Supporting Information for

Enantioselective Synthesis of Benzofurans and Benzoxazines via Olefin

Cross-Metathesis/Intramolecular Oxo-Michael Reaction

Jun-Wei Zhang^{*a,b*}, Quan Cai^{*b*}, Qing Gu^{*b*}, Xiao-Xin Shi^{*a*} and Shu-Li You^{**a,b*}

^{*a*} School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

Fax (+86) 21-54925087; E-mail: slyou@sioc.ac.cn

Table of Contents

General Methods	S2
Experimental Sections	
General procedure for preparation of <i>ortho</i> -allylphenol 1	S2-S3
Full screening data	S3-S4
General procedure for the enantioselective synthesis of the	
2,3-dihydrobenzofuran 3	S4-S13
General procedure for preparation of phenol 5	S13-S15
General procedure for the enantioselective synthesis of	
3,4-dihydro-2 <i>H</i> -benzo[b][1,4]oxazine 6	S15-S23
Synthesis of oxime 7	S23-S24
Crystal Data	S24-S27
References	S28
NMR and HPLC Spectra	S29-S121
The Promoting Effect of Chiral Phosphoric Acid	S122

General Methods. Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, 400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

Experimental Sections:

The *ortho*-allylphenols 1^1 and enones 2^2 were prepared according to the known procedure. Compound 1a was commercially available.

General procedure for preparation of *ortho*-allylphenol 1.

A dry three-necked flask was charged with the corresponding phenol (20 mmol), allyl bromide (3.60 g, 30 mmol) and freshly distilled acetone (20 mL). Then K_2CO_3 (4.14 g, 30 mmol) was added. The mixture was heated at 60 °C overnight. After the reaction was complete (monitored by TLC), the solvent was evaporated under reduced pressure. The residue was diluted with CH_2Cl_2 , washed with H_2O and 5 M HCl (aq.) successively. The organic layers were seperated, dried over anhydrous Na₂SO₄, filtrated and concentrated *in vacuo*. The crude product was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 10: 1) to afford the allyloxy substituted arene.

The allyloxy substituted arene (15 mmol) was placed in a sealed tube. After the reaction was stirred at 160 °C for 6 h, the crude product was purified by column

chromatography (SiO₂, petroleum ether/ethyl acetate = 10: 1) to afford the ortho-allylphenol 1.

Full screening data

Table 1. optimization of asymmetric oxo-Michael reaction ^a

(S)-**4**

(S)-**8**

Hoveyda-Grubbs II

entry	catalyst, Ar	time (h)	yield $(\%)^b$	ee (%) ^c
1	4a , 2,4,6- $({}^{i}Pr)_{3}$ -C ₆ H ₂	47	82	6
2	4b, SiPh ₃	48	56	78
3	4c , 1-naphthyl	66	67	-3
4	4d , 9-anthryl	24	33	-30
5	4e , 9-phenanthryl	24	62	-31
6	4f , 2,6-(^{<i>i</i>} Pr) ₂ -4-anthryl-C ₆ H ₂	47	43	23
7	4g , 3,5-(CF ₃) ₂ -C ₆ H ₃	45	39	-19
8	4h, 4-biphenyl	45	70	-2
9	4i , 4-(3',5'-(CF ₃) ₂ -C ₆ H ₃)-C ₆ H ₄	45	88	15
10	4j , 4-NO ₂ -C ₆ H ₄	45	90	-13
11	4k , 2- ^{<i>i</i>} PrO-1-naphthyl	47	45	-26
12	4l, 2-methoxy-1-naphthyl	48	43	-22
13	4m , 2-butoxy-1- naphthyl	48	62	-21
14	4n , P(O)Ph ₂	66	91	-5
15	8a , SiPh ₃	48	63	1

16	8b , 9-anthryl	48	85	-13
17	8c , 2,4,6- $(^{i}Pr)_{3}$ -C ₆ H ₂	24	55	13
18	8d, 9-phenanthryl	14	88	-16
19	8e , 4-pyrene	14	84	-13
20	9a , SiPh ₃	48	52	74
21	9b , P(O)Ph ₂	47	71	40
22^d	4b , SiPh ₃	21	46	79
$22^{d,e}$	4b , SiPh ₃	24	48	77
$22^{e,f}$	4b , SiPh ₃	24	0	0

^{*a*} Reactions condition: **1a** (0.20 mmol), **2a** (0.30 mmol), Hoveyda-Grubbs II (5 mol%) and catalyst (5 mol%) in CH₂Cl₂ (2 mL) at 40°C. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis. ^{*d*} **Zhan-1B** was used instead of Hoveyda-Grubbs II. ^{*e*} Reaction was carried out in toluene in 60 °C. ^{*f*} Grubbs II catalyst was used instead of Hoveyda-Grubbs II.

General procedure for the enantioselective synthesis of 2,3-dihydrobenzofuran (3a-3o).

To a solution of *ortho*-allylphenol **1** (0.2 mmol) in dichloromethane (2 mL) was added the enone **2** (0.3 mmol, 1.5 equiv.), then the chiral phosphoric acid (*S*)-**4b** (8.7 mg, 0.01 mmol, 5 mol%) and Hoveyda-Grubbs II (6.3 mg, 0.01 mmol, 5 mol%) were added in one portion. The reaction was stirred 12 h at 40 °C. After the reaction was complete (monitored by TLC), the mixture was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/25) to afford 2,3-dihydrobenzofuran **3**.

White solid (56% yield, 78% *ee*). Analytical data for **3a**: Mp = 106-107 °C; $[\alpha]_D^{20} = +13.3^\circ$ (c = 0.5 Acetone, 78% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.94 (dd, $J_I = 7.5$ Hz, $J_2 = 15.9$ Hz, 1H), 3.27 (dd, $J_I = 7.5$ Hz, $J_2 = 16.8$ Hz, 1H), 3.54 (dd, $J_I = 9.3$ Hz, $J_2 = 15.9$ Hz, 1H), 3.66 (dd, $J_I = 6.0$ Hz, $J_2 = 16.8$ Hz, 1H), 5.33-5.43 (m, 1H), 6.78 (d, J = 7.8 Hz, 1H), 6.85 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.44-7.49 (m, 2H), 7.56-7.60 (m, 1H), 7.97 (d, J = 8.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.8, 44.6, 78.9, 109.5, 120.4, 125.0, 126.3, 128.0, 128.1, 128.6, 133.4, 136.6, 159.0, 197.4; IR (film) 2923, 2854, 1679, 1595, 1480, 1448, 1379, 1337, 1223, 1159, 1068, 979, 928, 870, 790, 746, 709, 686, 652 cm⁻¹; HRMS (EI) exact mass calcd for C₁₆H₁₄O₂ (M) requires *m*/*z* 238.0994, found *m*/*z* 238.0993. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 11.50 min, t (minor) = 13.80 min.

(S)-2-(5-Methyl-2,3-dihydrobenzofuran-2-yl)-1-phe nylethanone (3b)

White solid (49% yield, 79% *ee*). Analytical data for **3b**: Mp = 99-100 °C; $[\alpha]_D^{20} = +30.5^\circ$ (c = 0.5 Acetone, 79% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.28 (s, 3H), 2.90 (dd, $J_I = 6.3$ Hz, $J_2 = 15.3$ Hz, 1H), 3.26 (dd, $J_I = 7.5$ Hz, $J_2 = 15.6$ Hz, 1H), 3.50 (dd, $J_I = 10.2$ Hz, $J_2 = 16.8$ Hz, 1H), 3.65 (dd, $J_I = 6.0$ Hz, J_2 = 15.6 Hz, 1H), 5.33-5.38 (m, 1H), 6.67 (d, J = 7.2 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.99 (s, 1H), 7.44-7.50 (m, 2H), 7.56-7.61 (m, 1H), 7.97 (d, J = 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 20.7, 35.9, 44.7, 79.0, 109.0, 125.6, 126.4, 128.1, 128.3, 128.6, 129.8, 133.4, 136.7, 156.9, 197.6; IR (film) 2959, 2926, 2856, 1728, 1682, 1596, 1490, 1448, 1409, 1367, 1304, 1239, 1203, 1111, 1075, 957, 809, 792, 758, 740, 688, 651 cm⁻¹; HRMS (EI) exact mass calcd for C₁₇H₁₆O₂ (M) requires *m/z* 252.1150, found *m/z* 252.1146. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 10.46 min, t (minor) = 12.66 min.

ⁱPr (S)-2-(5-Isopropyl-2,3-dihydrobenzofuran-2-yl)-1-p henylethanone (3c)

White solid (72% yield, 78% *ee*). Analytical data for **3c**: Mp = 67-68 °C; $[\alpha]_D^{20} = +30.7^\circ$ (c = 0.5 Acetone, 78% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.22 (d, *J* = 7.2 Hz, 6H), 2.80-2.95 (m, 2H), 3.27 (dd, *J_I* = 7.2 Hz, *J₂* = 17.1 Hz, 1H), 3.52 (dd, *J_I* = 9.0 Hz, *J₂* = 15.9 Hz, 1H), 3.65 (dd, *J_I* = 6.0 Hz, *J₂* = 17.1 Hz, 1H), 5.33-5.38 (m, 1H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 7.05 (s, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.55-7.60 (m, 1H), 7.97 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 24.3, 24.4, 33.6, 36.0, 44.8, 79.0, 109.0, 122.9, 125.9, 126.3, 128.1, 128.6, 133.4, 136.7, 141.3, 157.1, 197.6; IR (film) 2956, 2917, 2885, 1676, 1594, 1488, 1447, 1411, 1373, 1345, 1316, 1248, 1204, 1158, 1112, 964, 900, 874, 812, 755, 718, 688, 649 cm⁻¹; HRMS (EI) exact mass calcd for C₁₉H₂₀O₂ (M) requires *m*/z 280.1463, found *m*/z 280.1461. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 12.20 min, t (minor) = 12.97 min.

^tBu (S)-2-(5-(tert-Butyl)-2,3-dihydrobenzofuran-2-yl)-1phenylethanone (3d)

White solid (64% yield, 76% *ee*). Analytical data for **3d**: Mp = 93-94 °C; $[\alpha]_D^{20}$ = +34.4° (c = 0.5 Acetone, 76% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.29 (s, 9H), 2.93 (dd, J_I = 7.5 Hz, J_2 = 16.2 Hz, 1H), 3.27 (dd, J_I = 7.5 Hz, J_2 = 17.1 Hz, 1H), 3.53 (dd, J_I = 9.0 Hz, J_2 = 15.6 Hz, 1H), 3.65 (dd, J_I = 6.0 Hz, J_2 = 17.1 Hz, 1H), 5.34-5.39 (m, 1H), 6.70 (d, J = 8.4 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.21 (s, 1H), 7.44-7.49 (m, 2H), 7.55-7.60 (m, 1H), 7.97 (d, J = 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 31.7, 34.2, 36.1, 44.8, 79.1, 108.7, 122.0, 124.8, 126.0, 128.1, 128.6, 133.4, 136.7, 143.5, 156.8, 197.6; IR (film) 2960, 2912, 2862, 1674, 1593, 1490, 1447, 1373, 1319, 1297, 1263, 1242, 1210, 1172, 1117, 1081, 1021, 965, 900,

874, 827, 809, 793, 755, 728, 688, 648 cm⁻¹; HRMS (EI) exact mass calcd for $C_{20}H_{22}O_2$ (M) requires *m/z* 294.1620, found *m/z* 294.1622. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 9.20 min, t (minor) = 10.07 min.

while solid (53% yield, 76% ee). Analytical data for **3e**: Mp = 152-153 °C; $[\alpha]_D^{20} = +95.5^\circ$ (c = 0.25 Acetone, 76% ee). ¹H NMR (300 MHz, CDCl₃) δ 2.99 (dd, $J_I = 6.6$ Hz, $J_2 = 15.9$ Hz, 1H), 3.31 (dd, $J_I = 7.2$ Hz, $J_2 =$ 17.1 Hz, 1H), 3.60 (dd, $J_I = 9.0$ Hz, $J_2 = 15.9$ Hz, 1H), 3.69 (dd, $J_I = 6.0$ Hz, $J_2 = 17.1$ Hz, 1H), 5.41-5.46 (m, 1H), 6.84 (d, J = 8.4 Hz, 1H), 7.24-7.61 (m, 10H), 7.98 (d, J =7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.8, 44.7, 79.4, 109.6, 123.9, 126.5, 126.8, 127.1, 127.2, 128.1, 128.6, 128.7, 133.5, 134.1, 136.6, 141.2, 158.7, 197.4; IR (film) 2972, 1679, 1593, 1480, 1449, 1381, 1243, 1115, 983, 933, 891, 821, 762, 692, 650 cm⁻¹; HRMS (EI) exact mass calcd for C₂₂H₁₈O₂ (M) requires *m/z* 314.1307, found *m/z* 314.1311. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 23.80 min, t (minor) = 20.66 min.

White solid (52% yield, 74% *ee*). Analytical data for **3f**: Mp = 93-94°C; $[\alpha]_D^{20} = +30.7^\circ$ (c = 0.5 Acetone, 74% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.93 (dd, $J_1 = 7.2$ Hz, $J_2 = 15.9$ Hz, 1H), 3.28 (dd, $J_1 = 6.9$ Hz, $J_2 = 16.5$ Hz, 1H), 3.53 (dd, $J_1 = 9.0$ Hz, $J_2 = 16.2$ Hz, 1H), 3.65 (dd, $J_1 = 6.0$ Hz, $J_2 = 14.1$ Hz, 1H), 3.76 (s, 3H), 5.34-5.38 (m, 1H), 6.68 (s, 2H), 6.78 (s, 1H), 7.45-7.50 (m, 2H), 7.57-7.59 (m, 1H), 7.98 (d, J = 7.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 36.3, 44.6, 56.0, 79.2, 109.4, 111.3, 112.9, 127.4, 128.1, 128.7, 133.4, 136.7, 153.1, 154.1, 197.6; IR (film) 2953, 2923, 2853, 1680, 1596, 1489, 1450, 1432, 1376, 1303, 1251, 1198, 1184, 1108, 1080, 1036, 969, 900, 883, 853, 810, 799, 758, 731, 691, 644, 619 cm⁻¹; HRMS (EI) exact mass calcd for $C_{17}H_{16}O_3$ (M) requires *m/z* 268.1099, found *m/z* 268.1103. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 23.08 min, t (minor) = 26.11 min.

3g: Mp = 80-81 °C; $[\alpha]_D^{20} = -0.9^\circ$ (c = 0.5 Acetone, 80% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.87 (dd, $J_1 = 7.2$ Hz, $J_2 = 15.6$ Hz, 1H), 3.24 (dd, $J_1 = 6.9$ Hz, $J_2 = 17.1$ Hz, 1H), 3.47 (dd, $J_1 = 9.0$ Hz, $J_2 = 15.3$ Hz, 1H), 3.65 (dd, $J_1 = 6.0$ Hz, $J_2 = 17.1$ Hz, 1H), 3.75 (s, 3H), 5.37-5.43 (m, 1H), 6.38-6.43 (m, 2H), 7.05 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.50-7.59 (m, 1H), 7.97 (d, J = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.2, 44.7, 55.5, 80.0, 96.3, 106.0, 118.3, 125.0, 128.1, 128.7, 133.4, 136.7, 160.3, 160.3, 197.5; IR (film) 2959, 2925, 2854, 1733, 1685, 1618, 1593, 1495, 1445, 1397, 1377, 1338, 1274, 1196, 1143, 1091, 1028, 982, 947, 853, 820, 806, 753, 704, 687, 655, 627 cm⁻¹; HRMS (EI) exact mass calcd for C₁₇H₁₆O₃ (M) requires *m*/*z* 268.1099, found *m*/*z* 268.1104. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 19.40 min, t (minor) = 22.00 min.

(S)-2-(7-Methoxy-2,3-dihydrobenzofuran-2-yl)-1-phenyl ethanone (3h)

White solid (59% yield, 66% *ee*). Analytical data for **3h**: Mp = 75-76 °C; $[\alpha]_D^{20} = +22.0^\circ$ (c = 1.0 Acetone, 66% *ee*).

¹H NMR (300 MHz, CDCl₃) δ 2.87 (dd, J_1 = 6.6 Hz, J_2 = 12.9 Hz, 1H), 3.27 (dd, J_1 = 7.2 Hz, J_2 = 17.1 Hz, 1H), 3.48 (dd, J_1 = 9.3 Hz, J_2 = 15.6 Hz, 1H), 3.64 (dd, J_1 = 6.3 Hz, J_2 = 16.8 Hz, 1H), 3.82 (s, 3H), 5.39-5.45 (m, 1H), 6.40-6.46 (m, 2H), 7.09 (t, J = 8.1 Hz, 1H), 7.44-7.49 (m, 2H), 7.55-7.58 (m, 1H), 7.97 (d, J = 7.2 Hz, 2H); ¹³C NMR

(75 MHz, CDCl₃) δ 33.3, 44.8, 55.3, 79.5, 102.9, 103.0, 113.3, 128.1, 128.6, 129.1, 133.4, 136.7, 156.7, 160.4, 197.4; IR (film) 2963, 2925, 2837, 1671, 1600, 1491, 1464, 1372, 1338, 1319, 1269, 1238, 1209, 1185, 1083, 956, 830, 796, 762, 704, 682, 640, 613 cm⁻¹; HRMS (EI) exact mass calcd for C₁₇H₁₆O₃ (M) requires *m/z* 268.1099, found *m/z* 268.1101. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 14.33 min, t (minor) = 16.11 min.

(S)-2-(5-Bromo-2,3-dihydrobenzofuran-2-yl)-1-phen ylethanone (3i)

White solid (40% yield, 79% *ee*). Analytical data for **3i**: Mp = 122-123 °C; $[\alpha]_D^{20} = +49.4^\circ$ (c = 0.5 Acetone, 79% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.93 (dd, $J_I = 7.5$ Hz, $J_2 = 16.5$ Hz, 1H), 3.28 (dd, $J_I = 6.9$ Hz, $J_2 = 17.1$ Hz, 1H), 3.53 (dd, $J_I = 9.0$ Hz, $J_2 = 15.6$ Hz, 1H), 3.65 (dd, $J_I = 5.7$ Hz, $J_2 = 17.1$ Hz, 1H), 5.36-5.42 (m, 1H), 6.64 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.26 (d, J = 2.7 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.57-7.62 (m, 1H), 7.96 (d, J = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.7, 44.5, 79.6, 111.0, 112.2, 128.0, 128.1, 128.7, 129.0, 130.8, 133.5, 136.5, 158.3, 197.2; IR (film) 2971, 2927, 2855, 1681, 1594, 1476, 1448, 1397, 1379, 1340, 1297, 1229, 1210, 1156, 1111, 1072, 983, 929, 876, 853, 806, 756, 689, 656 cm⁻¹; HRMS (EI) exact mass calcd for C₁₆H₁₃O₂Br (M) requires *m/z* 316.0099. found *m/z* 316.0098. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 17.57 min, t (minor) = 20.37 min.

(S)-2-(2,3-Dihydrobenzofuran-2-yl)-1-(p-tolyl)ethano ne (3j)

White solid (49% yield, 81% *ee*). Analytical data for **3j**: Mp = 100-101 °C; $[\alpha]_D^{20} = +18.9^\circ$ (c = 0.5 Acetone, 81% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.41 (s, 3H), 2.93 (dd, $J_I = 6.9$ Hz, $J_2 = 15.6$ Hz, 1H), 3.25 (dd, $J_I = 7.2$ Hz, $J_2 = 16.8$ Hz, 1H), 3.53 (dd, $J_1 = 9.0$ Hz, $J_2 = 15.9$ Hz, 1H), 3.59-3.67 (m, 1H), 5.32-5.42 (m, 1H), 6.78 (d, J = 7.8 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 8.1 Hz, 1H); 7.17 (d, J = 7.5 Hz, 1H), 7.26 (d, J = 7.8 Hz, 2H), 7.87 (d, J = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 21.6, 35.8, 44.6, 79.0, 109.5, 120.4, 125.0, 126.4, 128.0, 128.2, 129.3, 134.2, 144.3, 159.0, 197.1; IR (film) 3051, 2920, 2851, 1672, 1601, 1480, 1406, 1372, 1326, 1309, 1233, 1220, 1174, 1108, 1093, 1018, 967, 920, 896, 862, 812, 767, 740, 709 cm-1; HRMS (EI) exact mass calcd for C₁₇H₁₆O₂ (M) requires *m/z* 252.1150, found *m/z* 252.1147. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 9.42 min, t (minor) = 11.00 min.

(S)-2-(2,3-Dihydrobenzofuran-2-yl)-1-(4-methoxyp henyl)ethanone (3k)

White solid (38% yield, 76% *ee*). Analytical data for **3k**: Mp = 105-106 °C; $[\alpha]_D^{20} = +26.3^\circ$ (c = 0.5 Acetone, 76% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.94 (dd, $J_I = 7.2$ Hz, $J_2 = 15.9$ Hz, 1H), 3.22 (dd, $J_I = 7.2$ Hz, $J_2 = 16.8$ Hz, 1H), 3.53 (dd, $J_I = 9.0$ Hz, $J_2 = 15.9$ Hz, 1H), 3.61 (dd, $J_I = 6.0$ Hz, $J_2 = 17.1$ Hz, 1H), 3.87 (s, 3H), 5.34-5.39 (m, 1H), 6.78 (d, J = 7.8 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.4 Hz, 2H), 7.11 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 7.95 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.8, 44.3, 55.5, 79.2, 109.5, 113.8, 120.4, 125.0, 126.5, 128.0, 129.9, 130.4, 159.0, 163.7, 196.0; IR (film) 3044, 2999, 2956, 2932, 2902, 2853, 1673, 1595, 1510, 1483, 1452, 1414, 1377, 1303, 1259, 1211, 1166, 1031, 966, 928, 898, 865, 822, 764, 745 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₇H₁₇O₃ (M+H)⁺ requires *m*/*z* 269.1178, found *m*/*z* 269.1177. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.01 min, t (minor) = 17.72 min.

(S)-1-(4-Chlorophenyl)-2-(2,3-dihydrobenzofuran-2yl)ethanone (3l)

White solid (51% yield, 79% *ee*). Analytical data for **31**: Mp = 96-97 °C; $[\alpha]_D^{20} = +29.5^\circ$ (c = 0.5 Acetone, 79% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.93 (dd, $J_I = 6.6$ Hz, $J_2 = 15.6$ Hz, 1H), 3.22 (dd, $J_I = 6.9$ Hz, $J_2 = 17.1$ Hz, 1H), 3.49-3.57 (m, 1H), 3.61 (dd, $J_I = 6.3$ Hz, $J_2 = 17.1$ Hz, 1H), 5.31-5.40 (m, 1H), 6.76 (d, J = 8.1 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H), 7.43 (d, J = 7.8 Hz, 2H), 7.90 (d, J = 8.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.7, 44.6, 78.8, 109.5, 120.6, 125.0, 126.2, 128.1, 129.0, 129.5, 135.0, 139.9, 158.9, 196.3; IR (film) 3046, 2955, 2924, 1680, 1588, 1480, 1397, 1380, 1328, 1311, 1233, 1205, 1176, 1090, 1015, 973, 926, 898, 864, 827, 812, 788, 749, 713 cm⁻¹; HRMS (EI) exact mass calcd for C₁₆H₁₃O₂Cl (M) requires *m/z* 272.0604, found *m/z* 272.0603. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 11.53 min, t (minor) = 14.58 min.

(S)-1-(4-Bromophenyl)-2-(2,3-dihydrobenzofuran-2yl)ethanone (3m)

White solid (61% yield, 77% *ee*). Analytical data for **3m**: Mp = 102-103 °C; $[\alpha]_D^{20} = +23.0^\circ$ (c = 0.5 Acetone, 77% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.93 (dd, $J_I = 6.6$ Hz, $J_2 = 15.3$ Hz, 1H), 3.22 (dd, $J_I = 6.9$ Hz, $J_2 = 17.1$ Hz, 1H), 3.49-3.57 (m, 1H), 3.61 (dd, $J_I = 6.3$ Hz, $J_2 = 17.1$ Hz, 1H), 5.33-5.38 (m, 1H), 6.76 (d, J = 7.8 Hz, 1H), 6.83-6.88 (m, 1H), 7.09-7.19 (m, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.7, 44.6, 78.7, 109.5, 120.6, 125.0, 126.2, 128.1, 128.7, 129.6, 132.0, 135.4, 158.9, 196.5; IR (film) 3064, 3044, 2954, 2925, 2903, 1680, 1584, 1480, 1394, 1312, 1232, 1205, 1177, 1071, 1002, 974, 926, 898, 864, 810, 747, 714 cm⁻¹; HRMS (EI) exact mass calcd for C₁₆H₁₃O₂Br (M) requires *m/z* 316.0099, found *m/z* 316.0096. The enantiomeric excess

was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 12.96 min, t (minor) = 17.63 min.

(S)-2-(2,3-Dihydrobenzofuran-2-yl)-1-(4-nitrophen yl)ethanone (3n)

White solid (75% yield, 50% *ee*). Analytical data for **3n**: Mp = 150-151 °C; $[\alpha]_D^{20} = +18.6^\circ$ (c = 0.5 Acetone, 50% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.97 (dd, $J_I = 6.9$ Hz, $J_2 = 16.2$ Hz, 1H), 3.30 (dd, $J_I = 6.3$ Hz, $J_2 = 17.1$ Hz, 1H), 3.57 (dd, $J_I = 9.0$ Hz, $J_2 = 15.6$ Hz, 1H), 3.68 (dd, $J_I = 6.0$ Hz, $J_2 = 17.1$ Hz, 1H), 5.33-5.42 (m, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.87 (t, J = 7.2 Hz, 1H), 7.09-7.36 (m, 2H), 8.12 (d, J = 8.7 Hz, 2H), 8.31 (d, J = 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 35.6, 45.1, 78.5, 109.6, 120.7, 123.9, 125.1, 126.0, 128.2, 129.2, 141.0, 150.4, 158.8, 196.1; IR (film) 2954, 2925, 2905, 2853, 1687, 1597, 1516, 1481, 1403, 1349, 1311, 1233, 1202, 1153, 1107, 974, 932, 903, 866, 844, 797, 785, 759, 745, 715, 685 cm⁻¹; HRMS (EI) exact mass calcd for C₁₆H₁₃NO₄ (M) requires *m/z* 283.0845, found *m/z* 283.0844. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) 59.54 min, t (minor) = 69.94 min.

(S)-2-(2,3-Dihydrobenzofuran-2-yl)-1-(naphthalen-2 -yl)ethanone (30)

White solid (70% yield, 79% *ee*). Analytical data for **3o**: Mp = 104-105 °C; $[\alpha]_D^{20} = +28.7^\circ$ (c = 0.5 Acetone, 79% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.98 (dd, $J_I = 6.6$ Hz, $J_2 = 15.6$ Hz, 1H), 3.38 (dd, $J_I = 6.3$ Hz, $J_2 = 17.1$ Hz, 1H), 3.56 (dd, $J_I = 9.0$ Hz, $J_2 = 15.6$ Hz, 1H), 3.78 (dd, $J_I = 6.0$ Hz, $J_2 = 16.8$ Hz, 1H), 5.40-5.45 (m, 1H), 6.79 (d, J = 7.5 Hz, 1H), 6.86 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 7.8Hz, 1H), 7.18-7.23 (d, J = 7.2 Hz, 1H), 7.51-7.62 (m, 2H), 7.85-7.94 (m, 3H), 8.03 (d, J = 8.4 Hz, 1H), 8.45 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 35.8, 44.7, 79.0, 109.5, 120.5, 123.6, 125.1, 126.4, 126.8, 127.7, 128.0, 128.5, 128.6, 129.6, 130.1, 132.4, 134.0, 135.6, 159.0, 197.4; IR (film) 3048, 2959, 2927, 2854, 1682, 1594, 1480, 1381, 1239, 1177, 1126, 1016, 982, 928, 871, 846, 817, 742, 707 cm⁻¹; HRMS (EI) exact mass calcd for $C_{20}H_{16}O_2$ (M) requires m/z 288.1150, found m/z 288.1151. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 15.22 min, t (minor) = 17.29 min.

General procedure for preparation of compound 5.

To a solution of 2-aminophenol (10.9 g, 100 mmol) in DMF 150 mL was added TBSCl (16.5 g, 110 mmol) and imidazole (10.2 g, 150 mmol) sequentially. The mixture was stirred at room temperature overnight. After the reaction was complete (monitored by TLC), it was quenched with saturated aqueous ammonium chloride solution and extracted with EtOAc three times. The combined organic layers were washed with H₂O and brine successively, then dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 100: 1) to afford **10** (20.9 g, 94% yield).

In a dry flask, aromatic aldehyde (1.0 equiv.) and MgSO₄ (0.2 equiv.) were added to a solution of 2-((tert-butyldimethylsilyl)oxy)aniline (1.0 equiv.) in CH₃OH. The reaction was refluxed for 3 h. After NaBH₄ (2.0 equiv.) was cautiously added to the above solution at 0 $^{\circ}$ C, the reaction was stirred at room temperature for another one hour. The mixture was quenched with water cautiously and extracted with ethyl acetate three times. The combined organic layers were dried over anhydrous Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (hexane/ethylacetate 100/1) to give **11**.

To a solution of **11** (1.0 equiv) in CH₃CN was added DIEA (1.5 equiv.) and allyl bromide (1.5 equiv.). After the reaction was stirred at 60 °C overnight until completion (monitored by TLC), the solvent was evaporated under reduced pressure. Then to the mixture was added 1 M HCl (aq.) and extracted with ethyl acetate three times. The combined organic layers were washed with brine, dired over anhydrous Na₂SO₄, filtrated and concencetrated under reduced pressure, the residue was purified by silica gel column chromatography (hexane/ethylacetate 100/1) to give **12**.

To a solution of **12** (1.0 equiv.) in THF (5 mL), ${}^{n}Bu_{4}NF$ (1.5 equiv.) was added. The reaction was stirred at room temperature until completion (monitored by TLC). The solvent was evaporated under reduced pressure, the residue was purified by silica gel column chromatography (hexane/ethylacetate 500/1) to give **5**.

2-(Allyl(benzyl)amino)phenol (5a)

Colourless liquid (54% yield over three steps). Analytical data for **5a**: ¹H NMR (300 MHz, CDCl₃) δ 3.37 (d, *J* = 6.0 Hz, 2H), 3.90 (s, 2H), 4.98-5.03 (m, 2H), 5.60-5.74 (m, 1H), 6.71 (t, *J* = 7.5 Hz, 1H), 6.79 (d, *J* = 7.8 Hz, 1H), 6.90-6.96 (m, 1H), 7.01 (d, *J* = 7.8 Hz, 1H), 7.11-7.14 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 57.2, 58.8, 113.9, 118.6, 119.6, 123.6, 126.5, 127.3, 128.2, 129.1, 133.9, 136.8, 137.4, 152.4; IR (film) 1589, 1491, 1454, 1363, 1252, 1206, 1076, 1029, 922, 833, 746, 733, 698 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₆H₁₈NO (M+H)⁺ requires *m/z* 240.1388, found *m/z* 240.1372.

2-(Allyl(naphthalen-1-ylmethyl)amino)phenol (5b)

Bn

Colourless liquid (34% yield over three steps). Analytical data for **5b**: ¹H NMR (300 MHz, CDCl₃) δ 3.53 (d, *J* = 6.6 Hz, 2H), 4.47 (s, 2H), 5.10-5.16 (m, 2H), 5.80-5.89 (m, 1H), 6.80-6.90 (m, 2H), 7.01-7.07 (m, 1H), 7.21-7.33 (m, 3H), 7.45-7.56 (m, 2H), 7.75 (d, *J*

= 8.1 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 8.12 (d, J = 8.7 Hz, 1H); ¹³C NMR (75 MHz,

CDCl₃) δ 56.8, 58.1, 114.0, 119.2, 119.8, 123.4, 123.8, 125.0, 125.7, 126.4, 126.7, 128.0, 128.4, 128.9, 132.1, 133.1, 133.6, 133.9, 137.0, 152.8; IR (film) 1689, 1589, 1509, 1490, 1464, 1395, 1374, 1254, 1232, 1216, 1091, 1055, 992, 925, 832, 801, 778, 747 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₂₀NO (M+H)⁺ requires *m/z* 290.1545, found *m/z* 290.1529.

2-(Allyl(naphthalen-2-ylmethyl)amino)phenol (5c)

Colourless liquid (24% yield over three steps). Analytical data for **5c**: ¹H NMR (300 MHz, CDCl₃) δ 3.40 (d, *J* = 6.3 Hz, 2H), 4.05 (s, 2H), 4.99-5.09 (m, 2H), 5.62-5.74 (m, 1H), 6.72 (t, *J* =

7.8 Hz, 1H), 6.81 (d, J = 7.8 Hz, 1H), 6.86-7.01 (m, 1H), 7.05 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.31-7.36 (m, 2H), 7.52 (s, 1H), 7.64-7.69 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 57.4, 59.0, 114.1, 118.8, 119.8, 123.8, 125.9, 126.1, 126.7, 127.1, 127.7, 127.8, 128.0, 128.2, 132.8, 133.3, 134.0, 135.1, 137.0, 152.5; IR (film) 1693, 1589, 1491, 1346, 1253, 1212, 1091, 1035, 1020, 991, 923, 855, 817, 743 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₂₀NO (M+H)⁺ requires *m/z* 290.1545, found *m/z* 290.1528.

General procedure for the enantioselective synthesis of 3,4-dihydro-2*H*-benzo[b][1,4]oxazine (6a-6m).

To a solution of phenol **5** (0.2 mmol) in dichloromethane (2 mL) was added the enone **2** (0.3 mmol, 1.5 equiv.), then chiral phosphoric acid (*S*)-**4b** (8.7 mg, 0.01 mmol, 5 mol%) and Hoveyda-Grubbs II catalyst (6.3 mg, 0.01 mmol, 5 mol%) were added in one portion. The reaction was stirred at 40°C. After the reaction was

complete (monitored by TLC), the mixture was purified by silica gel column chromatography (ethyl acetate/petroleum ether = $1/50 \sim 1/30$) to afford 3,4-dihydro-2*H*-benzo[b][1,4]oxazine **6**.

(S)-2-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)-1-phenylethanone (6a)

White solid (65% yield, 77% *ee*). Analytical data for **6a**: Mp = 98-99 °C; $[\alpha]_D^{20} = -5.4^\circ$ (c = 0.5 Acetone, 77% *ee*). ¹H

NMR (300 MHz, CDCl₃) δ 3.17-3.26 (m, 2H), 3.48-3.55 (m, 2H), 4.38 (AB, J= 16.2 Hz, 1H), 4.50 (BA, J= 15.9 Hz, 1H), 4.86-4.88 (m, 1H), 6.62-6.70 (m, 2H), 6.77-6.82 (m, 2H), 7.22-7.28 (m, 5H), 7.46 (t, J = 7.5 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.95 (d, J = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 41.5, 51.1, 54.8, 69.8, 112.4, 116.5, 117.9, 121.6, 127.0, 127.1, 128.1, 128.5, 128.6, 133.4, 134.9, 136.7, 137.9, 143.1, 197.2; IR (film) 2922, 2853, 1685, 1603, 1578, 1503, 1451, 1381, 1356, 1305, 1268, 1238, 1220, 1183, 1171, 1099, 1045, 994, 959, 916, 800, 752, 733, 696, 685, 649 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₃H₂₂NO₂ (M+H)⁺ requires *m/z* 344.1651, found *m/z* 344.1636. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 70 / 30, 0.8 mL/min, λ = 254 nm, t (major) = 9.83 min, t (minor) = 8.49 min.

(S)-2-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin -2-yl)-1-(p-tolyl)ethanone (6b)

White solid (54% yield, 74% *ee*). Analytical data for **6b**: Mp = 118-119 °C; $[\alpha]_D^{20} = -4.4^\circ$ (c = 0.5 Acetone,

74% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.41 (s, 3H), 3.15-3.26 (m, 2H), 3.46-3.53 (m, 2H), 4.39 (AB, J = 15.9 Hz, 1H), 4.50 (BA, J = 16.2 Hz, 1H), 4.85-4.89 (m, 1H), 6.61-6.70 (m, 2H), 6.77-6.82 (m, 2H), 7.22-7.27 (m, 7H), 7.85 (d, J = 8.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 21.7, 41.4, 51.2, 54.9, 69.9, 112.4, 116.5, 117.9, 121.5, 127.0, 127.1, 128.3, 128.6, 129.3, 134.3, 134.9, 138.0, 143.2, 144.3, 196.8; IR (film)

2922, 2901, 2851, 1681, 1606, 1579, 1503, 1452, 1407, 1352, 1305, 1244, 1222, 1173, 1108, 1050, 1000, 920, 903, 806, 769, 738, 694, 664 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{24}H_{24}NO_2$ (M+H)⁺ requires *m/z* 358.1807, found *m/z* 358.1791. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 12.64 min, t (minor) = 10.15 min.

(S)-2-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazi n-2-yl)-1-(4-methoxyphenyl)ethanone (6c)

White solid (64% yield, 67% *ee*). Analytical data for **6c**: Mp = 103-104 °C; $[\alpha]_D^{20} = -5.0^\circ$ (c = 0.5 Acetone,

67% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 3.11-3.26 (m, 2H), 3.43-3.53 (m, 2H), 3.02 (s, 3H), 4.38 (AB, J = 16.2 Hz, 1H), 4.50 (BA, J = 16.2 Hz, 1H), 4.82-4.88 (m, 1H), 6.61-6.70 (m, 2H), 6.76-6.81 (m, 2H), 6.93 (d, J = 9.0 Hz, 2H), 7.22-7.31 (m, 5H), 7.93 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 41.2, 51.3, 54.9, 55.5, 70.0, 112.4, 113.7, 116.5, 117.9, 121.5, 127.0, 127.1, 128.6, 129.9, 130.5, 134.9, 138.0, 143.2, 163.7, 195.7; IR (film) 2960, 2922, 2852, 1673, 1601, 1575, 1502, 1452, 1421, 1381, 1356, 1305, 1239, 1220, 1172, 1099, 1073, 1048, 1026, 990, 904, 842, 813, 738, 717, 694 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₄H₂₄NO₃ (M+H)⁺ requires *m/z* 374.1756, found *m/z* 374.1746. The enantiomeric excess was determined by Daicel Chiralpak OD-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 36.87 min, t (minor) = 45.20 min.

(S)-2-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)-1-(2-bromophenyl)ethanone (6d)

White solid (44% yield, 69% *ee*). Analytical data for **6d**: Mp = 56-57 °C; $[\alpha]_D^{20} = -20.0^\circ$ (c = 0.5 Acetone, 69% *ee*).

¹H NMR (300 MHz, CDCl₃) δ 3.16-3.27 (m, 2H), 3.38-3.50 (m, 2H), 4.41 (AB, J = 16.2 Hz, 1H), 4.49 (BA, J = 16.2 Hz, 1H), 4.78-4.81 (m, 1H), 6.61-6.69 (m, 2H), 6.76-6.81 (m, 2H), 7.25-7.45 (m, 8H), 7.60 (dd, J_I = 0.6 Hz, J_2 = 8.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 45.6, 51.1, 54.9, 69.7, 112.5, 116.6, 118.0, 118.7, 121.7,

127.1, 127.2, 127.5, 128.6, 128.7, 131.9, 133.7, 134.8, 137.9, 141.1, 143.0, 201.1; IR (film) 3063, 2924, 2854, 1699, 1605, 1585, 1502, 1466, 1452, 1428, 1356, 1299, 1215, 1166, 1048, 1027, 992, 953, 917, 798, 735, 696, 638 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{23}H_{21}BrNO_2$ (M+H)⁺ requires m/z 422.0756, found m/z 422.0753. The enantiomeric excess was determined by Daicel Chiralpak IC (25 cm), Hexanes / IPA $= 90 / 10, 0.8 \text{ mL/min}, \lambda = 254 \text{ nm}, \text{ t (major)} = 13.86 \text{ min}, \text{ t (minor)} = 11.35 \text{ min}.$

(S)-2-(4-Benzyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-vl)-1-(4-bromophenvl)ethanone (6e)

White solid (52% yield, 76% ee). Analytical data for 6e: Mp = 107-108 °C; $[\alpha]_D^{20}$ = -12.5° (c = 0.5 Acetone, 76%

ee). ¹H NMR (300 MHz, CDCl₃) δ 3.11-3.25 (m, 2H), 3.42-3.50 (m, 2H), 4.38 (AB, J = 16.2 Hz, 1H), 4.50 (BA, J = 16.5 Hz, 1H), 4.83-4.85 (m, 1H), 6.62-6.72 (m, 2H), 6.78-6.82 (m, 2H), 7.22-7.26 (m, 5H), 7.60 (d, J = 8.7 Hz, 2H), 7.80 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 41.4, 50.9, 54.8, 69.7, 112.5, 116.6, 118.0, 121.6, 127.1, 127.2, 128.6, 128.7, 129.7, 131.9, 134.8, 135.4, 137.9, 143.0, 196.3; IR (film) 2925, 2854, 1670, 1605, 1581, 1502, 1468, 1349, 1270, 1238, 1221, 1169, 1095, 1071, 1047, 998, 961, 908, 840, 784, 740, 697 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{23}H_{21}BrNO_2$ (M+H)⁺ requires m/z 422.0756, found m/z 422.0735. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, $0.8 \text{ mL/min}, \lambda = 254 \text{ nm}, \text{ t} \text{ (major)} = 13.42 \text{ min}, \text{ t} \text{ (minor)} = 11.18 \text{ min}.$

¹H NMR (300 MHz, CDCl₃) δ 3.12-3.25 (m, 2H), 3.43-3.50 (m, 2H), 4.38 (AB, J= 16.2 Hz, 1H), 4.50 (BA, J = 15.9 Hz, 1H), 4.84-4.85 (m, 1H), 6.62-6.71 (m, 2H), 6.78-6.82 (m, 2H), 7.26 (m, 5H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.88 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 41.4, 51.0, 54.8, 69.7, 112.5, 116.6, 118.0, 121.6, 127.1, 127.2, 128.6, 128.9, 129.6, 134.8, 135.0, 137.9, 139.9, 143.0, 196.1; IR (film) 3025, 2920, 2856, 1671, 1606, 1584, 1568, 1502, 1468, 1453, 1397, 1349, 1306, 1269, 1238, 1221, 1169, 1091, 999, 961, 907, 842, 826, 788, 739, 697 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₃H₂₁ClNO₂ (M+H)⁺ requires *m/z* 378.1261, found *m/z* 378.1260. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 15.07 min, t (minor) = 12.20 min.

(S)-2-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazi n-2-yl)-1-(4-nitrophenyl)ethanone (6g)

White solid (52% yield, 75% *ee*). Analytical data for **6g**: Mp = 69-70 °C; $[\alpha]_D^{20} = -7.1^\circ$ (c = 0.5 Acetone,

75% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 3.17-3.26 (m, 2H), 3.46-3.58 (m, 2H), 4.39 (AB, J = 16.5 Hz, 1H), 4.51 (BA, J = 16.2 Hz, 1H), 4.85-4.88 (m, 1H), 6.63-6.68 (m, 1H), 6.72-6.84 (m, 3H), 7.25-7.32 (m, 5H), 8.09 (d, J = 8.7 Hz, 2H), 8.31 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 42.0, 50.7, 54.7, 69.6, 112.5, 116.6, 118.2, 121.8, 123.8, 127.1, 127.2, 128.7, 129.2, 134.8, 137.8, 141.1, 142.8, 150.4, 195.9; IR (film) 2919, 2850, 1693, 1675, 1603, 1580, 1526, 1502, 1467, 1452, 1344, 1261, 1238, 1222, 1169, 1096, 1071, 1047, 1003, 962, 909, 854, 792, 740, 697 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₃H₂₁N₂O₄ (M+H)⁺ requires *m*/*z* 389.1501, found *m*/*z* 389.1503. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 45.53 min, t (minor) = 39.13 min.

(S)-1-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin -2-yl)propan-2-one (6h)

White solid (51% yield, 76% *ee*). Analytical data for **6h**: Mp = 95-96 °C; $[\alpha]_D^{20} = -5.4^\circ$ (c = 0.5 Acetone,

76% ee). ¹H NMR (300 MHz, CDCl₃) δ 3.25-3.38 (m, 2H), 3.53-3.70 (m, 2H), 4.41

(AB, J = 15.9 Hz, 1H), 4.52 (BA, J = 15.9 Hz, 1H), 4.92-4.95 (m, 1H), 6.63-6.73 (m, 2H), 6.79-6.84 (m, 2H), 7.21-7.28 (m, 5H), 7.54-7.64 (m, 2H), 7.87-7.96 (m, 3H), 8.02 (d, J = 8.4 Hz, 1H), 8.46 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 41.5, 51.1, 54.8, 70.0, 112.5, 116.6, 118.0, 121.6, 123.6, 126.9, 127.1, 127.1, 127.8, 128.5, 128.6, 128.7, 129.6, 130.2, 132.4, 134.0, 135.0, 135.7, 137.9, 143.1, 197.2; IR (film) 2924, 2853, 1712, 1675, 1626, 1603, 1502, 1451, 1390, 1359, 1302, 1245, 1220, 1189, 1171, 1047, 908, 865, 838, 818, 739, 694 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₇H₂₄NO₂ (M+H)⁺ requires *m/z* 394.1807, found *m/z* 394.1791. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 18.67 min, t (minor) = 15.40 min.

Bn (S)-1-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)pro pan-2-one (6i)

White solid (76% yield, 76% *ee*). Analytical data for **6i**: Mp = 86-87 °C; $[\alpha]_D^{20} = -9.1^\circ$ (c = 0.5 Acetone, 76% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.20 (s, 3H), 2.63 (dd, $J_I = 6.0$ Hz, $J_2 = 16.5$ Hz, 1H), 2.90 (dd, $J_I = 6.6$ Hz, $J_2 = 16.8$ Hz, 1H), 3.11 (dd, $J_I = 6.9$ Hz, $J_2 = 11.7$ Hz, 1H), 3.35 (dd, $J_I = 2.4$ Hz, $J_2 = 12.0$ Hz, 1H), 4.37 (AB, J = 16.2 Hz, 1H), 4.47 (BA, J = 16.2 Hz, 1H), 4.61-4.67 (m, 1H), 6.61-6.69 (m, 2H), 6.76-6.81 (m, 2H), 7.26-7.34 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 30.8, 46.3, 51.0, 54.7, 69.3, 112.4, 116.5, 117.9, 121.6, 127.0, 127.1, 128.6, 134.8, 137.9, 143.0, 205.9; IR (film) 2921, 2852, 1714, 1606, 1579, 1505, 1468, 1451, 1362, 1307, 1258, 1225, 1164, 1102, 1089, 1075, 1050, 1021, 911, 799, 741, 722, 698 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₈H₂₀NO₂ (M+H)⁺ requires *m*/*z* 282.1494, found *m*/*z* 282.1481. The enantiomeric excess was determined by Daicel Chiralpak IC (25 cm), Hexanes / IPA = 90 / 10, 0.5 mL/min, $\lambda = 254$ nm, t (major) = 20.42 min, t (minor) = 19.64 min.

(S)-1-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)b utan-2-one (6j)

White solid (81% yield, 78% *ee*). Analytical data for **6j**: Mp = 79-80 °C; $[α]_D^{20} = -12.0^\circ$ (c = 0.5 Acetone, 78% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 1.06 (t, *J* = 6.9 Hz, 3H), 2.44-2.53 (m, 2H), 2.61 (dd, *J*₁ = 6.0 Hz, *J*₂ = 16.5 Hz, 1H), 2.90 (dd, *J*₁ = 6.9 Hz, *J*₂ = 16.5 Hz, 1H), 3.14 (dd, *J*₁ = 6.9 Hz, *J*₂ = 11.7 Hz, 1H), 3.37 (dd, *J*₁ = 2.7 Hz, *J*₂ = 12.0 Hz, 1H), 4.37 (AB, *J* = 15.9 Hz, 1H), 4.48 (BA, *J* = 15.9 Hz, 1H), 4.62-4.69 (m, 1H), 6.61-6.69 (m, 2H), 6.76-6.81 (m, 2H), 7.23-7.35 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 7.5, 36.9, 45.2, 51.1, 54.8, 69.5, 112.4, 116.5, 117.9, 121.6, 127.1, 127.2, 128.6, 134.9, 137.9, 143.0, 208.6; IR (film) 2921, 2851, 1712, 1605, 1579, 1505, 1468, 1451, 1410, 1390, 1361, 1308, 1251, 1221, 1173, 1104, 1050, 1011, 958, 910, 800, 744, 697, 656 cm⁻¹; HRMS (ESI) exact mass calcd for C₁₉H₂₂NO₂ (M+H)⁺ requires *m*/z 296.1651, found *m*/z 296.1636. The enantiomeric excess was determined by Daicel Chiralpak AS-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, $\lambda = 254$ nm, t (major) = 11.89 min, t (minor) = 13.06 min.

(S)-1-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)pentan-2-one (6k)

White solid (67% yield, 82% *ee*). Analytical data for **6k**: Mp = 61-62 °C; $[\alpha]_D^{20}$ = -16.1° (c = 0.5 Acetone, 82% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 0.91 (t, *J* = 7.5 Hz, 3H), 1.61 (dt, *J₁* = 7.8 Hz, *J₂* = 15.0 Hz, 2H), 2.40-2.47 (m, 2H), 2.60 (dd, *J₁* = 6.0 Hz, *J₂* = 16.5 Hz, 1H), 2.89 (dd, *J₁* = 6.3 Hz, *J₂* = 16.5 Hz, 1H), 3.12 (dd, *J₁* = 6.9 Hz, *J₂* = 11.7 Hz, 1H), 3.37 (dd, *J₁* = 3.0 Hz, *J₂* = 11.7 Hz, 1H), 4.37 (AB, *J* = 15.6 Hz, 1H), 4.47 (BA, *J* = 16.2 Hz, 1H), 4.62-4.69 (m, 1H), 6.60-6.69 (m, 2H), 6.76-6.81 (m, 2H), 7.22-7.35 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 13.6, 16.9, 45.4, 45.6, 51.1, 54.8, 69.4, 112.4, 116.5, 117.9, 121.6, 127.0, 127.1, 128.6, 134.8, 137.9, 143.0, 208.2; IR (film) 2955, 2920, 2850, 1711, 1606, 1577, 1505, 1467, 1451, 1390, 1450, 1291, 1246, 1220, 1171, 1119, 1048, 1025, 906, 841, 802, 740, 694 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₀H₂₄NO₂ (M+H)⁺ requires *m/z* 310.1807, found *m/z* 310.1791. The enantiomeric excess was determined by Daicel Chiralpak OJ-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 19.84 min, t (minor) = 22.08 min.

(S)-1-(4-(Naphthalen-1-ylmethyl)-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)propan-2-one (6l)

White solid (58% yield, 79% *ee*). Analytical data for **6l**: Mp = 109-110 °C; $[\alpha]_D^{20} = -13.5^\circ$ (c = 0.5 Acetone, 79% *ee*). ¹H NMR (300 MHz, CDCl₃) δ 2.01 (s, 3H), 2.53 (dd, $J_I = 6.0$ Hz, $J_2 = 16.5$

Hz, 1H), 2.81 (dd, J_1 = 6.6 Hz, J_2 = 16.8 Hz, 1H), 3.04 (dd, J_1 = 6.3 Hz, J_2 = 11.7 Hz, 1H), 3.24 (dd, J_1 = 2.7 Hz, J_2 = 12.0 Hz, 1H), 4.60-4.67 (m, 1H), 4.72 (AB, J = 15.6 Hz, 1H), 4.89 (BA, J = 15.6 Hz, 1H), 6.66-6.71 (m, 1H), 6.75-6.85 (m, 3H), 7.40 (d, J_1 = 5.4 Hz, 2H), 7.49-7.52 (m, 2H), 7.77-7.80 (m, 1H), 7.87-7.90 (m, 1H), 7.98-8.01 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 30.5, 46.2, 49.7, 52.5, 69.6, 112.2, 116.5, 118.2, 121.6, 123.1, 125.4, 125.7, 125.8, 126.2, 128.1, 128.8, 131.3, 132.2, 133.8, 134.9, 143.2, 205.8; IR (film) 2923, 2852, 1712, 1606, 1596, 1578, 1503, 1468, 1355, 1295, 1245, 1224, 1170, 1154, 1073, 1051, 981, 913, 799, 771, 750, 735; HRMS (ESI) exact mass calcd for C₂₂H₂₂NO₂ (M+H)⁺ requires *m/z* 332.1651, found *m/z* 332.1635. The enantiomeric excess was determined by Daicel Chiralpak IC (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (major) = 11.02 min, t (minor) = 9.84 min.

(S)-1-(4-(Naphthalen-2-ylmethyl)-3,4-dihydro-2*H*-benzo[b] [1,4]oxazin-2-yl)propan-2-one (6m)

White solid (63% yield, 64% *ee*). Analytical data for **6m**: Mp = 124-125 °C; $[\alpha]_D^{20} = -4.3^\circ$ (c = 0.5 Acetone, 64% *ee*). ¹H

NMR (300 MHz, CDCl₃) δ 2.18 (s, 3H), 2.61 (dd, $J_1 = 5.7$ Hz, $J_2 = 16.8$ Hz, 1H), 2.90 (dd, $J_1 = 6.6$ Hz, $J_2 = 16.8$ Hz, 1H), 3.13 (dd, $J_1 = 7.2$ Hz, $J_2 = 11.7$ Hz, 1H), 3.27 (d, J = 11.7 Hz, 1H), 4.50 (AB, J = 16.5 Hz, 1H), 4.58 (BA, J = 16.2 Hz, 1H), 4.66-4.68 (m, 1H), 6.65-6.67 (m, 1H), 6.72-6.83 (m, 3H), 7.37-7.46 (m, 3H), 7.70 (s, 1H), 7.78-7.81 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 30.8, 46.4, 51.1, 55.1, 69.4, 112.5, 116.5,

118.1, 121.7, 125.2, 125.6, 125.7, 126.2, 127.6, 127.7, 128.5, 132.7, 133.4, 134.9, 143.1, 135.4, 205.9; IR (film) 2921, 2851, 1710, 1605, 1578, 1502, 1468, 1360, 1297, 1258, 1220, 1169, 1107, 1051, 958, 906, 860, 814, 737 cm⁻¹; HRMS (ESI) exact mass calcd for $C_{22}H_{22}NO_2$ (M+H)⁺ requires m/z 332.1651, found m/z 332.1637. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 0.8 mL/min, λ = 254 nm, t (major) = 11.47 min, t (minor) = 10.76 min.

Synthesis of 2-(4-benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)-1-(4-bromophenyl)ethanone oxime 7

To a solution of **6e** (42 mg, 0.1 mmol, 99% *ee*) in CH₃OH (1 mL) in a dry flask was added hydroxylamine hydrocholoride (69 mg, 0.3 mmol) and NaOAc (8.2mg, 0.1 mmol). After the mixture was stirred for 30 h at room temperature until completion (monitored by TLC), the solvent was removed under reduced pressure. The residue was purified by silia gel column chromatography (ethyl acetate/petroleum ether = 1/10) to afford the product **7** (31 mg, 71% yield, 99% *ee*) as a white solid.

(S)-2-(4-Benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)-1-(4-bromophenyl)ethanone oxime (7)

White solid (71% yield, 99% *ee*). Analytical data for 7: Mp = 159-160 °C; $[\alpha]_D^{20} = -21.6^\circ$ (c = 0.5 Acetone, 99%

ee).¹H NMR (300 MHz, CDCl₃) δ 3.07 (dd, J_1 = 7.2 Hz, J_2 = 13.2 Hz, 1H), 3.18-3.27 (m, 2H), 3.36 (dd, J_1 = 2.4 Hz, J_2 = 12.0 Hz, 1H), 4.42 (s, 2H), 4.61-4.63 (m, 1H), 6.60-6.81 (m, 4H), 7.24-7.34 (m, 5H), 7.48-7.56 (m, 4H), 8.67 (br, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 30.2, 51.6, 54.9, 70.7, 112.4, 116.5, 118.0, 121.7, 123.8, 127.0, 127.1,

128.2, 128.6, 131.6, 134.6, 134.8, 137.9, 143.1, 155.8; IR (film) 3233, 2909, 1739, 1606, 1504, 1467, 1452, 1371, 1291, 1242, 1221, 1168, 1099, 1073, 1047, 1008, 937, 912, 827, 793, 736, 696 cm⁻¹; HRMS (ESI) exact mass calcd for C₂₃H₂₂BrN₂O₂ (M+H)⁺ requires *m/z* 437.0865, found *m/z* 437.0859. The enantiomeric excess was determined by Daicel Chiralpak AD-H (25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 12.64 min, t (minor) = 18.22 min.

X-ray structure of enantiopure

(*S*)-*1*-(*4*-bromophenyl)-2-(2,3-dihydrobenzofuran-2-yl)ethanone **3m** [CCDC 937446 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.]

Table 1.	Crystal	data and	structure	refinement	for	cd21218.
	~					

Identification code	cd21218
Empirical formula	C16 H13 Br O2
Formula weight	317.17
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$
Unit cell dimensions	a = 7.2969(11) A alpha = 90 deg.
	b = 11.1694(16) A beta = 90 deg.
	c = 16.483(2) A gamma = 90 deg.
Volume	1343.4(3) A^3
Z, Calculated density	4, 1.568 Mg/m^3
Absorption coefficient	3.054 mm^-1
F(000)	640
Crystal size	0.231 x 0.156 x 0.037 mm
Theta range for data collection	2.20 to 26.00 deg.
Limiting indices	-9<=h<=5, -13<=k<=13, -19<=l<=20 s24

Reflections collected / unique	7736 / 2627 [R(int) = 0.0400]
Completeness to theta $= 26.00$	99.7 %
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.51956
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2627 / 1 / 172
Goodness-of-fit on F^2	0.920
Final R indices [I>2sigma(I)]	R1 = 0.0411, wR2 = 0.1001
R indices (all data)	R1 = 0.0632, wR2 = 0.1122
Absolute structure parameter	0.026(14)
Largest diff. peak and hole	0.339 and -0.209 e.A^-3

X-ray structure of enantiopure

(S,E)-2-(4-benzyl-3,4-dihydro-2*H*-benzo[b][1,4]oxazin-2-yl)-1-(4-bromophenyl)ethan one oxime **7** [CCDC 937447 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.] Table 1. Crystal data and structure refinement for cd212491.

Identification code

cd212491 ₈₂₅

Empirical formula	C23 H21 Br N2 O2
Formula weight	437.33
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 5.1604(7) A alpha = 104.433(3) deg.
	b = 13.8657(19) A beta = 90.414(3) deg.
	c = 14.351(2) A gamma = 95.735(3) deg.
Volume	988.9(2) A^3
Z, Calculated density	2, 1.469 Mg/m^3
Absorption coefficient	2.100 mm^-1
F(000)	448
Crystal size	0.342 x 0.121 x 0.078 mm
Theta range for data collection	1.52 to 25.49 deg.
Limiting indices	-6<=h<=6, -16<=k<=16, -16<=l<=17
Reflections collected / unique	5735 / 3686 [R(int) = 0.0276]
Completeness to theta = 25.49	99.6 %
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.55005
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3686 / 112 / 338
Goodness-of-fit on F^2	1.131
Final R indices [I>2sigma(I)]	R1 = 0.0954, wR2 = 0.2263
R indices (all data)	R1 = 0.1173, wR2 = 0.2364
Largest diff. peak and hole	0.496 and -0.458 e.A^-3

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

References

(1) (a) W. Kurosawa, T. Kan and T. Fukuyama, J. Am. Chem. Soc. 2003, 125, 8112.
(b) V. Singh, P. K. Sahu, B. C. Sahu and S. M. Mobin, J. Org. Chem. 2009, 74, 6092.
(c) L. Kong, Q. Lin, X. Lv, Y. Yang, Y. Jia and Y. Zhou, Green Chem. 2009, 11, 1108.
(d) D. J. Berg, T. Barclay and X. Fei, Journal of Organometallic Chemistry 2010, 695, 2703.
(e) W. Chen, X.-D. Yang, Y. Li, L.-J. Yang, X.-Q. Wang, G.-L. Zhang and H.-B. Zhang, Org. Biomol. Chem. 2011, 9, 4250.

(2) Q. Cai, Z.-A. Zhao and S.-L. You, Angew. Chem., Int. Ed. 2009, 48, 7428.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

¢

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

S33

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

S35

S77

S87

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	10.460	85058.367	1511738. 250	89. 3827
2	12.658	8059.916	179572.047	10.6173
Total		93118.283	1691310. 297	100.0000

Total

S96

246411.227

2978985.781

100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	19.940	98287.813	4772196.000	49.3348
2	22.670	58776.602	4900889.000	50.6652
Total		157064. 414	9673085.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	20.655	6135.802	348887.594	12.2313
2	23.797	25853. 293	2503530. 500	87.7687
Total		31989.095	2852418.094	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	19.240	124081.898	2781610.750	49.6474
2	21.807	111025. 688	2821115.750	50.3526
Total		235107.586	5602726.500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	19.397	75730. 156	1675795. 375	89. 8323
2	22.000	7557.636	189674.750	10. 1677
Total		83287.792	1865470. 125	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	14.325	194953.797	4818740.000	83. 1994
2	16.112	36087.133	973056. 625	16.8006
Total		231040.930	5791796.625	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	17.565	189322.781	3832929.750	89. 3429
2	20.365	18412.418	457202.375	10.6571
Total		207735. 199	4290132.125	100.0000

Total

12.100	20110.011	412101.005	5. 1011
	325839.355	4383261.563	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	15.013	186643.391	3287285.750	87.9548
2	17.718	21298.008	450188.094	12. 0453
Total		207941.398	3737473.844	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	11. 532	395309.438	5799157.500	89.2420
2	14. 582	29522.238	699082.188	10.7580
Total		424831.676	6498239. 688	100.0000

Total

Total

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	8. 523	494404.375	6803529.000	50. 3103
2	9.930	412804.063	6719598. 500	49.6897
Total		907208.438	13523127.500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	8.487	20759.209	261902. 422	11. 4396
2	9.832	137295. 438	2027530. 375	88. 5604
Total		158054.646	2289432.797	100.0000

Pea	ak NO. R.	lime F	'eak Height	Peak Area	Percent
1	10.	148 2	21751.881	415875. 719	12.7592
2	12.	640 1	21385. 406 2	2843547.750	87.2408
То	tal	1	43137.287 3	3259423. 469	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	38.807	163270.859	12943384.000	50. 2259
2	47.540	129150.398	12826928.000	49.7741
Total		292421.258	25770312.000	100.0000)

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	36. <mark>8</mark> 65	323625.781	24460054.000	83. 2280
2	45. 198	52325. 555	4929156.000	16.7720
Total		375951.336	29389210.000	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	11.340	164555. 750	2617310.000	49.9966
2	13.840	134148.172	2617662.000	50.0034
Total		298703.922	5234972.000	100.0000
300			. 855	
280			13	
260				
240			()	
220		Bn		
200		$(^{N})$	O Br	
180 →		L'A		
.≞ 160				
140				
120				
100			352	
80			,	
60	ń		Λ	
40	A	٥		
20		$\sim - \sim \sim - \sim - \sim$		
			12 14	16
0 2	4 6	o 10 (min)	12 14	01

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	11.352	62808.656	981999.188	15.6772
2	13.855	273347. 625	5281852.500	84. 3228
Total		336156. 281	6263851.688	100.0000

Total

1361061.438

100.0000

35018867.250

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	12.198	97094.750	2565870.250	13.7687
2	15.065	480496.906	16069709.000	86. 2313
Total		577591.656	18635579. 250	100.0000

Total		74915. 052	7018884.000	100.0000
2	45. 532	64978.008	6158197.000	87.7375
1	39.132	9937.044	860687.000	12.2624

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	19.907	306831.719	7324298. 500	49.7200
2	20. 795	308193.844	7406781.000	50. 2800
Total		615025.563	14731079. 500	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	19. <mark>6</mark> 35	23617.455	507054.469	12.2480
2	20. 418	159684.594	3632828. 500	87.7520
Total		183302.049	4139882.969	100.0000

reak No.	R. Time	Peak Height	reak Area	Fercent
1	19.840	138053.438	5361588.000	90.9254
2	22.082	13667.600	535102.688	9.0746
Total		151721.037	5896690.688	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	9.840	36703. 922	511351.719	10. 3201
2	11.023	272078.781	4443576.000	89.6799
Total		308782.703	4954927.719	100.0000

Total

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	12.598	66307.953	1310175. 125	49.9852
2	18.498	43923.059	1310950. 500	50.0148
Total		110231.012	2621125.625	100.0000

Peak No.	R. Time	Peak Height	Peak Area	Percent
1	12.643	162803.406	3240494.250	99. 4314
2	18.217	643.108	18531.529	0.5686
Total		163446. 514	3259025.779	100.0000

The Promoting Effect of Chiral Phosphoric Acid

We performed two parallel reactions (with or without (*S*)-4b) in CD_2Cl_2 with CH_2Br_2 as the internal standard, and monitored their reaction progess by ¹H NMR.^{*a*}

Time	Hoveyda-Grubbs II			Hoveyda-Grubbs II + (S) -4b		
	M yield ^b	3a yield ^b	combined	M yield ^b	3a yield ^b	combined
			yield. ^b			yield. ^b
0	0	0	0	0	0	0
10 min	24	0	24	20	2	22
30 min	20	0	20	18	9	27
1 h	21	0	21	17	12	29
2 h	18	1	19	17	20	37
4 h	20	2	22	17	22	39
6 h	21	3	24	19	25	44
8 h	19	4	23	18	26	44
17 h	19	5	24	18	27	45
24 h	19	9	28	18	31	49
42 h	19	13	32	18	32	50
48 h	19	17	36	17	31	48
100 h	19	25	44	17	35	52
120 h	20	28	48	16	32	48

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), CH_2Br_2 (0.2 mmol), Hoveyda-Grubbs II (5 mol%) and (S)-**4b** (5 mol%) in CD_2Cl_2 (0.8 mL) at 40°C, the reaction was proceeded in a sealed nmr-tubes. ^{*b*} Yield by the ¹H NMR.