.6, 53.7, 31.4, 25.7. HRMS *m/z* calcd for C<sub>22</sub>H<sub>21</sub>N<sub>3</sub>O<sub>3</sub> calcd 376.1616 found 376.1612 (M + H<sup>+</sup>); mp 122-124 °C. Synthesis of 3a by deprotection of *N*-(4-oxyphthalimidebutyl)-1,5-diaminonaphthalene. Hydrazine monohydrate (0.70 g, 14 mmol) was added to a solution of 2a (19 mg, 0.051 mmol) in EtOH:CH<sub>2</sub>Cl<sub>2</sub> (1:1, 3 ml), and the mixture was stirred at room temperature for 25 min. Dichloromethane (4 ml) and sulfuric acid (2%, 8 ml) were added to the mixture, and it was filtered through celite 545<sup>®</sup> following a published protocol.<sup>1</sup> The filter cake was then washed successively with dichloromethane (2 ml) and 2% sulfuric acid (8 ml). The aqueous phase was washed with dichloromethane (2 × 5 ml). The combined organic phase was dried over MgSO4, filtered and evaporated under reduced pressure to yield an orange solid **3a** in a quantitative yield (12 mg). <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.31 (m, 1H), 7.24 – 7.18 (m, 2H), 7.18 – 7.13 (dd, 1H), 6.76 – 6.72 (m, 1H), 6.61-6.58 (d, *J* = 7.6 Hz, 1H), 4.61 – 3.86 (s, 3H), 3.72 (m, 2H), 3.28 (m, 2H), 1.73-1.82 (m, 4H). <sup>13</sup>C NMR (126 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  144.7, 143.6, 126.1, 125.6, 124.8, 124.7, 110.8, 110.1, 110.0, 104.7, 76.2, 44.7, 26.9, 26.6. HRMS *m/z* calcd for C<sub>14</sub>H<sub>19</sub>N<sub>3</sub>O calcd 246.1558 found 246.1560 (M + H<sup>+</sup>).

Synthesis of 2b by alkylation of 1-aminoanthracene with *N*-(4-bromobutyloxy)phthalimide. The bromide 1 (298 mg, 1.00 mmol) in acetonitrile (10 ml) was added dropwise to a round bottom flask containing a mixture of 1-aminoanthracene (194 mg, 1.05 mmol), NaHCO<sub>3</sub> (169 mg, 2.01 mmol) and KI (83 mg, 0.50 mmol) in acetonitrile (5 ml). This mixture was refluxed under a N<sub>2</sub> atmosphere for 24 h. After the reaction was cooled, the solvent was evaporated. The residue was suspended in water (10 ml), adjusted to pH 5 by addition of 1 N HCl and was extracted with dichloromethane ( $3 \times 10$  ml). The organic phases were combined, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The desired product **2b** was isolated from silica gel flash chromatography (hexanes:ethyl acetate, 1:0 to 3:2) as a brown solid in 65% yield (267 mg, 0.65 mmol). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  8.5 (s, 1H), 8.3 (s, 1H), 7.9-8.1 (m, 2H), 7.7-7.9 (m, 4H), 7.2-7.5 (m, 4H), 6.5-6.6 (m, 1H), 4.7 (s, 1H), 4.3 (m, 2H), 3.4 (m, 2H), 1.9-2.2 (m, 4H). <sup>13</sup>C NMR (400 MHz, CDCl<sub>3</sub>) 163.8, 141.7, 134.5, 132.6, 131.6, 128.9, 128.5, 127.9, 126.6, 125.8, 125.4, 124.9, 123.5, 119.3, 118.8, 117.7, 107.6, 102.4, 78.2, 44.1, 26.3, 25.6. HRMS *m/z* calcd for C<sub>26</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub> 411.1663 found 411.1704 (M + H<sup>+</sup>).

Synthesis of 3b by deprotection of *N*-(4-oxyphthalimidebutyl)-1-aminoanthracene. Hydrazine monohydrate (0.70 g, 14.0 mmol) was added to a solution of 2b (25 mg, 0.063 mmol) in EtOH:CH<sub>2</sub>Cl<sub>2</sub> (1:1, 3 ml), and the mixture was stirred at room temperature for 40 min. Dichloromethane (4 ml) and sulfuric acid (2%, 8 ml) were added to the mixture, and it was filtered through celite 545<sup>®</sup> following a published protocol.<sup>1</sup> The filter cake was then washed successively with dichloromethane (2 ml) and 2% sulfuric acid (8 ml). The aqueous phase was washed with dichloromethane (2 × 5 ml). The combined organic phase was dried over MgSO<sub>4</sub>, filtered and evaporated under reduced pressure to yield an orange solid 3b in a quantitative yield (17 mg). <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD)  $\delta$  7.7-8.0 (m, 4H), 7.4 (m, 2H), 7.2 (m, 2H), 6.5 (m, 1H), 4.6 (s, 1H), 3.7 (m, 2H), 3.3 (m, 2H), 1.7-2.0 (m, 4H). <sup>13</sup>C NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  143.0, 133.4, 132.5, 131.8, 129.2, 128.6, 127.2, 126.4, 126.0, 124.5, 124.2, 120.4, 119.6, 108.0, 73.6, 44.9, 28.0, 26.7. HRMS *m*/z calcd for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>O 281.1607 found 281.1590.

**Conjugation of electron donors, 3a and 3b, to DNA.** Oligonucleotides containing internal abasic sites were generated from uridine containing analogues **OD7'** and **OD8'** (see **Chart S1**) using uracil-DNA deglycosylase as described previously.<sup>2</sup> Oligonucleotides containing terminal abasic sites (**OD5'** and **OD6'**) were purchased from Trilink Biotechnologies. Solutions of **3a** and **3b** (50  $\mu$ L, 50 mM in HPLC grade acetonitrile) were alternatively combined with oligonucleotides containing an abasic DNA (20  $\mu$ L, 1 mM in water) and incubated at 37 °C for 1 h. Excess donor was removed with a BioSpin 6 column (prewashed with water, 3 times), and the conjugates were isolated from reverse phase (C-18) HPLC using a gradient of 10% acetonitrile in 45 mM triethylammonium acetate (pH 6.0) to 30% acetonitrile in 35 mM trietyl-ammonium acetate (pH 6.0) over 20 min (1 ml/min) in yields about 30% (based on A<sub>260</sub> of starting material) (See for example, **Figure S1**). MALDI (with a matrix of 3,5-dimethoxy-4-hydroxycinnamic acid) *m/z* calcd for **OD1'a** and **OD3'a** C<sub>185</sub>H<sub>236</sub>N<sub>65</sub>O<sub>107</sub>P<sub>17</sub> 5608.8, found 5608.3 and 5609.2, calcd for **OD1'b** and **OD3'b** C<sub>189</sub>H<sub>237</sub>N<sub>64</sub>O<sub>107</sub>P<sub>17</sub> 5643.4 found 5643.2 and 5644.1, calcd for **OD2'a** and **OD4'a** C<sub>185</sub>H<sub>236</sub>N<sub>65</sub>O<sub>106</sub>P<sub>17</sub>

5592.8 found 5591.7 and 5592.4, calcd for **OD2'b** and **OD4'b** C<sub>189</sub>H<sub>237</sub>N<sub>64</sub>O<sub>106</sub>P<sub>17</sub> 5627.4 found 5627.9 and 5627.8, respectively.

**Photochemical initiation of EET in DNA.** DNA strands containing <sup>Br</sup>dU were radiolabeled at the 5'-terminus using  $[\gamma^{-32}P]$ ATP (Amersham Bioscience) and T4 polynucleotide kinase (New England Biolabs) following standard procedures. The radiolabeled strand  $(0.2 \ \mu\text{M})$  and the complementary conjugate strand (1.1 - 1.6 equivalents) was annealed in 10 mM sodium phosphate pH 7 and 100 mM NaCl by heating to 90 °C followed by slow cooling to room temperature. Aliquots of this solution  $(10 \ \mu\text{L} \text{ each})$  were then irradiated in microcentrifuge tubes under aerobic conditions  $(10 \ ^{\circ}\text{C})$ . DNA was precipitated with sodium acetate (3 M, pH 5.5, 5  $\mu$ L) and ethanol (200  $\mu$ L), treated with 10% piperidine (15  $\mu$ L) at 90 °C for 30 min, and dried under reduced pressure. The resulting residue was resuspended in loading buffer (DMF, 0.1% bromphenol blue, 0.1% xylene cyanol FF) and analyzed by electrophoresis using a 20% denaturing polyacrylamide gel (acrylamidebisacrylamide 19:1, 7 M urea). Strand scission was quantified and reported relative to the total material in each lane as measured by phosphorimagery and its software ImageQuant (GE Healthcare Life Sciences).

**OD1'** 5'-CGT CAT GYA ATG TAC TGC

 **OD2'** 5'-CGT CAT AYA ATG TAC TGC

 **OD3'** 5'-AAT GTA CTG CCG TCA TGY

 **OD4'** 5'-AAT GTA CTG CCG TCA TAY

 **OD5'** 5'-AAT GTA CTG CCG TCA TGZ

 **OD6'** 5'-AAT GTA CTG CCG TCA TAZ

 **OD6'** 5'-AAT GTA CTG CCG TCA TAZ

 **OD7'** 5'-CGT CAT GUA ATG TAC TGC

 **OD8'** 5'-CGT CAT AUA ATG TAC TGC



Chart S1. Nucleotide sequences of oligonucleotides and their conjugates.

**Figure S1.** A sample separation of an oligonucleotide containing an abasic site (**OD5'**) and its DN conjugate (**OD3'a**) by reverse phase (C-18) HPLC using a gradient of 10% acetonitrile in 45 mM triethylamine acetate buffer (pH 6.0) to 30% acetonitrile in 35 mM trietylamonium acetate (pH 6.0) over 20 min (1 ml/min).

Figure S2. Absorption spectra of DN- and AA-containing oligonucleotide conjugates. A change in lamps within the spectrophotometer is evident at ca. 375 nm. The integrated area under the absorption traces above 330 nm for DN:AA was 1.0:0.9.



Electronic Supplementary Material (ESI) for Chemical Communications This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2013



| _      |        | $T_{\rm m}(^{\rm o}{\rm C})$ |           |
|--------|--------|------------------------------|-----------|
|        | abasic | DN                           | AA        |
| Duplex | parent | conjugate                    | conjugate |
| DNA1   | 61     | 65                           | 67        |
| DNA2   | 60     | 65                           | 66        |
| DNA3   | 59     | 64                           | 65        |
| DNA4   | 58     | 64                           | 65        |

Figure S3. Sample melting of DNA duplexes
(△) parent DNA3 containing an abasic site,
(□) DNA3a containing a conjugated DN and
(■) DNA3b containing a conjugated AA.
DNA samples were pre-annealed in 50 mM sodium phosphate pH 7 and 50 mM NaCl.

**Table S1.** Melting temperatures for DNA duplexes containing abasic sites and their DN- and AA- conjugates under conditions described in Figure S3.  $A_{260}$  was monitored with a Varian Cary 100 UV-Vis spectrophotometer while heating samples (0.5 °C/min) T<sub>m</sub> values were defined by the midpoint transition.



**Figure S4.** Initial rates of strand scission by photoinduced EET from donor (DN and AA) to acceptor (<sup>Br</sup>dU) in duplex DNA. Red unfilled and blue filled squares correspond to data observed from the internal and terminal conjugates, respectively. Duplex DNA (0.2  $\mu$ M, 90 nCi, <sup>Br</sup>dU strand) in sodium phosphate (10 mM, pH 7.0) and NaCl (100 mM) were irradiated ( $\lambda > 335$  nm) for the indicated times. Initial rates were calculated from the linear fit of strand scission (% vs. total) resulting from electron capture by <sup>Br</sup>dU (See **Figure S5**). Each experiment was repeated at least three times and error bars represent standard deviations.

## Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013



**Figure S5.** Phosphoimagery of 20% denaturing polyacrylamide gels of DNA after UV irradiation (> 335 nm, 10 °C) and subsequent treatment with 10% piperidine at 90 °C for 30 min. (A) DN- and AA-conjugates **DNA1a,b** (B) DN- and AA-conjugates **DNA2a,b**, (C) DN- and AA-conjugates **DNA3a,b** and (D) DN- and AA-conjugates **DNA4a,b**. In each study, the <sup>Br</sup>dU containing strand was radiolabeled at the 5'-terminus with  $\gamma$ -<sup>32</sup>P-ATP. Lanes 1-6 correspond to DNA with conjugated DN and lanes 7-12 correspond to DNA with conjugated AA as the electron donor. Arrows indicate the scission site based on electron capture by <sup>Br</sup>dU.

## **References:**

- 1) S. K. Jackson, A. Karadeolian, A. B. Driega and M. A. Kerr, Stereodivergent methodology for the synthesis of complex pyrrolidines, *J. Am. Chem. Soc.*, 2008, **130**, 4196-4201.
- 2) A. Fakhari M. and S. E. Rokita, A new solvatochromic fluorophore for exploring nonpolar environments created by biopolymers, *Chem. Commun.*, 2011, **47**, 4222-4224.