Supporting Information

Sulfonylcarbamate as a Versatile and Unique Hydroxy Protecting Group Shino Manabe,^{*1,2} Masanori Yamaguchi,^{1,2} and Yukishige Ito^{1*}

¹ RIKEN, Advanced Science Institute, Hirosawa Wako, Saitama 351-0198 Japan

² PRESTO (Precursory Research for Embryonic Science and Technology), JST, Honcho, Kawaguchi, Saitama 332-0012, Japan

E-mails: smanabe@riken.jp, yukito@riken.jp

Contents

General		procedures		for	protection
General		procedures		for	alkylation
General	procedures	for removal S6	of sulfonyl	group	
Spectrosco	opic	data	for	new	compounds
Procedure ¹ H-NMR	s and spectro	oscopic data for	new compoun of	ds in Scheme	4S18 1b
···S24 ¹³ C-NMR			of		1b
···S25 ¹ H-NMR			of		1c
···S26 ¹³ C-NMR			of		1c
··S27 ¹ H-NMR			of		1d
··S28 ¹³ C-NMR			of		1d
···S29 ¹ H-NMR			of		1e
···S30 ¹³ C-NMR			of		1e
··S31 ¹ H-NMR			of		2b

···S43 ¹ H-NMR 	of	methylated	7b
···S42 ¹³ C-NMR	(of	7b
··S41 ¹ H-NMR	C	of	7b
···S40 ¹³ C-NMR	(of	6b
···S39 ¹ H-NMR	C	of	6b
···S38 ¹³ C-NMR	(of	5b
···S37 ¹ H-NMR	C	of	5b
···S36 ¹³ C-NMR	(of	 4b
···S35 ¹ H-NMR	 C	of	 4b
···S34 ¹³ C-NMR	(of	 3b
···S33 ¹ H-NMR	c	of	 3b
··S32 ¹³ C-NMR	(of	2b

¹³ C-NMR	of	methylated	0.45	7b
¹ H-NMR		of		8b
· S46 ¹³ C-NMR		of		8b
··S47 ¹ H-NMR	of	methylated		8b
¹³ C-NMR	of	methylated	S40	8b
¹ H-NMR		of		9b
• S50 ¹³ C-NMR		of		9b
··S51 ¹ H-NMR		of		10b
···S52 ¹³ C-NMR		of		10b
··S53 ¹ H-NMR		of		11b
··S54 ¹³ C-NMR		of		11b
···S55 ¹ H-NMR 		of		12a
···S56 ¹³ C-NMR		of		12a
··S57				

¹ H-NMR	of	12b
··S58 ¹³ C-NMR	of	12b
···S59 ¹ H-NMR	of	13a
···S60 ¹³ C-NMR	of	13a
···S61 ¹ H-NMR	of	13b
··S62 ¹³ C-NMR	of	13b
···S63 ¹ H-NMR	of	15
···S64 ¹³ C-NMR	of	15
···S65 ¹ H-NMR	of	16
^{···} S66 ¹³ C-NMR	of	17
···S67 ¹ H-NMR	of	17
···S68 ¹³ C-NMR	of	17
9		

¹ H-NMR		of
18		
¹³ C-NMR	of	19
···S71 ¹ H-NMR	of	19
···S72 ¹³ C-NMR	of	19
···S73 ¹ H-NMR	of	20
··S74 ¹³ C-NMR	of	20
···S75 ¹ H-NMR	of	23
···S76 ¹³ C-NMR	of	23
··S77 COSY	of	23
···S78 CH-COSY	of	23
···S79 ¹ H-NMR	of	24
···S80 ¹³ C-NMR	of	24
··S81		

COSY	of					24
··S82 CH-COSY	7		O	f		24
··S83 ¹ H-NMR			of			23
··S84 ¹³ C-NMR			of			23
··S85 ¹ H-NMR			of			25
··S86 ¹³ C-NMR			of			25
··S87 ¹ H-NMR	of					26
··S88 ¹³ C-NMR	of				26	
··S89 ¹ H-NMR	of				27	
··S90 ¹³ C-NMR	of					27
··S91 chiral	HPLC	spectr	um	for	5a	(racemic)
chiral	HPLC	spectrum	for	52 5a	(after	deprotection)
chiral	HPLC	spectr	- 593 Tum	for ·····S94	6a	(racemic)

chiral	HPLC	spectrum	for	6a	(after	deprotection)
••••			··S95			

General Procedures. All commercial reagents were used without further purification. Analytical TLC was performed on silica gel 60 F₂₅₄ plates and visualized by UV fluorescence quenching and 12 Molybdo(VI) phosphoric acid acid/phosphoric acid staining. Flash column chromatography was performed on silica gel 60N (spherical, neutral, 40–100 μ m). Yields refer to chromatographically and spectroscopically pure compounds. ¹H- and ¹³C-NMR spectra were recorded at ambient temperature (23–24 °C) in CDCl₃ using a 400 MHz spectrometer. Chemical shifts are reported in ppm relative to internal TMS ($\delta = 0.00$ ppm) for ¹H- and CDCl₃ ($\delta = 77.16$ ppm) for ¹³C-NMR spectra. HRMS was measured by Quadrupole-TOF mass spectrometry. CHIRALPAK AD and CHIRALCEL OD-H (DAICEL Co.) were used for enantiopurity check of deprotection products **5a** and **6a**.

General procedure for protection

(Method A) To a solution of alcohol (1.0 mmol) in THF (5 mL), *p*-toluenesulfonyl isocyanate (1.1 mmol) was added at room temperature. The mixture was stirred under N_2 atmosphere. After starting material was disappeared by TLC analysis, the solvent was evaporated. The residue was purified by silica gel column chromatography to afford the product.

(Method B) To a solution of alcohol (1.0 mmol) in THF (5 mL), *p*-toluenesulfonyl isocyanate (1.1 mmol) was added at room temperature. The mixture was stirred under N_2 atmosphere. After starting material was disappeared by TLC analysis, the mixture was diluted with brine and EtOAc. The aqueous layer was extracted with EtOAc. The combined layers were washed with brine again. After drying the mixture over Na_2SO_4 , the solvent was evaporated. The residue was purified by silica gel column chromatography to afford the product.

¹H-NMR δ 7.93 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.14–7.26 (m, 3H), 7.08 (d, J = 6.8 Hz, 2H), 4.08 (t, J = 6.4 Hz, 2H), 2.56 (t, J = 6.4 Hz, 2H), 2.40 (s, 3H), 1.87 (quint, J = 6.4 Hz, 2H); ¹³C-NMR δ 150.4, 145.3, 140.8, 135.6, 129.8, 128.6, 128.5,

128.5, 126.3, 66.5, 32.0, 30.1, 21.8; IR 3239, 1745, 1725, 1154, 1089 cm⁻¹; HRMS calcd for $[C_{17}H_{19}NO_4S+Na]^+$ 356.0927, found 356.0930.

General procedure for alkylation

Methylation

To a solution of sulfonyl carbamate (1.81 g, 5.22 mmol) in benzene/MeOH (52 mL/12 mL), TMSCHN₂ (2.0 M, hexane solution, 3.5 mL, 7.0 mmol) was added dropwise. After starting material was disappeared by TLC analysis, the solvent was evaporated. The residue was purified by silica gel column chromatography (hexane:EtOAc 5:1) to give 1.71 g (90%) of *N*-methylsulfonyl carbamate.

¹H-NMR δ 7.90 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 7.2 Hz, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.18 (d, J = 7.6 Hz, 2H), 4.17 (t, J = 7.6 Hz, 2H), 3.44 (s, 3H), 2.66 (t, J = 7.6 Hz, 2H), 2.48 (s, 3H), 1.96 (2H, quint, J = 7.6 Hz); ¹³C-NMR δ 152.7, 144.8, 140.9, 136.6, 129.6, 128.6, 128.4, 128.1, 126.2, 66.9, 33.5, 31.9, 30.0, 21.7; IR 1729, 1355, 1282, 1162, 1089 cm⁻¹; calcd for [C₁₈H₂₁NO₄S+Na]⁺ 370.1083, found 370.1084.

To a solution of sulfonyl carbamate (1.0 g, 3.0 mmol) in MeCN (20 mL), iodoacetonitrile (0.3 mL, 4.5 mmol), and K₂CO₃ (621 mg, 4.5 mmol) was added at room temperature. The mixture was heated at reflux. After starting material was disappeared by TLC analysis, the reaction mixture was filtered off and the filtrate was evaporated. The residue was purified by silica gel column chromatography (hexane:EtOAc 4:1) to give 916 mg (82%) of *N*-cyanomethyl sulfonyl carbamate. ¹H-NMR δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.27 (dd, *J* = 6.8 Hz, 7.6 Hz, 2H), 7.19 (dd, J = 7.6 Hz, 7.6 Hz, 1H), 7.10 (d, J = 6.8 Hz, 2H), 4.68 (s, 2H), 4.16 (t, J = 6.8 Hz, 2H), 2.59 (t, J = 6.8 Hz, 2H), 2.42 (s, 3H), 1.91 (quint, J = 6.8 Hz, 2H); ¹³C-NMR δ 151.0, 146.0, 140.6, 134.9, 129.9, 128.7, 128.5, 128.5, 128.4, 126.3, 1260, 115.0, 68.1, 62.3, 34.3, 33.7, 32.2, 31.9, 29.8, 21.8; IR 1741, 1363, 1170, 1089 cm⁻¹; HRMS calcd for [C₁₉H₂₀N₂O₄S+Na]⁺ 395.1036, found 395.1036.

To a solution of **1b** (125 mg 0.375 mmol), PPh₃ (148 mg, 0.563 mmol), and EtOH (18 μ L, 0.563 mmol) in THF (1.0 mL), DEAD toluene solution (0.25 mL) was added at 4 °C. After 5 h, the mixture was concentrated, and the residue was purified by silica gel column chromatography (hexane:EtOAc 7:3-1:1) to give **1e** (124 mg, 94%).

¹H-NMR δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.29-7.09 (m, 7H), 4.08 (t, *J* = 6.4 Hz, 2H), 3.92 (q, *J* = 7.2 Hz, 2H), 2.56 (t, *J* = 7.6 Hz, 2H), 2.40 (t, *J* = 7.6 Hz, 3H), 1.86 (m, 1H), 1.35 (t, *J* = 6.4 Hz, 3H); ¹³C-NMR δ 152.4, 144.6, 140.9, 137.1, 129.8, 129.5, 128.6, 128.4, 128.2, 126.2, 66.7, 42.8, 32.0, 30.1, 21.7, 15.7; HRMS calcd for [C₁₉H₂₃NO₄S+Na]⁺ 384.1348, found 384.1340.

General procedure for removal of sulfonyl group

Removal by NaOH

To a solution of alkylated sulfonyl carbamate (100 mg, 0.29 mmol) in MeOH (1.5 mL), 1 M NaOH aq. (1.45 mL, 1.45 mmol) was dropped. After completion of the reaction, the reaction mixture was diluted with brine. The aqueous layer was extracted with EtOAc. The combined layers were washed with brine. After drying the extract over Na₂SO₄, the solvent was evaporated. The residue was purified by silica gel column chromatography (hexane:EtOAc 5:1) to afford the products.

Removal by Pyridine:MeOH

A solution of sulfonyl carbamate (100 mg) in pyridine:MeOH (5 mL, 7:3) was stirred at 50 °C until the starting material was consumed. After evaporation, the residue was purified by silica gel column chromatography.

¹H-NMR δ 7.90 (d, J = 8.4 Hz, 2H), 5.03 (t, J = 7.1 Hz, 1H), 4.15-4.03 (m, 2H), 2.43 (s, 3H), 2.00-1.90 (m, 2H), 1.66 (s, 3H), 1.57 (s, 3H), 1.57-1.22 (m, 3H), 1.16-1.20 (m, 1H), 0.83 (d, J = 6.4 Hz, 3H); ¹³C-NMR δ 150.6, 145.2, 135.7, 131.7, 129.8, 128.5, 124.5, 65.8, 37.0, 35.4, 37.0, 35.4, 29.3, 25.8, 25.5, 21.8, 19.4, 17.8; HRMS calcd for $[C_{18}H_{27}NO_4S+Na]^+$ 376.1553, found 376.1553.

¹H-NMR δ 7.88 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 5.04 (t, J = 6.8 Hz, 1H), 4.75 (s, 2H), 4.22-4.11 (m, 2H), 2.44 (s, 3H), 2.02-1.90 (m, 2H), 1.66 (s, 3H), 1.58 (s, 6H), 1.41-1.35 (m, 2H), 1.35-1.30 (m, 1H), 1.20-1.15 (m, 1H), 0.84 (d, J = 6.3 Hz, 3H); ¹³C-NMR δ 150.7, 145.6, 134.7, 131.4, 129.6, 128.5, 124.1, 115.7, 67.3, 36.9, 35.2, 33.7, 29.1, 25.8, 25.4, 21.8, 19.3, 17.8; HRMS calcd for [C₂₁H₂₉NO₄S+Na]⁺ 414.1710, found 414. 1719.

¹H-NMR δ 7.90 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 4.24-4.08 (m, 2H), 4.03-3.98 (m, 2H), 3.64 (dd, J = 5.6 Hz, 8.4 Hz, 1H), 2.42 (s, 3H), 1.36 (s, 3H), 1.31 (s, 3H); ¹³C-NMR δ 150.4, 145.3, 135.5, 129.8, 128.5, 126.6, 110.2, 73.2, 66.8, 66.0, 26.7, 25.3, 21.8; $[\alpha]^{24}_{D}$ 9.8 (*c* 0.66, CHCl₃); HRMS calcd for $[C_{20}H_{20}N_2O_5S+Na]^+$ 423.0985, found 423.0982.

¹H-NMR δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 4.77 (s, 2H), 4.25-4.08 (m, 4H), 4.00 (t, *J* = 6.0 Hz, 1H), 3.66 (dd, *J* = 5.2 Hz, 8.4 Hz, 1H), 2.45 (s, 3H), 1.38 (s, 3H), 1.33 (s, 3H); ¹³C-NMR δ 150.5, 145.8, 134.4, 129.7, 128.6, 126.3, 126.3, 114.5, 110.0, 72.8, 68.2, 66.0, 33.9, 26.8, 25.3, 21.9; $[\alpha]^{24}_{D}$ 2.2 (*c* 0.90, CHCl₃); calcd for $[C_{16}H_{20}N_2O_6S+Na]^+$ 391.0934, found 391.0932.

¹H-NMR δ 7.92 (d, J = 8.4 Hz, 2H), 7.57-7.19 (m, 7H), 4.31 (d, J = 18.0 Hz, 1H), 4.11 (d, J = 18.0 Hz, 1H), 3.90 (s, 1H), 2.41 (3H, s), 1.02 (s, 3H); ¹³C-NMR δ 150.1, 144.9, 135.2, 134.3, 129.5, 128.8, 128.2, 128.1, 128.0, 128.0, 127.7, 126.2, 125.1, 69.6, 61.3, 60.8, 21.7, 13.5; $[\alpha]^{24}_{D}$ -22.1 (c 0.98, CHCl₃); HRMS calcd for $[C_{18}H_{19}NO_5S+Na]^+$ 384.0876, found 384.0870.

¹H-NMR δ 7.93 (d, J = 8.4 Hz, 2H), 7.35-7.22 (m, 7H), 4.82 (d, J = 18.0 Hz, 1H), 4.77 (d, J = 18.0 Hz, 1H), 4.38 (d, J = 11.6 Hz, 1H), 4.17 (d, J = 11.6 Hz, 1H), 3.93 (s, 1H), 2.41 (s, 3H), 1.03 (s, 3H); ¹³C-NMR δ 150.5, 145.8, 134.4, 134.2, 129.7, 128.5, 128.0, 127.7, 126.2, 114.6, 71.5, 61.3, 60.3, 34.0, 21.8, 13.5; $[\alpha]^{24}_{D}$ -3.7 (*c* 1.70, CHCl₃); HRMS calcd for $[C_{20}H_{20}N_2O_5S+Na]^+$ 423.0985, found 423.0978.

¹H-NMR δ 7.87-7.85 (m, 2H), 7.33-7.15 (m, 7H), 5.49 (d, J = 8.4 Hz, 1H), 5.08 (s, 2H), 4.58 (m, 1H), 4.42-4.34 (m, 2H), 3.71 (s, 3H), 2.37 (s, 3H); ¹³C-NMR δ 169.7, 155.9, 150.1, 145.3, 143.7, 139.2, 136.0, 135.5, 129.8, 129.8, 128.7, 128.4, 128.3, 126.6, 67.5, 66.4, 53.2, 21.8; [α] ²⁴_D 21.6 (*c* 2.17, CHCl₃); HRMS calcd for [C₂₀H₂₂N₂O₈S+Na]⁺ 473.0989, found 473.1000.

¹H-NMR δ 7.89 (d, J = 8.4 Hz, 2H), 7.66 (s, 1H), 7.36-7.29 (m, 7H), 5.85 (s, 1H), 3.66 (s, 3H), 2.43 (s, 3H); ¹³C-NMR δ 168.7, 150.0, 145.2, 135.4, 132.9, 129.7, 129.0, 128.5, 127.7, 75.9, 52.9, 21.8; [α] 105.7 (*c* 0.80, CHCl₃); calcd for [C₁₇H₁₇NO₆S+Na]⁺ 386.0663, found 386.0669.

¹H-NMR δ 7.85 (d, J = 8.4 Hz, 2H), 7.35-7.18 (m, 7H), 5.19 (bs, 1H), 5.12 (d, J = 6.8 Hz), 3.76-3.40 (m, 3H), 3.34-3.31 (m, 1H), 2.40 (s, 3H), 2.1-1.9 (m, 2H), 1.69 (bs, 1H), ¹³C-NMR δ 155.0, 154.8, 150.2, 150.1, 145.3, 136.6, 145.6, 129.8, 129.8, 129.1, 128.6, 128.6, 128.4, 128.2, 128.1, 128.1, 128.0, 126.5, 125.4, 76.5, 75.7, 67.2, 51.8, 51.6, 44.1, 43.8, 31.6, 30.7, 21.8; [α] -9.4 (*c* 0.7, CHCl₃); HRMS calcd for $[C_{20}H_{22}N_2O_6S+Na]^+$ 441.1091, found 441.1088.

NTs Мe

¹H-NMR δ 7.68 (d, J = 8.0 Hz, 2H), 7.37-7.19 (m, 7H), 4.22-5.15 (m, 3H), 3.54-3.35 (m, 5H), 2.36 (s, 3H), 2.02 (m, 2H); ¹³C-NMR δ 154.8, 154.6, 152.0, 150.0, 136.8, 136.5, 129.9, 129.7, 128.7, 128.3, 128.2, 128.1, 127.9, 127.8, 127.4, 76.4, 67.1, 51.7, 51.5, 44.1, 43.8, 33.5, 31.8, 30.9, 21.7; [α] -10.6 (*c* 1.14, CHCl₃); HRMS calcd for [C₂₁H₂₄N₂O₆S+Na]⁺ 455.1247, found 455.1241.

¹H-NMR δ 7.88 (d, J = 8.4 Hz, 2H), 7.35 (bs, 1H), 7.32 (d, J = 8.4 Hz, 2H), 4.53 (m, 1H), 2.43 (s, 3H), 1.90 (d, J = 11.6 Hz, 1H), 1.63-1.60 (m, 4H), 1.37 (m, 1H), 1.24 (m, 1H), 0.97-0.85 (m, 3H), 0.84 (d, J = 6.4 Hz, 3H), 0.76 (d, J = 6.8 Hz, 3H), 0.62 (d, J = 6.8 Hz, 3H); ¹³C-NMR δ 150.2, 145.0, 135.9, 129.7, 128.5, 78.0, 47.1, 40.7, 34.1, 31.5, 26.0, 23.3, 22.0, 21.8, 20.9, 16.1; [α] -47.0 (*c* 0.97, CHCl₃); HRMS calcd for [C₁₈H₂₇NO₄S+Na]⁺ 376.1553, found 376.1553.

¹H-NMR δ \Box 7.52 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 4.32 (m, 1H), 3.13 (s, 3H), 2.17 (s, 3H), 1.61 (d, *J* = 12.4 Hz, 1H), 1.38-1.33 (m, 4H), 1.20-1.11 (m, 2H), 1.00-0.93 (m, 1H), 0.73-0.67 (m, 1H), 0.58 (d, *J* = 6.4 Hz, 3H), 0.49 (d, *J* = 6.8 Hz, 3H), 0.36 (d, *J* = 6.8 Hz, 3H); ¹³C-NMR δ 152.4, 144.8, 137.3, 129.5, 128.0, 78.3, 47.1, 40.6, 34.1, 33.4, 31.5, 25.7, 23.0, 22.0, 21.8, 21.0, 15.9; [α] -36.6 (*c* 1.18, CHCl₃); HRMS calcd for [C₁₉H₂₉NO₄S+Na]⁺ 390.1710, found 390.1713.

Ρh TsHN

¹H-NMR δ 7.89 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.16-7.14 (m, 3H), 6.93 (d, J = 6.0 Hz, 2H), 2.99 (s, 2H), 2.44 (s, 3H), 1.37 (s, 6H); ¹³C-NMR δ 149.2, 145.0, 136.5, 135.9, 130.5, 129.7, 128.5, 128.2, 126.7, 85.8, 45.6, 26.2, 21.8; HRMS calcd for [C₁₈H₂₁NO₄S+Na]⁺ 370.1083, found 370.1081.

¹H-NMR δ 7.86 (d, J = 6.8 Hz, 2H), 7.33-7.16 (m, 17H), 4.97 (d, J = 11.6 Hz, 1H), 4.79-4.74 (m, 3H), 4.62 (d, J = 11.6 Hz, 1H), 4.49 (m, 1H), 4.38 (d, J = 9.2 Hz, 1H), 4.19 (s, 2H), 3.94 (t, J = 8.0 Hz, 1H), 3.71 (m, 1H), 3.44 (m, 1H), 3.32-3.28 (m, 1H), 3.28 (s, 3H); ¹³C-NMR δ 150.1, 145.3, 138.7, 138.1, 137.7, 135.5, 129.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 127.8, 98.2, 82.1, 79.8, 75.9, 75.0, 73.6, 68.4, 65.4, 55.5, 21.8; [α] 32.9 (*c* 0.79, CHCl₃); HRMS calcd for $[C_{36}H_{39}NO_9S+Na]^+$ 684.2238, found 684.2243.

To a solution of alcohol (200 mg, 0.397 mmol) in CH_2Cl_2 (2 mL), *p*-toluenesulfonyl isocyanate (235 μ L, 1.19 mmol) was added. The mixture was stirred under Ar atmosphere 1 h at room temperature. After evaporation, the mixture was purified by silica gel column chromatography (hexane:EtOAc 2:1-1:1) to give 257 mg (95 %) of sulfonyl carbamate.

¹H-NMR δ 7.77 (d, J = 7.5 Hz, 2H), 7.66 (m, 4H), 7.26-7.23 (m, 5H), 6.98 (d, J = 8.0

Hz, 2H), 6.76 (d, J = 9.2 Hz, 2H), 6.66 (d, J = 9.0 Hz, 2H), 5.85 (d, J = 8.5 Hz, 1H), 5.79 (t, J = 10.3 Hz, 1H), 5.10 (s, 1H), 4.54 (t, J = 10.2 Hz, 1H), 4.35 (dd, J = 10.4, 4.6 Hz, 1H), 3.84-3.69 (m, 3H), 3.64 (s, 3H), 2.26 (s, 3H); ¹³C-NMR $\delta \square$ 155.9, 150.4, 136.6, 135.3, 134.4, 131.4, 129.6, 129.3, 128.4, 128.2, 126.3, 124.0, 118.9, 101.7, 98.1, 79.1, 72.3, 68.6, 66.2, 55.7, 55.1, 21.8; $[\alpha]^{24}_{D}$ -7.4 (*c* 1.0, CHCl₃); HRMS calcd for $[C_{36}H_{32}N_2O_{11}S+Na]^+$ 723.1619, found 723.1611.

To a solution of 1,2-*trans* cyclohexanediol (116 g, 10 mmol) and NAPBr (2.21 g, 10 mmol) in DMF (10 mL), NaH (60%, 0.40 g, 10 mmol) was added at 4 °C. The mixture was stirred at room temperature under N₂ atmosphere overnight. After addition of sat. NH₄Cl, the aqueous layer was extracted with EtOAc. The aqueous layers were extracted with EtOAc and the combined layers were washed with brine. After drying the extracts over Na₂SO₄, the solvent was removed under reduces pressure. The residue was purified by silica gel column chromatography (hexane:EtOAc 7:1-1:1) to give mono-NAP ether (1.05 g, 42%).

¹H-NMR δ 7.85-7.79 (m, 4H), 7.50-7.47 (m, 3H), 4.86 (d, J = 11.6 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 3.52 (m, 1H), 3.25 (m, 1H), 2.17 (m, 1H), 2.02 (m, 1H), 1.75-1.70 (m, 4H), 1.290-1.24 (m, 4H); ¹³C-NMR δ 136.0, 133.3, 133.0, 128.3, 127.9, 127.7, 126.4, 126.1, 125.9, 125.8, 83.5, 73.9, 70.9, 32.0, 29.3, 24.3, 23.9; HRMS calcd for $[C_{17}H_{20}O_2+Na]^+$ 279.1356, found 279.1357.

¹H-NMR δ 7.91 (d, J = 8.0 Hz, 2H), 7.36-7.19 (m, 9H), 7.12 (d, J = 7.2 Hz, 2H), 4.69 (s, 2H), 4.17 (t, J = 6.0 Hz, 2H), 3.79 (t, J = 6.4 Hz, 1H), 2.71 (t, J = 7.2 Hz, 1H), 2.60 (t, J = 7.2 Hz, 2H), 2.43 (s, 3H), 1.95-1.87 (m, 3H); ¹³C-NMR δ 150.3, 150.0, 136.1, 135.8, 133.3, 133.0, 129.7, 128.5, 128.4, 128.1, 128.0, 127.8, 126.3, 126.2, 125.9, 125.9, 76.5, 78.4, 71.5, 63.2, 29.9, 23.2, 21.8, 14.3; HRMS calcd for [C₂₅H₂₇NO₅S+Na]⁺ 476.1502,

found 476.1500.

OFmoc ΌH

To a solution of 1,2-*trans* cyclohexanediol (1.16 g, 10 mmol) in pyridine (20 mL), FmocCl (2.58 g, 10 mmol) was added at 4°C. After 2 h, the solvent was removed under reduced pressure, and the residue was dissolved in CHCl₃. The organic layer was extracted with 1 M HCl, and brine. After concentration, the residue was purified by silica gel column chromatography (hexane:EtOAc 1:1) to give Fmoc product (1.85 g, 50%).

¹H-NMR δ 7.77 (d, J = 7.6 Hz, 2H), 7.46-7.61 (m, 2H), 7.43-7.39 (m, 2H), 7.34-7.31 (m, 2H), 4.46-4.41 (m, 3H), 4.29-4.26 (m, 1H), 3.66-3.60 (m, 1H), 2.12-2.04 (m, 2H), 2.00 (bs 1H), 1.75-1.73 (m, 2H), 1.38-1.26 (m, 4H); ¹³C-NMR δ 155.2, 143.6, 143.5, 141.5, 128.0, 127.3, 127.3, 125.3, 125.2, 120.2, 82.4, 72.7, 69.9, 47.0, 33.0, 30.0, 24.0, 23.9; HRMS calcd for [C₂₁H₂₂O₄+Na]⁺ 361.1410, found 361.1412.

¹H-NMR δ 7.88 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.75 (bs, 1H), 7.59 (d, J = 4.8 Hz, 2H), 7.42-7.24 (m, 7H), 4.70 (m, 1H), 4.60 (m, 1H), 4.40-4.32 (m, 2H), 4.21 (t, J = 7.2 Hz, 1H), 2.34 (s, 3H), 2.06 (m, 2H), 1.71 (m, 4H), 1.31 (m, 4H); ¹³C-NMR δ 155.7, 149.9, 145.1, 143.6, 143.4, 141.4, 141.4, 135.7, 129.7, 128.5, 128.1, 128.0, 127.4, 127.3, 125.4, 120.2, 77.3, 70.1, 46.8, 30.1, 30.1, 23.3, 21.7; HRMS calcd for [C₂₉H₂₉NO₇S+Na]⁺ 558.1557, found 558.1558.

To a solution of alcohol **14** (500 mg, 0.779 mmol) in THF (7 mL), *p*-toluenesulfonyl isocyanate (0.15 mL, 0.982 mmol) was added. The mixture was stirred under N_2 atmosphere overnight at room temperature. After evaporation, the mixture was purified by silica gel column chromatography (hexane:EtOAc 7:3-1:1) to give 654 mg (quant.) of sulfonyl carbamate **15**.

¹H-NMR δ 7.62 (d, J = 7.2 Hz, 2H), 7.75 (d, J = 6.4 Hz, 2H), 7.7-7.67 (m, 4H), 7.54 (t, J = 7.2 Hz, 1H), 7.4-7.1 (m, 14H), 7.00 (d, J = 8.4 Hz, 2H), 5.23 (t, J = 9.6 Hz, 1H), 5.10 (t, J = 9.6 Hz, 1H), 4.58 (d, J = 10.8 Hz, 1H), 4.51 (d, J = 10.8 Hz, 1H), 4.41 (d, J = 10.0 Hz, 1H), 4.1-3.9 (m, 3H), 3.44 (d, J = 9.6 Hz, 1H), 2.28 (s, 3H), 2.14 (s, 3H), 1.10 (s, 9H); ¹³C-NMR δ 165.4, 149.6, 144.8, 137.6, 136.0, 135.7, 135.4, 133.5, 133.3, 132.9, 130.0, 130.0, 129.6, 129.1, 128.7, 128.5, 128.3, 128.2, 128.0, 127.9, 127.8, 82.7, 80.0, 78.7, 76.8, 75.1, 75.0, 70.0, 62.3, 31.1, 27.0, 21.8, 19.5, 11.4; [α]²⁴_D28 (c 0.97, MeOH); calcd for [C₄₅H₄₉NO₉S₂Si+Na]⁺ 862.2510, found 862.2511.

To a solution of benzoate **15** (34.5 mg, 0.0411 mmol) in anhydrous MeOH (0.5 mL), 28% NaOMe solution (55 μ L, MeOH solution) was dropped in the presence of phenolphtalein. After stirring the mixture for 10 h under N₂ atmosphere at room temperature, the mixture was neutralized by addition of Amberlyst 15E until the color was disappeared. After filtration, the resins were washed with MeOH and chloroform. After evaporation, the crude was purified by preparative TLC to afford 27.0 mg (89 %) of the product **16**.

¹H-NMR δ 7.92 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 6.4 Hz, 2H), 7.68 (d, J = 6.8 Hz, 2H), 7.45-7.28 (m, 12H), 7.10-7.08 (m, 2H), 4.95 (t, J = 9.2 Hz, 1H), 4.49 (d, J = 11.2 Hz, 1H), 4.40 (d, J = 11.2 Hz, 1H), 4.22 (d, J = 9.6 Hz, 1H), 3.92 (s, 2H), 3.78 (t, J = 9.6 Hz, 1H), 3.39 (t, J = 9.2 Hz, 1H), 3.37 (t, J = 8.8 Hz, 1H), 2.39 (s, 3H), 2.17 (s, 3H), 1.09 (s, 9H); ¹³C-NMR δ 150.3, 145.3, 137.7, 136.0, 135.7, 135.7, 133.6, 133.0, 129.9, 129.8, 128.6, 128.6, 128.2, 128.1, 127.9, 127.8, 85.4, 81.5, 79.9, 75.0, 74.8, 70.8, 62.4, 27.0, 21.8, 19.5, 11.5; $[\alpha]^{24}_{D}$ - 6.3 (*c* 0.92, MeOH); calcd for $[C_{38}H_{45}NO_8S_2Si+Na]^+$ 758.2248, found 758.2249.

To a solution of TBDPS ether **15** (134.0 mg, 0.160 mmol) in CH₃CN (4 mL), aq. 48% HF (1 mL) was added. After overnight, the mixture was diluted with water. The aqueous layer was extracted with CHCl₃. The combined layers were washed with brine. After drying the extract over Na_2SO_4 , the solvent was evaporated. The residue was purified by silica gel column chromatography (CHCl₃:EtOAc 4:1-1:1) to give 87.8 mg of white solid **17** (92 %).

¹H-NMR δ 7.86 (d, J = 8.4 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 7.24-7.70 (m, 3H), 7.57 (m, 1H), 7.43-7.29 (m, 2H), 7.15 (m, 2H), 7.02 (d, J = 7.6 Hz, 2H), 5.24 (t, J = 9.6 Hz, 1H), 5.12 (t, J = 9.6 Hz, 1H), 5.24 (t, J = 9.6 Hz, 1H), 5.12 (t, J = 9.6 Hz, 1H), 4.60 (d, J = 10.8 Hz, 1H), 4.53 (d, J = 10.8 Hz, 1H), 4.42 (d, J = 9.6 Hz, 1H), 3.98 (s, 2H), 3.94 (t, J = 9.2 Hz, 1H), 3.71 (s, 1H), 3.45 (d, J = 10.0 Hz, 1H), 2.30 (s, 3H), 2.15 (s, 3H), 1.11 (s, 9H); ¹³C-NMR δ 165.4, 149.5, 144.9, 137.6, 136.0, 135.7, 133.5, 133.3, 132.9, 130.0, 130.0, 129.9, 129.6, 129.2, 128.7, 128.5, 128.3, 128.2, 128.0, 127.8, 82.8, 80.0, 78.8, 75.1, 75.0, 70.0, 67.2, 62.3, 27.0, 21.8, 19.5, 19.5, 11.4; [α]²⁴_D 11.5 (*c* 1.20, MeOH); HRMS calcd for [C₂₉H₃₁NO₉S₂+Na]⁺ 624.1332, found 624.1334.

To a solution of benzyl ether **15** (145.4 mg, 0.173 mmol) in CH_2Cl_2 (2 mL) and H_2O (1 mL), DDQ (78.0 mg, 0.345 mmol) was added. The mixture was refluxed overnight. The reaction was quenched with acsorbate buffer, and the aqueous layer was extracted with

EtOAc. The combined layers were washed with brine. After drying the extract over Na_2SO_4 , the solvent was evaporated. The residue was purified by preparative TLC (hexane:EtOAc 1:1) to give 88.3 mg (68%) of product **18**.

¹H-NMR δ 8.08 (d, J = 7.2 Hz, 1H), 7.87 (d, J = 6.8 Hz, 2H), 7.85-7.66 (m, 5H), 7.55 (t, J = 8.0 Hz), 7.47-7.36 (m, 8H), 7.06 (d, J = 8.0 Hz, 2H), 5.11 (t like dd, J = 9.2 Hz, 1H), 5.10 (t like dd, J = 9.2 Hz, 1H), 4.42 (d, J = 9.6 Hz, 1H), 3.95-3.45 (m, 3H), 2.32 (s, 3H), 2.11 (s, 3H), 1.10 (s, 9H); ¹³C-NMR δ 166.7, 165.7, 149.6, 149.5, 145.0, 137.6, 137.4, 135.9, 135.8, 135.6, 135.6, 135.4, 135.3, 133.5, 133.4, 132.9, 129.9, 129.8, 129.7, 129.5, 128.5, 128.1, 127.9, 127.7, 127.6, 126.4, 90.0, 75.9, 75.2, 72.5, 71.3, 62.3, 26.9, 21.6, 19.4; HRMS calcd for [C₃₈H₄₃NO₉S₂Si+Na]⁺ 772.2041, found 772.2039.

To a solution of thioglycoside **15** (68.1 mg, 0.0811 mmol) in acetone (2 mL) and H₂O (0.5 mL), NBS (100 mg, 0.56 mmol) was added. The reaction was quenched by 10% Na₂S₂O₃ aq. The aqueous layer was extracted with EtOAc three times. The combined layers were washed with brine. After drying the extract over Na₂SO₄, the solvent was evaporated. The residue was purified by silica gel column chromatography (hexane:EtOAc 3:2) to give the product (54.8 mg, 83%). From ¹HNMR analysis, main product was α isomer.

¹H-NMR δ 7.86 (d, J = 7.6 Hz, 2H), 7.75-7.66 (m, 6H), 5.52 (m, 1H), 7.43-7.32 (m, 8H), 7.27-7.24 (m, 4H), 7.13-7.11 (m, 2H), 7.03 (d, J = 8.0 Hz, 2H), 5.60 (t like dd, J = 9.6 Hz, 1H), 5.52 (bs, 1H), 4.70 (dd, J = 3.6 Hz, 8.0 Hz, 1H), 4.56 (s, H), 3.99-3.85 (m, 4H), 2.72 (bs, 1H), 2.30 (s, 3H), 1.22 (s, 9H); ¹³C-NMR δ 165.3, 150.2, 144.9, 143.6, 135.6, 135.6, 135.1, 133.3, 132.8, 132.7, 129.9, 129.9, 129.7, 129.5, 129.5, 129.0, 128.4, 128.3, 127.9, 127.8, 127.8, 126.5, 82.6, 79.5, 79.1, 69.8, 69.3, 63.9, 26.8, 21.7, 21.5, 19.2, 11.2; $[\alpha]^{24}{}_{\rm D}$ 52.5 (*c* 1.10, CHCl₃); calcd for $[C_{44}H_{47}NO_{10}SSi+Na]^+$ 832.2582, found 832.2582.

A solution of sulfonylcarbamate **15** (32.6 mg, 0.0396 mmol) in pyridine (0.7 mL) and MeOH (0.3 mL) was stirred at 50 °C for 10 h. After evaporation, the residue was purified by preparative TLC (hexane:EtOAc 4:1) to give 23.7 mg (93%) of product **14**. ¹H-NMR δ 8.08 (dd, J = 7.1 Hz, 1.5 Hz, 2H), 7.80 (d, J = 7.8 Hz, 2H), 7.72 (dd, J = 8.1 Hz, 1.5 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.4-7.2 (m, 13H), 5.20 (t, J = 9.2 Hz, 1H), 4.89 (d, J = 11.2 Hz, 1H), 4.80 (d, J = 11.2 Hz, 1H), 4.49 (d, J = 10.0 Hz, 1H), 4.0-3.9 (m, 3H), 3.87 (t, J = 9.2 Hz, 1H), 3.46 (dt, J = 9.2 Hz, 0.9 Hz, 1H), 2.51 (bs, 1H), 2.21 (s, 3H), 1.10 (s, 9H); ¹³C-NMR δ 165.8, 138.0, 137.6, 135.7, 135.4, 133.4, 133.1, 132.8, 129.88, 129.58, 129.5, 128.8, 128.4, 128.2, 128.0, 127.8, 127.7, 127.6, 127.5, 125.1 82.3, 79.9, 77.8, 76.7, 75.1, 72.5, 62.6, 26.9, 21.6, 19.4, 11.1; [α]²⁴_D 6.9 (*c* 1.34, CHCl₃); Anal. Calcd for C₃₇H₄₀O₆SSi: C, 69.34; H, 6.29. Found: C, 69.39; H, 6.02.

To a solution of alcohol **20** (191 mg, 0.397 mmol) in THF (4 mL), *p*-toluenesulfonyl isocyanate (235 μ L, 1.19 mmol) was added. The mixture was stirred under Ar atmosphere 1.5 h at room temperature. After evaporation, the mixture was purified by silica gel column chromatography (hexane:EtOAc 4:1-7:3, then 1:1) to give 230 mg (97 %) of sulfonyl carbamate **21**.

¹H-NMR δ 7.86 (d, J = 8.0 Hz, 2H), 7.26-7.12 (m, 19H), 4.77 (t, J = 9.2 Hz, 1H), 4.73 (d, J = 10.7 Hz, 1H), 4.61-4.46 (m, 5H), 4.03 (d, J = 9.7 Hz, 1H), 3.69-3.57 (m, 4H), 3.44 (m, 1 H), 2.36 (s, 3H), 1.96 (s, 3H); ¹³C-NMR δ \square 149.1, 145.3, 138.2, 137.8, 135.7, 132.8, 132.1, 129.7, 128.9, 128.6, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 128.0, 127.8, 85.3, 83.4, 79.5, 77.7, 75.4, 75.3, 74.5, 73.6, 68.9, 21.8; [α]²⁴_D 13.4 (*c* 1.3,

CHCl₃); HRMS calcd for $[C_{36}H_{39}NO_8S_2+Na]^+$ 700.2009, found 700.2017.

To a solution of donor **21** (66 mg, 0.11 mmol) and acceptor **22** (74 mg, 0.13 mmol) in dry CH₂Cl₂ (3 mL) was added molecular sieves 4Å (200 mg), and the mixture was stirred under Ar atmosphere 3 h at room temperature, then cooled to -40 °C. *N*-iodosuccinimide (NIS; 50 mg, 0.22 mmol) and trifluoromethanesulfonic acid (TfOH, $2 \Box L$, 22.6 \Box mol) were added to the mixture, and it was stirred under Ar atmosphere 15 min at -40 °C. After dilution with chloroform, the precipitate was filtered off, and washed with chloroform. The filtrate and washings were combined, and successively washed with 1 M sodium carbonate and sodium thiosulfate, dried (Na₂SO₄) and concentrated. Column chromatography (CHCl₃:EtOAc 2:1-1:1) of the residue on silica gel afforded disaccharide (115 mg, 94 %) as an amorphous mass **23**.

¹H-NMR δ 7.84 (d, 2H, *J* = 8.0 Hz), 7.32-7.07 (m, 32 H), 4.97 (d, *J* = 10.9 Hz, 1H), 4.83-4.62 (m, 6H), 4.56-4.45 (m, 6H), 4.39 (d, *J* = 10.9 Hz, 1H), 4.27 (d, *J* = 7.8 Hz, 1H), 4.01 (dd, *J* = 1.5, *J* = 11.7 Hz, 1H), 3.94 (t, *J* = 9.0 Hz, 1H), 3.72 (dd, *J* = 4.4, *J* = 9.8 Hz, 1H), 3.63-3.50 (m, 6H), 3.36-3.31 (m, 2H), 3.28 (s, 3H), 2.31 (s, 3H); ¹³C-NMR $\delta \Box$ 149.1, 145.2, 138.9, 138.5, 138.4, 138.1, 137.8, 137.7, 135.6, 129.7, 128.6, 128.5, 128.3, 128.1, 128.1, 128.1, 127.8, 100.7, 97.9, 82.2, 82.0, 80.0, 80.0, 77.5, 75.4, 75.2, 74.9, 74.8, 73.6, 73.5, 69.7, 68.7, 55.2, 21.8; $[\alpha]^{24}_{D}$ 19.0 (*c* 0.5, CHCl₃); calcd for $[C_{63}H_{67}NO_{14}S+Na]^+$ 1116.4174, found 1116.4189.

A solution of disaccharide (380 mg, 0.351 mmol) in pyridine-MeOH (7:3, 10 mL) was stirred at 50 °C overnight. After evaporation, the residue was purified by silica gel column chromatography (hexane:EtOAc 7:3-1:1) to give disaccharide **22** (279 mg, 90%).^{1,2}

¹H–NMR δ 7.33-7.27 (m, 28H), 7.16-7.14 (m, 2H), 4.96 (d, J = 10.8 Hz, 1H), 4.91-4.75 (m, 6H), 4.65-4.48 (m, 6H), 4.21 (d, J = 6.4 Hz, 1H), 4.13 (d, J = 10.8 Hz, 1H), 3.98 (t, J = 8.8 Hz, 1H), 3.79 (m, 1H), 3.72-3.66 (m, 3H), 3.55-3.44 (m, 6H), 3.36 (s, 3H); ¹³C-NMR δ 138.8, 138.8, 138.4, 138.2, 128.6, 128.5, 128.5, 128.3, 128.1, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 103.6, 98.2, 84.6, 82.1, 79.9, 78.2, 77.6, 77.5, 75.9, 75.5, 75.2, 74.6, 73.6, 73.5, 70.0, 69.1, 68.9, 55.4; [α] 15.5 (*c* 1.5, CHCl₃); HRMS calcd for $[C_{55}H_{60}O_{11}+Na]^+$ 684.2238, found 684.2243.

1. Schmid, U.; Waldman, H. Chem. Eur. J. 1998, 4, 494-501.

2. Honda, E.; Gin, D. Y. J. Am. Chem. Soc. 2002, 124, 7343-7352.

A solution of acetal **3b** (1.77 g, 5.38 mmol) in TFA-H₂O (4 mL, 1:1) was stirred at room temperature for 30 min. The mixture was concentrated *in vacuo* and toluene was added, and evaporated. After drying the crude under high vacuum, the residue was dissolved in pyridine (5 mL) and TBDPSCl (1.5 mL, 5.92 mmol) and DMAP (0.13 g, 1.08 mmol) were added at 4 °C. The mixture was stirred was allowed to warm at room temperature and stirred overnight. After concentration, the residue was dissolved in CHCl₃ and the organic layer was washed with 1 M HCl. The aqueous layer was extracted with CHCl₃ and the combined layers were washed with brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (CHCl₃:EtOAc 9:1-7:3) to give mono-TBDPS ether **25** as an oil (2.34 g, 91%).

¹H-NMR δ 7.87 (d, J = 8.4 Hz, 2H), 7.61-7.59 (m, 3H), 7.55-7.23 (m, 9H), 4.18-4.08 (m, 3H), 3.86-3.83 (m, 1H), 3.65-3.55 (m, 2H), 2.41 (s, 3H), 1.03 (s, 9H); ¹³C-NMR δ 150.6, 145.3, 135.6, 135.5, 132.8, 130.1, 129.9, 129.8, 128.5, 128.0, 69.8, 67.5, 64.2, 26.9,

21.8, 19.3; HRMS calcd for $[C_{27}H_{33}NO_6SSi+Na]^+$ 550.1690, found 550.1694.

To a solution of alcohol **25** (0.58 g, 1.10 mmol) in CH_2Cl_2 (5 mL), Dess-Martin reagent (932 mg, 2.20 mmol) was added. After stirring the mixture for 2 h, 10% Na₂S₂O₃ was added to quench the reaction. The aqueous layer was extracted with CHCl₃ and the combined layers were washed with brine. The extract was dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography (hexane:EtOAc 7:3) to give ketone **26** (365 mg, 63%).

¹H-NMR δ 7.94 (d, J = 8.4 Hz, 2H), 7.64-7.58 (m, 4H), 7.46-7.24 (m, 9H), 4.27 (dd, J = 10.8 Hz, 5.2 Hz), 4.05 (d, J = 9.2 Hz, 1H), 3.78 (d, J = 10.8 Hz, 1H), 2.40 (s, 3H), 1.02 (s, 9H); ¹³C-NMR δ 151.5, 145.8, 135.8, 135.8, 134.9, 132.4, 132.2, 130.4, 130.3, 129.8, 129.0, 128.2, 128.1, 91.6, 72.3, 66.9, 26.8, 21.9, 19.3; HRMS calcd for $[C_{27}H_{31}NO_6SSi+Na]^+$ 548.1534, found 548.1536.

To a solution of alcohol **25** (247.1 mg, 0.469 mmol) in acetone (4 mL), 2.5 M Jones reagent was slowly added at 4 °C until alcohol was consumed on TLC analysis. Then, *i*-PrOH was added to destroy excess of Jones reagent and diluted with acetone. The precipitate was filtered through celite and washed with acetone. After evaporation, the residue was purified by silica gel column chromatography (hexane:EtOAc 7:3) to give ketone **26** (174.3 mg, 71%).

To a solution of ketone **26** (137 mg, 0.261 mmol) in MeOH (1 mL) and THF (0.5 mL), NaBH₄ (20 mg, 0.522 mmol) was added at 4 °C. After 30 min, 1M HCl was added, and

the aqueous layer was extracted with $CHCl_3$. The organic layers were washed with brine and dried over Na_2SO_4 . After concentration, the residue was purified by silica gel column chromatography (hexane:EtOAc 1:1) to give alcohol **25** (138.9 mg, quant.).

To a solution of hemiketal **26** (291 mg, 0.554 mmol) in THF (5 mL), allyl magnesium bromide (1.5 mL, ca. 1.0 M in Et₂O) was added dropwise at 4 °C. After stirring the mixture for 3 h, sat. NH₄Cl was added to quench the reaction. The aqueous layer was extracted with CHCl₃ several times and the combined layers were washed with brine. The mixture was concentrated after drying the extract over Na₂SO₄. The residue was purified by silica gel column chromatography (CHCl₃:EtOAc 4:1-1:1) to give adduct **27** (290 mg, 92%).

¹H-NMR δ 7.89 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 4H), 7.45-7.35 (m, 6H), 7.28-7.24 (m, 2H), 5.68 (m, 1H), 5.02 (m, 2H), 4.09 (d, J = 11.2 Hz, 1H), 4.03 (d, J = 11.2 Hz, 1H), 3.45 (s, 2H), 2.39 (s, 3H), 2.23-2.19 (m, 2H), 1.02 (s, 9H); ¹³C-NMR δ 150.2, 145.3, 135.7, 135.6, 132.7, 131.9, 130.2, 129.8, 128.4, 128.0, 119.6, 73.2, 68.6, 65.9, 38.7, 27.0, 21.8, 19.4; HRMS calcd for [C₃₀H₃₇NO₆SSi+Na]⁺ 590.2003, found 590.2010.

To a solution of substrate **27** (187.2 mg, 0.330 mmol) in acetone *N*-methylmorpholine *N*-oxide (29 mg, 0.495 mmol) in acetone (1 mL) and H₂O (2 mL), OsO₄ (2.5 % *tert*-butanol solution, 0.1 mL) was added. The mixture was stirred at room temperature overnight, and 10% Na₂S₂O₃ was added to quench the reaction. The aqueous layer was extracted with CHCl₃ and the combined layers were washed with 1 M HCl and brine. The combined layers were concentrated after drying over Na₂SO₄. The residue was

purified by silica gel column chromatography (CHCl₃:EtOAc 1:1-3:7) to give triol **28** (178 mg, 90%). The diastereomer ratio could not be determined.

¹H-NMR (as a mixture, CD₃OD) δ 7.89-7.85 (m, 2H), 7.59-7.55 (m, 4H), 7.44-7.35 (m, 6H), 7.28-7.25 (m, 2H), 4.21-4.03 (m, 3H), 3.61 (m, 0.44 H), 3.61-3.34 (m, 4H), 2.39 (s, 3H), 1.02 (s, 9H); ¹³C-NMR (as a mixture, CD₃OD) δ 150.6, 145.2, 135.7, 132.9, 132.8, 132.6, 132.6, 130.2, 130.2, 129.8, 128.4, 128.4, 128.1, 74.6, 74.1, 73.9, 69.8, 69.0, 68.8, 68.5, 68.0, 67.4, 67.2, 67.1, 67.0, 66.9, 66.3, 65.7, 65.1, 36.4, 36.2, 36.1, 34.5, 27.1, 27.0, 21.8, 19.4; HRMS calcd for [C₃₀H₃₉NO₈SSi+Na]⁺ 624.2058, found 624.2066.

¹³C-NMR of **1b**

¹H-NMR of **1c**

¹H-NMR of **1d**

¹³C-NMR of **1d**

¹H-NMR of **1e**

¹³C-NMR of **1e**

¹H-NMR of **2b**

¹³C-NMR of **2b**

¹H-NMR of **3b**

¹³C-NMR of **3b**

¹H-NMR of **4b**

¹³C-NMR of **4b**

ļ

S41

¹H-NMR of **5b**

¹³C-NMR of **5b**

¹H-NMR of **6b**

¹³C-NMR of **6b**

¹H-NMR of **7b**

¹³C-NMR of **7b**

¹H-NMR of methylated **7b**

¹³C-NMR of methylated **7b**

¹H-NMR of **8b**

¹³C-NMR of **8b**

¹H-NMR of methylated **8b**

¹³C-NMR of methylated **8b**

¹H-NMR of **9b**

¹³C-NMR of **9b**

¹H-NMR of **10b**

¹³C-NMR of **10b**

¹H-NMR of **11b**

¹³C-NMR of **11b**

¹H-NMR of **12a**

¹³C-NMR of **12a**

¹H-NMR of **12b**

¹³C-NMR of **12b**

¹H-NMR of **13a**

¹³C-NMR of **13a**

¹H-NMR of **13b**

13C-NMR of 13b

¹H-NMR of **15**

¹³C-NMR of **15**

¹H-NMR of **16**

¹³C-NMR of **16**

COSY of 23

CH-COSY of 23

COSY of 24

CH-COSY of 24

Chiral HPLC spectrum of 5a (racemic)

ビーク#	保持時間	成分名	面積	画さ	面積%	高さ%
1	3.099		4201	783	0.107	0.684
2	3.355		0120	876	0.156	0.590
3	3.858		5416	471	0.138	0.411
4	4.123		17976	2659	0.459	2.323
5	4.450		1298	152	0.033	0.132
6	4.710		1689	115	0.043	0.100
7	5.267		1920	154	0.049	0.135
8	5.709		119/4	1291	0.306	1.128
9	6.678		1027	108	0.026	0.094
10	8.573		12860	1010	0.328	0.882
11	9.179		10321	698	0.264	0.610
12	13.404		1780	85	0.045	0.075
13	16.336		1928346	65231	49,245	56.980
14	23.199		1910887	41047	48.799	35.855
合計			3915820	114480	100.000	100.000

CHIRALPAK AD (5µm, 4.6mm x 250mm) hexane:*i*-PrOH 9:1, 254nm, 1.0 mL/min

Chiral HPLC spectrum of 5a after deprotection

ビーク#	保持時間	成分名	面積	高さ	面積%	高さ%
1	3.099		3251	573	0.098	0.820
2	3.391		2505	408	0.076	0.584
3	3.864		2624	317	0.079	0.453
4	4.024		8869	1106	0.268	1.581
5	5.707		13652	1344	0.413	1.922
6	7.958		1302	85	0.039	0.122
7	8.932		4397	278	0.133	0.398
8	11,179		7184	378	0.217	0.540
9	12.367		28593	1440	0.865	2.059
10	15.366		1299	59	0.039	0.085
11	22.985		3233620	63953	97.772	91,137
승計			3307296	69943	100 000	100 000

CHIRALPAK AD (5µm, 4.6mm x 250mm) hexane:i-PrOH 9:1, 254nm, 1.0 mL/min

HPLC spectrum of 6a

CHIRALCEL OD-H, 5µm, 4.6mm x 150mm, hexane:i-PrOH 9:1, 1.0 mL/min, 254nm

HPLC spectrum of 6a after deprotection

CHIRALCEL OD-H, 5µm, 4.6mm x 150mm, hexane:i-PrOH 9:1, 1.0 mL/min, 254nm