5-methylcytosine enhance the substrate activity of DNA polymerase

Tian Tian, Shuang Peng, Heng Xiao, Yuelin Long, Boshi Fu, Xiaoe Zhang, Shan Guo, Shaoru Wang^{*}, Xiang Zhou^{*}, Songmei Liu, Xin Zhou

Here, we first demonstrated that 5-MedCTP could be incorporated into diverse synthetic DNA templates by the exonuclease deficient Klenow Fragment with a much higher efficiency than dCTP and 5-Hydroxymethyl-dCTP. And the efficiency gap of incorporation could be increased in presence of different amounts of Ag^I. Further, we first conducted a comparable study of primer extension reaction using templates containing deoxycytidine (dC) or 5-methyldeoxycytidine (5-mdC) for incorporating different triphosphates of dCTP, 5-MedCTP and 5-Hydroxymethyl-dCTP. Based on our finding, 5-methyldeoxycytidine could enhance the substrate activity of Klenow Fragment (exo-) and this feature could be potentially used in DNA methylation analysis.

Supporting Information

5-methylcytosine enhance the substrate activity of DNA polymerase

Tian Tian,[†] Shuang Peng,[†] Heng Xiao,[†] Yuelin Long,[†] Boshi Fu,[†] Xiaoe Zhang,[†] Shan Guo,[†] Shaoru Wang,^{*†} Xiang Zhou,^{*†¶} Songmei Liu,[⊤] Xin Zhou[⊤]

[†] College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. of China.,

¶ State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.

〒 Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. of China

General information: The oligonucleotides and dCTPs were purchased from Invitrogen Technology(Shanghai, China). Klenow Fragment(exo-), Klenow Fragment, T4 DNA polymerase, Taq DNA polymerase and 5-MedCTPs were purchased from New England Biolabs, Inc. 5-Hydroxymethyl-dCTPs were purchased from Bioline, Inc. Tris base, MgCl₂, KCl, NaCl, formamide(deionized) and dithiothreitol(DTT) were purchased from Sigma Inc. PAGE analyses were performed with denaturing 20%(19:1) polyacrylamide gel in presence of 8 M urea.

DNA polymerization by polymerase: The reaction mixtures (20 μ L) containing 100 nM primer, 150 nM template, 20 μ M dNTPs, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 0.6 units of polymerase and 1 mM dithiothreitol(DTT), in the presence or absence of various concentrations of metal ions were incubated at 37 °C for 1 h. The reactions were quenched by adding 100 μ L 80% aqueous formamide(deionized), and the solutions were immediately heated at 90 °C for 10 min. After cooling down to 4 °C, the solutions were analyzed by denaturing 20% PAGE. FAM labeled 15-primer, 19-mer and 24-mer were used as the markers in gel analysis.

Kinetic studies of 5-MedCTP or dCTP incorporation by Klenow Fragment (exo-). The reaction mixtures (20 μ L) containing 500 nM primer, 1.0 μ M template, 20 μ M dATP, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 1.0 unit of Klenow Fragment (exo-) and 1 mM dithiothreitol(DTT), in the presence of various concentrations of 5-MedCTP or dCTP were incubated at 37 °C for 6 mins. The reactions were quenched by adding 100 μ L 80% aqueous formamide(deionized), and the solutions were immediately heated at 90 °C for 10 min. After cooling down to 4 °C, the solutions were analyzed by denaturing 20% PAGE. FAM labeled 15-primer, 19-mer and 24-mer were used as the markers in gel analysis. Kinetic data were derived as described in known literature^[1].

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Oligomer	Sequence(from 5'to 3')	
Template	GGTGCGTGGCTATAGTGAGTCGTA	
Template Me	GGTG (MeC) GTGGCTATAGTGAGTCGTA	
FAM-15mer	5'-FAM-TACGACTCACTATAG	
FAM-19mer	5'-FAM-TACGACTCACTATAGCCACA	
FAM-24mer	5'-FAM-TACGACTCACTATAGCCACACACC	

 Table S1 Sequences of oligomers used for polymerization.

Table S2 Kinetic parameters of 5-MedCTP or dCTP incorporation by Klenow Fragment (exo-).

Incorporation	K _M (μM)	kcat (min ⁻¹)	$rac{k_{cat}/K_{M} (min^{-1}}{\mu M^{-1}})$
5-MedCTP	0.95	3.9	4.10
dCTP	8.9	2.7	0.30

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Figure S1. Illustration of different metal ion-base complex. a, C-Ag⁺-C; b, T-Hg²⁺-T, c, A-Ag⁺-C.

Figure S2. The polymerization reaction by the Klenow Fragment(exo-) in the absence or presence of Ag^{I} ions. The reaction was performed in a buffer consisting of 100 nM primer, 150 nM template, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 0.6 units of Klenow Fragment(exo-), 1 mM dithiothreitol(DTT) and 20 μ M dNTPs (dATP + dCTP or dATP + 5-MedCTP), in the presence or absence of different amounts of AgNO₃. M: mixtures of FAM-15mer, FAM-19mer and FAM-24mer; 1-4: 20 μ M dCTP together with dATP was used; 5-8: 20 μ M 5-MedCTP together with dATP was used.

Figure S3. The reaction mixtures (20 μ L) containing 500 nM primer, 1.0 μ M template, 20 μ M dATP, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 1.0 unit of Klenow Fragment (exo-) and 1 mM dithiothreitol(DTT), in the presence of various concentrations of dCTP were incubated at 37 °C for 6 mins. The reactions were quenched by adding 100 μ L 80% aqueous formamide(deionized), and the solutions were immediately heated at 90 °C for 10 min. After cooling down to 4 °C, the solutions were analyzed by denaturing 20% PAGE. FAM labeled 15-primer, 19-mer and 24-mer were used as the markers in gel analysis.

Figure S4. The reaction mixtures (20 μ L) containing 500 nM primer, 1.0 μ M template, 20 μ M dATP, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 1.0 unit of Klenow Fragment (exo-) and 1 mM dithiothreitol(DTT), in the presence of various concentrations of 5-MedCTP were incubated at 37 °C for 6 mins. The reactions were quenched by adding 100 μ L 80% aqueous formamide(deionized), and the solutions were immediately heated at 90 °C for 10 min. After cooling down to 4 °C, the solutions were analyzed by denaturing 20% PAGE. FAM labeled 15-primer, 19-mer and 24-mer were used as the markers in gel analysis.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Figure S5. Effects of Ag^{I} ions on the polymerization reaction by the Klenow fragment(exo-). The reaction was performed in a buffer consisting of 100 nM primer, 150 nM template, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 0.6 units of Klenow Fragment (exo-), 1 mM dithiothreitol (DTT) and 20 μ M dNTPs, in the presence or absence of different amounts of AgNO₃. And dATP + dCTP was used in the assay. Bars showed the relative amounts of the full-length product of Ag^I mediated reactions over the stopped product of the reactions compared with control reaction without Ag^I ions. Values are averages and the standard deviation determined by three independent experiments.

Figure S6. Effects of Ag^I ions on the polymerization reaction by the Klenow fragment(exo-). The reaction was performed in a buffer consisting of 100 nM primer, 150 nM template, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 0.6 units of Klenow Fragment (exo-), 1 mM dithiothreitol (DTT) and 20 μ M dNTPs, in the presence or absence of different amounts of AgNO₃. And dATP + 5-Hydroxymethyl-dCTP was used in the assay. Bars showed the relative amounts of the full-length product of Ag^I mediated reactions over the stopped product of the reactions compared with control reaction without Ag^I ions. Values are averages and the standard deviation determined by three independent experiments.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Figure S7. Effects of Ag^I ions on the polymerization reaction by the Klenow fragment(exo-). The reaction was performed in a buffer consisting of 100 nM primer, 150 nM template, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 0.6 units of Klenow Fragment (exo-), 1 mM dithiothreitol (DTT) and 20 μ M dNTPs, in the presence or absence of different amounts of AgNO₃. And dATP + 5-MedCTP was used in the assay. Bars showed the relative amounts of the full-length product of Ag^I mediated reactions over the stopped product of the reactions compared with control reaction without Ag^I ions. Values are averages and the standard deviation determined by three independent experiments.

Figure S8. Effects of Ag^I ion concentrations on the polymerization reaction by the Klenow Fragment with exonuclease activity. The reaction was performed in a buffer consisting of 100 nM primer, 150 nM template, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 0.6 units of Klenow Fragment, 1 mM dithiothreitol(DTT) and 20 μ M dNTPs (dATP + dCTP), in the presence or absence of different amounts of AgNO₃. M: mixtures of FAM-15mer, FAM-19mer and FAM-24mer; 1-3: template without 5-methyldeoxycytodine was used; 4-6: template with one 5-methyldeoxycytodine was used.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S9. Effects of Ag^{I} ion concentrations on the polymerization reaction by T4 DNA polymerase. The reaction was performed in a buffer consisting of 100 nM primer, 150 nM template, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, 0.6 units of T4 DNA polymerase, 1 mM dithiothreitol(DTT) and 20 μ M dNTPs (dATP + dCTP), in the presence or absence of different amounts of AgNO₃. M: mixtures of FAM-15mer, FAM-19mer and FAM-24mer; 1-4: template without 5-methyldeoxycytodine was used; 5-8: template with one 5-methyldeoxycytodine was used.

Figure S10. Effects of Ag^I ion concentrations on the polymerization reaction by Taq DNA polymerase. The reaction was performed in a buffer consisting of 100 nM primer, 150 nM template, 10 mM Tris-HCl (pH 8.8), 50 mM KCl, 4 mM MgCl₂, 0.08% (v/v) Nonidet P40, 0.6 units of Taq DNA polymerase, 1 mM dithiothreitol(DTT) and 20 μ M dNTPs (dATP + dCTP), in the presence or absence of different amounts of AgNO₃. M: mixtures of FAM-15mer, FAM-19mer and FAM-24mer; 1-4: template without 5-methyldeoxycytodine was used; 5-8: template with one 5-methyldeoxycytodine was used.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Figure S11. Effects of different metal ions on the polymerization reaction by the Klenow fragment(exo-). Bars showed the relative amounts of the full-length product over the stopped product of the reactions compared with Ag^I.

References:

[1] S. Creighton, L. B. Bloom and M. F. Goodman, Methods Enzymol 1995, 262, 232-256.