The preparation of compound $6,7,8,9,13,14,18,19,29$ and their charaterization can be found in manuscript, but we include all the information in this supporting information for the readers' convenience.

Preparation of Tert-butyl ((2S,6R)-6-methyl-5-oxo-5,6-dihydro-2H-pyran-2-yl) carbonate(6)

To a 1000 mL flask was added furan ketone $9(40 \mathrm{~g}, 363.5 \mathrm{mmol})$, CH2Cl2 (240 mL), formic acid/triethylamine (5:4 (molar ratio), 480 mL) and Noyori asymmetric transfer hydrogenation catalyst $(\mathrm{R})-\mathrm{Ru}(\mathrm{\eta}$ 6-mesitylene) $-(\mathrm{R}, \mathrm{R})-\mathrm{TsDPEN}(222 \mathrm{mg}, 0.1 \mathrm{~mol} \%$). The resulting solution was stirred at room temperature for 24 h . The reaction mixture was diluted with water (500 mL) and extracted with EtOAc (3 x 700 mL). The combined organic layers were washed with saturated NaHCO 3 , dried over Na 2 SO 4 , and concentrated under reduced pressure. The resulting crude furan alcohol 10 was dissolved in 603 mL of THF/H2O (3:1) and cooled to 0 oC. Solid NaHCO3 ($60.9 \mathrm{~g}, 727.8 \mathrm{mmol}$), $\mathrm{NaOAc} \cdot 3 \mathrm{H} 2 \mathrm{O}(49.6 \mathrm{~g}, 363.9 \mathrm{mmol})$, and NBS ($64.3 \mathrm{~g}, 363.7 \mathrm{mmol}$) were added to the solution and the mixture was stirred for 1 h at 0 oC . The reaction was quenched with saturated NaHCO3 (600 mL), extracted (3 x 800 mL) with Et2O, dried (Na2SO4), concentrated under reduced pressure. The crude mixture 11 was dissolved in CH 2 Cl 2 (500 mL) and the solution was cooled to -78 oC . (Boc)2O (93 g, 400 mmol) and a catalytic amount of DMAP $(1.5 \mathrm{~g})$ was added to the reaction mixture. The reaction was stirred for 12 h at -78 to -30 oC , and quenched with saturated NaHCO 3 , extracted with Et2O, dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $6 \% \mathrm{EtOAc} / \mathrm{Hexane}$ to give $46.1 \mathrm{~g}(201.9 \mathrm{mmol}, 60 \%)$ of Boc-protected pyranone (ent)-8: Rf $(20 \% \mathrm{Et} 2 \mathrm{O} / \mathrm{Hexane})=$ $0.58 ;[\mathrm{a}] 25 \mathrm{D}=-98(\mathrm{c}=1.0, \mathrm{CH} 2 \mathrm{Cl} 2) ; 1 \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 6.78(\mathrm{dd}, \mathrm{J}=$ $10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ; 13 \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 195.5,151.7$, 140.9, 128.2, 89.1, 83.3.72.0, 27.5, 15.1; CIHRMS: Calculated for [C11H16O5Na+]: 251.0890, Found: 251.0883.

Preparation of (2R,6R)-6-((4-methoxybenzyl)oxy)-2-methyl-2H-pyran-3(6H)-one(7)

$\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}(34 \mathrm{~mL})$ solution of $\mathbf{6}(7.73 \mathrm{~g}, 33.9 \mathrm{mmol})$ and 4-methoxybenzyl alcohol (8.48 $\mathrm{mL}, 67.8 \mathrm{mmol}$) was cooled to $0{ }^{\circ} \mathrm{C}$, and a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(351 \mathrm{mg}, 0.339$ $\mathrm{mmol}, 1 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(335 \mathrm{mg}, 1.36 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with satd. aqueous NaHCO_{3}, extracted with ether ($3 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 5\% EtOAc/hexanes to give pyranone $7(8.00 \mathrm{~g}, 32.2 \mathrm{mmol}, 95 \%)$ as a yellow oil: $R_{f}(10 \% \mathrm{EtOAc} /$ hexanes $)=0.15$; $[\alpha]_{\mathrm{D}}^{24}=-24.7\left(c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.90(J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=10.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=10.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8$, 159.6, 146.7, 129.9, 128.9, 128.1, 114.0, 94.0, 75.3, 69.8, 55.3, 17.3; CIHRMS Calcd. For $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{H}\right]^{+}: 249.1127$. Found 249.1122

Preparation of (2R,6R)-6-((4-methoxybenzyl)oxy)-2-methyl-3,6-dihydro-2H-pyran-3-ol(7a/b)

Pyranone $7(7.84 \mathrm{~g}, 31.6 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(31.6 \mathrm{~mL})$, resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}, 0.4 \mathrm{M} \mathrm{CeCl}_{3}$ in methanol solution ($12.6 \mathrm{mmol}, 31.6 \mathrm{~mL}$) was added in a dropwise fashion, followed by adding $\mathrm{NaBH}_{4}(1.20 \mathrm{~g}, 31.6 \mathrm{mmol})$. By TLC tracking, the reaction was done after 1.5 h . The reaction mixture was diluted with ether (6 mL), then quenched with water (6 mL), extracted with ether ($3 \times 60 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give allylic alcohol $\mathbf{7 a} / \mathbf{b}$ as a mixture of diastereomers (7.83 g, $31.3 \mathrm{mmol}, 99 \%$) as a colorless oil: $R_{f}(30 \%$

EtOAc/hexanes $)=0.45 ;[\alpha]_{\mathrm{D}}^{21}=-64.5\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 7 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{ddd}, J=10.2,5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.82(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{brs}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, 1 H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.66($ brs, 1 H$), 2.03($ brs, 1 H$), 1.33(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) ; \mathbf{7 b}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.92(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{brs}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{br}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (brs, $1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer $\delta 159.3,131.2$, 129.7, 129.6, 113.8, 96.7, 71.5, 69.6, 68.4, 64.8, 55.3, 16.6; CIHRMS Calcd. For $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 273.1103$. Found 273.1100

Preparation of (2R,6R)-2-((4-methoxybenzyl)oxy)-6-methyl-3,6-dihydro-2H-pyran(8)

A flask charged with dry N-Methyl morpholine (NMM) (60 mL), triphenyl phosphine $(24.0 \mathrm{~g}, 91 \mathrm{mmol})$ was cooled to $-30{ }^{\circ} \mathrm{C}$ under argon atmosphere. Diisopropyl azodicarboxylate ($16.5 \mathrm{~mL}, 83 \mathrm{mmol}$) was added and the reaction was stirred for 5 min , allylic alcohol $\mathbf{7 a} / \mathbf{b}(6.9 \mathrm{~g}, 27.6 \mathrm{mmol})$ was added to in a 1 M of $\mathrm{NMM}(27.6 \mathrm{~mL})$, the resulting reaction mixture was stirred for 10 min , followed by addition of NBSH (18.0 g , $83 \mathrm{mmol})$. The reaction was stirred at $-30^{\circ} \mathrm{C}$ for 2 h and was monitored by TLC. Upon consumption of $\mathbf{7 a} / \mathbf{b}$, the reaction was warmed to room temperature and stirred for another 2 h . The reaction mixture was diluted with ether $(60 \mathrm{~mL})$ and was quenched with satd. aqueous NaHCO_{3}, extracted with ether (3 x 150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $5 \% \mathrm{EtOAc} /$ hexanes to give product $\mathbf{8}(6.07 \mathrm{~g}, 25.9$ $\mathrm{mmol}, 94 \%)$ as a colorless oil: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.55 ;[\alpha]_{\mathrm{D}}^{24}=-106(c=1.0$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 5.67 (dddd, $J=9.6,2.4,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (dddd, $J=9.6,5.4,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.32$ $(\mathrm{m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,130.9,130.0,129.6,122.5,113.8,97.4,70.6,69.4$, 55.2, 31.0, 21.2; CIHRMS Calcd. For $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}\right]^{+}: 257.1154$. Found 257.1148

Preparation of (2R,3S,4S,6R)-6-((4-methoxybenzyl)oxy)-2-methyltetrahydro-2H-pyran-3,4-diol(9)

To a t-butanol, acetone (8.9 mL each, 1:1) solution of pyran $8(2.07 \mathrm{~g}, 8.85 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of $(50 \% \mathrm{w} / \mathrm{v})$ of N -methyl morpholine N -oxide / water (8.9 $\mathrm{mL})$. Crystalline $\mathrm{OsO}_{4}(22.5 \mathrm{mg}, 0.0885 \mathrm{mmol})$ was added and the reaction was stirred for 12 h . The reaction was quenched with EtOAc and satd. aqueous NaHCO_{3}. The organic layer was separated and concentrated. The crude product was purified using silica gel flash chromatography eluting with $50 \% \mathrm{EtOAc} /$ hexanes to give diol $9(2.17 \mathrm{~g}, 8.09$ $\mathrm{mmol}, 91 \%)$ as a colorless oil: $\mathrm{R}_{f}(50 \% \mathrm{EtOAc} /$ hexanes $)=0.20 ;[\alpha]_{\mathrm{D}}^{21}=-57.8(c=1.0$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.88(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dq}, J=9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=9.6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15$ (brs, 2H), 2.10 (ddd, $J=15.0,2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.77 (ddd, $J=14.0,11.4,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,129.8,129.6$, 113.8, 96.7, 73.1, 70.2, 69.4, 68.0, 55.3, 37.7, 18.1; CIHRMS Calcd. For $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$: 291.1208. Found 291.1205.

Preparation of (2R,3R,4S,6R)-6-((4-methoxybenzyl)oxy)-2-methyltetrahydro-2H-

 pyran-3,4-diyl diacetate(10)

To a solution of $9(537 \mathrm{mg}, 2.00 \mathrm{mmol})$ in pyridine $(4.5 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature overnight, the reactant was quenched with satd. aqueous NaHCO_{3}, extracted with EtOAc , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under
reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give $\mathbf{1 0}$ ($650 \mathrm{mg}, 1.84 \mathrm{mmol}, 92 \%$) as a colorless oil: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.10 ;[\alpha]_{\mathrm{D}}^{23}=-14.4\left(c=0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right)$ 2937, 1742, 1613, 1514, 1367, 1242, 1224, 1152, 1053, 1007, 820; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{dd}, J=6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dq}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.05$ (ddd, $J=14.0,2.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{ddd}, J=14.4,9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,169.9,159.3,129.6,129.5$, 113.8, 96.9, 72.5, 70.2, 68.2, 67.3, 55.2, 35.5, 21.0, 20.8, 17.9; ESI-HRMS calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{Na}\right]^{+}: 375.1414$, found 375.1427 .
Preparation of (2R,3R,4S)-6-hydroxy-2-methyltetrahydro-2H-pyran-3,4-diyl diacetate (11)

To a solution of $\mathbf{1 0}(640 \mathrm{mg}, 1.82 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL} / 1.8 \mathrm{~mL})$ was added CAN $(2.29 \mathrm{~g}, 4.18 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 1 h , the reactant was then poured into satd. aqueous NaHCO_{3}, extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $50 \% \mathrm{EtOAc} /$ hexanes to give $\mathbf{1 1}$ (405 $\mathrm{mg}, 1.74 \mathrm{mmol}, \alpha: \beta=3: 1,96 \%)$ as a colorless oil: $\mathrm{R}_{f}(50 \% \mathrm{EtOAc} /$ hexanes $)=0.32 ;[\alpha]_{\mathrm{D}}^{23}$ $=+65.9\left(c=0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3436,2979,2938,1741,1371,1247$, 1227, 1155, 1054, 947, 859; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer (α): $\delta 5.40-5.37$ (m, 1H), 5.09 (dd, $J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=10.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{br}, 1 \mathrm{H})$, $3.94(\mathrm{dq}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{ddd}, J=14.0,3.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}$, $3 \mathrm{H}), 1.78$ (ddd, $J=14.8,9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; minor isomer $(\beta): \delta$ 5.40-5.37 (m, 1H), 5.16 (dd, $J=2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{br}$, $1 \mathrm{H}), 4.28(\mathrm{dq}, J=8.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.00-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer $(\alpha): \delta$
$170.0(2 \mathrm{C}), 92.1,72.3,67.9,67.3,36.7,20.7,20.6,17.7$; minor isomer $(\beta): \delta 169.9(2 \mathrm{C})$, 90.4, 72.0, 66.9, 62.0, 33.7, 20.9, 20.8, 17.3; ESI-HRMS calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{Na}\right]^{+}$: 255.0839, found 255.0850.

Preparation of (4S,5R,6R)-6-methyltetrahydro-2H-pyran-2,4,5-triyl triacetate(12)

To a solution of $\mathbf{1 1}(395 \mathrm{mg}, 1.70 \mathrm{mmol})$ in pyridine (3.8 mL) was added DMAP (cat.) and $\mathrm{Ac}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature overnight, the reactant was quenched with satd. aqueous NaHCO_{3}, extracted with EtOAc , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give $12(427 \mathrm{mg}, 1.56 \mathrm{mmol}$, $\alpha: \beta=1: 4,92 \%)$ as a colorless oil: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.17 ;[\alpha]_{\mathrm{D}}^{20}=+55.9(c=1.3$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 2982, 2940, 1741, 1434, 1368, 1216, 1145, 1053, 1023, 981; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ major isomer (β): $\delta 6.04$ (dd, $J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.49 (dd, $J=7.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dq}, J=8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.10(\mathrm{~s}, 6 \mathrm{H}), 2.06-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H})$; minor isomer (α): $\delta 6.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=6.4,3.2 \mathrm{~Hz}), 4.67(\mathrm{dd}, J=10.4$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dq}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.06(\mathrm{~m}, 1 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer (β): $\delta 170.0(2 \mathrm{C}), 169.2,90.5,71.9,69.4,66.6,34.0,21.1,20.9,20.7,17.9$; minor isomer (α): $\delta 169.8(2 \mathrm{C}), 169.4,90.1,71.8,65.8,64.1,32.2,21.1,21.0,20.7,17.4$; ESI-HRMS calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{Na}\right]^{+}: 297.0945$, found 297.0961.

Preparation of $\quad(2 R, 3 R, 4 R, 6 R)$-3-hydroxy-6-((4-methoxybenzyl)oxy)-2-methyltetrahydro-2H-pyran-4-yl 4-nitrobenzoate(13)

To a THF (45 mL) solution of diol $9(2.17 \mathrm{~g}, 8.09 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PPh}_{3}(3.18 \mathrm{~g}$, $12.2 \mathrm{mmol})$ and p-nitrobenzoic acid ($2.68 \mathrm{~g}, 16.2 \mathrm{mmol}$), DIAD ($2.6 \mathrm{~mL}, 13.0 \mathrm{mmol}$)
was added dropwise and the reaction mixture was warmed up to room temperature and stirred for 24 hours. The reaction mixture was diluted with EtOAc (100 mL), quenched with satd. aqueous NaHCO_{3}, extracted with ether ($3 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $15 \% \mathrm{EtOAc} /$ hexanes to give nitrobenzoate $13(2.30 \mathrm{~g}$, $5.51 \mathrm{mmol}, 68 \%)$ as a white solid: $\mathrm{R}_{f}(30 \% \mathrm{EtOAc} /$ hexanes $)=0.40 ;[\alpha]_{\mathrm{D}}^{24}=-38.2(c=0.5$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{ddd}, J=11.4,8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.83(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (s, 3H), $3.47(\mathrm{dd}, J=9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dq}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, J=12.6$, $5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=12.0,12.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,159.4,150.7,135.0,130.8,129.7,129.2,123.5,113.9$, 97.4, 75.7, 74.9, 72.0, 70.2, 55.3, 36.4, 17.8; CIHRMS Calcd. For $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{8} \mathrm{Na}\right]^{+}$: 440.1321. Found 440.1317

Preparation of (2R,3S,4R,6R)-6-((4-methoxybenzyl)oxy)-2-methyltetrahydro-2H-pyran-3,4-diol(14)

To a solution of $\mathbf{1 3}(1.25 \mathrm{~g}, 3.00 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(35 \mathrm{~mL} / 7 \mathrm{~mL})$ was added LiOH $(144 \mathrm{mg}, 6.00 \mathrm{mmol})$ and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was quenched with satd. aqueous NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to give 14 ($710 \mathrm{mg}, 2.65 \mathrm{mmol}, 88 \%$) as a white solid: $\mathrm{R}_{f}(50 \% \mathrm{EtOAc} /$ hexanes $)=0.10 ; \mathrm{mp}$: $68-70{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}=-60.6\left(c=1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 3393, 2933, 1613, 1514, $1453,1249,1067,821 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51$ (ddd, $J=11.6,8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (br, 2H), $3.22(\mathrm{dq}, J=8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06 (dd, J $=9.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=12.4,4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{ddd}, J=12.4,11.6,9.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,129.7,129.3,113.8$, 98.0, 77.4, 71.6, 71.5, 70.1, 55.2, 38.9, 17.7; EI-HRMS calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}\right]^{+}: 268.1305$, found 268.1308.

Preparation of (2R,3R,4R,6R)-3,4-bis(benzyloxy)-6-((4-methoxybenzyl)oxy)-2-methyltetrahydro-2H-pyran(15)

To a solution of $14(623 \mathrm{mg}, 2.32 \mathrm{mmol})$ in dry DMF (12 mL) was added $\mathrm{NaH}(460 \mathrm{mg}$, ca. 60% in oil, 11.6 mmol$)$. After stirring at room tempetature for $10 \mathrm{~min}, \mathrm{BnBr}(1.0 \mathrm{~mL}$, 5.80 mmol) and TBAI ($85 \mathrm{mg}, 0.232 \mathrm{mmol}$) were then added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 1 h . The reactant was then poured into satd. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $10 \% \mathrm{EtOAc} /$ hexanes to give $15(936 \mathrm{mg}, 2.09 \mathrm{mmol}, 90 \%)$ as a colorless oil: R_{f} $($ EtOAc/hexanes $=10 / 1)=0.21 ;[\alpha]_{\mathrm{D}}^{22}=-59.3\left(c=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR (thin film, $\left.\mathrm{cm}^{-1}\right) 2933$, $1612,1513,1454,1247,1092,1070,750,698 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27$ (m, 12H), $6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (ddd, $J=11.2,8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{ddd}, J=14.0,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dq}, J$ $=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=12.4,5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.65 (ddd, $J=12.4,11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,138.5,138.3,129.7,129.5,128.4(2 \mathrm{C}), 128.3,128.0,127.7,127.6(2 \mathrm{C})$, 113.8, $98.0, ~ 83.7,79.3,75.2,71.3,70.0,55.2,36.9,18.2$; ESI-HRMS calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 471.2142$, found 471.2151.

Preparation of (4R,5R,6R)-4,5-bis(benzyloxy)-6-methyltetrahydro-2H-pyran-2-ol(16)

To a solution of $15(647 \mathrm{mg}, 1.44 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}(14.4 \mathrm{~mL} / 1.44 \mathrm{~mL})$ was added CAN $(1.82 \mathrm{~g}, 3.32 \mathrm{mmol})$ at room temperature. After stirring at room tempetature for 1 h , the reactant was then poured into satd. aqueous NaHCO_{3} and extracted with EtOAc , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give $\mathbf{1 6}$ (397 $\mathrm{mg}, 1.21 \mathrm{mmol}, \alpha: \beta=1.6: 1,84 \%)$ as a white solid: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.17$; mp: $93-95{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}=+25.4\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 3354, 2985, 1497, 1397, $1306,1090,1029,997,750,694 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer (α): $\delta 7.37-$ $7.28(\mathrm{~m}, 10 \mathrm{H}), 5.33(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.64(\mathrm{~m}, 3 \mathrm{H})$, 4.05-3.96 (m, 2H), 3.15 (dd, $J=9.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77 (br, 1H), 2.32 (dd, $J=13.2,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.68(\mathrm{ddd}, J=14.4,13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; minor isomer $(\beta): \delta 7.37-7.28(\mathrm{~m}, 10 \mathrm{H}), 4.96(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-$ $4.60(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{ddd}, J=13.2,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{br}, 1 \mathrm{H}), 3.40(\mathrm{dq}, J=9.6,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (ddd, $J=12.8,5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.56$ (ddd, J $=12.8,11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer (α): $\delta 138.6,138.5,128.4,128.3,128.0(2 \mathrm{C})$, 127.6(2C), 91.9, 84.2, 76.8, 75.2, $71.8,67.4,35.7,18.2$; minor isomer (β): $\delta 138.3,138.2,128.4,128.3,128.0(2 \mathrm{C}), 127.7$, $127.6,93.8,83.3,78.9,75.2,71.5,71.4,38.3,18.2$; ESI-HRMS calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}\right]^{+}$: 351.1567, found 351.1580.

Preparation of (4R,5R,6R)-4,5-bis(benzyloxy)-6-methyltetrahydro-2H-pyran-2-ol(17)

To a solution of $\mathbf{1 6}(460 \mathrm{mg}, 1.40 \mathrm{mmol})$ in pyridine (3.2 mL) was added $\mathrm{Ac}_{2} \mathrm{O}(2.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at room tempetature overnight, the reactant was quenched with satd. aqueous NaHCO_{3}, extracted with EtOAc , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $10 \% \mathrm{EtOAc} /$ hexanes to give $17(515 \mathrm{mg}, 1.39 \mathrm{mmol}, \alpha: \beta=2.8: 1,99 \%)$ as a colorless oil: $\mathrm{R}_{f}(\mathrm{EtOAc} /$ hexanes $=10 / 1)=0.32 ;[\alpha]_{\mathrm{D}}^{22}=+48.0\left(c=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2932, 1750, 1454, 1366, 1275, 1260, 1100, 1028, 971, 750, 698; ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major isomer (α): $\delta 7.37-7.30(\mathrm{~m}, 10 \mathrm{H}), 6.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.71-4.68 (m, 3H), 3.95 (ddd, $J=13.2,8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dq}, J$ $=10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=9.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=14.0,5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07 (s, 3H), 1.81 (ddd, $J=14.4,13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H})$; minor isomer $(\beta): \delta 7.37-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.69(\mathrm{dd}, J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72-4.62(\mathrm{~m}, 3 \mathrm{H}), 3.71$ (ddd, $J=14.0,8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dq}, J=9.2,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.18(\mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, J=12.4,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, 1.77 (ddd, $J=12.8,12.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) major isomer (α): $\delta 169.4,138.3,138.2,128.4(2 \mathrm{C}), 128.0(2 \mathrm{C}), 127.6,127.6,91.7$, 83.5, 76.6, 75.3, 71.7, 69.7, 34.4, 21.0, 18.2; minor isomer $(\beta): \delta 169.1,138.2,138.0$, 128.4(2C), 128.0(2C), 127.7, 127.6, 91.8, 83.0, 78.7, 75.2, 72.3, 71.6, 35.6, 21.0, 18.0; ESI-HRMS calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 393.1672$, found 393.1688.

Preparation of 1-hydroxy-5-((2-methylallyl)oxy)anthracene-9,10-dione(5a)

A mixture of 1,5-dihydroxyanthracene-9,10-dione ($7.20 \mathrm{~g}, 30.0 \mathrm{mmol}$), methallyl chloride ($4.40 \mathrm{~mL}, 40.5 \mathrm{mmol}$), anhydrous potassium carbonate ($22.9 \mathrm{~g}, 166 \mathrm{mmol}$), and potassium iodide ($1.76 \mathrm{~g}, 10.5 \mathrm{mmol}$) in DMF (400 mL) was stirred at $75{ }^{\circ} \mathrm{C}$ for 7 h under argon. The mixture was filtered and the purple solid was washed with acetone. The solvent removed under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $10 \% \mathrm{EtOAc} /$ hexanes to give ether $\mathbf{5 a}(3.70 \mathrm{~g}, 12.6$ $\mathrm{mmol}, 42 \%)$ as an orange solid: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.50 ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, CDCl_{3}) $\delta 12.45(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.68-7.62 (m, 2H), $7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H})$, $5.09(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 188.6, 181.3, $161.9,159.5,139.6,136.8,135.3,135.0,134.8,122.8,121.7,119.8,119.5,119.3,115.6$, 113.3, 72.8, 19.3 CIHRMS Calcd. For $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{H}\right]^{+}$: 249.1127 . Found 249.1122

Ref.: Beauregard, D. A.; Cambie, R. C.; Higgs, K. C.; Rutledge, P. S.; Woodgate, P. D. Aust. J. Chem. 1994, 47, 1321-1333.

Preparation of 1,5-dihydroxy-2-(2-methylallyl)anthracene-9,10-dione(5b)

A solution of the ether $\mathbf{5 a}(883 \mathrm{mg}, 3.00 \mathrm{mmol})$ in DMF (100 mL) was added to a heated $\left(90{ }^{\circ} \mathrm{C}\right)$ solution of sodium dithionite $(1.04 \mathrm{~g}, 6.00 \mathrm{mmol})$ in water $(200 \mathrm{~mL})$ and DMF $(100 \mathrm{~mL})$ under argon, and the mixture was heated under reflux for 3 h . Sodium hydroxide ($0.30 \mathrm{~g}, 7.50 \mathrm{mmol}$) was added and the refluxing continued for a further 0.75 h . The mixture was cooled to room temperature, and then it was extracted with EtOAc (200 mL) for three times. The combined organic layers were washed with water for five times, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $10 \% \mathrm{EtOAc} /$ hexanes to give diphenol 5b ($790 \mathrm{mg}, 2.68 \mathrm{mmol}, 89 \%$) as an orange solid: $\mathrm{R}_{f}(10 \% \mathrm{EtOAc} /$ hexanes $)=$ $0.35 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.05(\mathrm{~s}, 1 \mathrm{H}), 12.70(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=7.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 188.2,187.8,162.7,161.2,143.0,137.0,136.5,133.3,131.4$, $124.8,119.3,119.2,119.0,116.1,115.5,112.9,37.4,22.5$.

Ref.: Bercich, M. D.; Cambie, R. C.; Howe, T. A.; Rutledge, P. S.; Thomson, S. D.; Woodgate, P. D. Aust. J. Chem. 1995, 48, 531-549.

Preparation of 1,5-bis(benzyloxy)-2-(2-methylallyl)anthracene-9,10-dione(5c)

Benzyl bromide ($1.07 \mathrm{~mL}, 9.00 \mathrm{mmol}$) and potassium carbonate $(4.15 \mathrm{~g}, 30.0 \mathrm{mmol})$ were added to a solution of diphenol $\mathbf{5 b}(883 \mathrm{mg}, 3.00 \mathrm{mmol})$ in acetone $(150 \mathrm{~mL})$, and
the mixture was heated at reflux overnight. The mixture was filtered and concentrated. The crude product was purified using silica gel flash chromatography eluting with 50% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to give ether $\mathbf{5 c}(1.26 \mathrm{~g}, 2.66 \mathrm{mmol}, 89 \%)$ as a yellow solid: $\mathrm{R}_{f}(20 \%$ EtOAc/hexanes) $=0.52$; mp: $109-110{ }^{\circ} \mathrm{C}$; IR (thin film, cm^{-1}) $1669,1584,1573,1452$, $1261,1022,697 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=$ $7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 7 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.88(\mathrm{~s}$, $1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.9,182.2$, $158.7,156.9,143.8,141.0,137.3,137.2,136.3,136.1,135.9,134.7,128.7,128.5,128.4$, $128.1,127.9,126.8,125.4,123.4,121.6,120.1,119.0,113.1,76.2,71.0,37.8,22.6$; ESIHRMS calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 497.1723$, found 497.1727.

Preparation of (R)-1,5-bis(benzyloxy)-2-(2,3-dihydroxy-2-methylpropyl)anthracene-9,10-dione(5d)

A round-bottom flask was charged with t - $\mathrm{BuOH}(37 \mathrm{~mL})$, water (37 mL), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $(3.65 \mathrm{~g}, 11.1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.53 \mathrm{~g}, 11.1 \mathrm{mmol})$, (DHQ$)_{2} \mathrm{DPP}(688 \mathrm{mg}, 0.738 \mathrm{mmol}$), and $\mathrm{OsO}_{4}(37.0 \mathrm{mg}, 0.148 \mathrm{mmol})$. After the mixture was stirred at room temperature for 5 min, the mixture was cooled to $0^{\circ} \mathrm{C}$. Unsaturated ether $\mathbf{5 c}(1.75 \mathrm{~g}, 3.69 \mathrm{mmol})$ was added at once, and the heterogeneous slurry was stirred vigorously for 6 h at $0^{\circ} \mathrm{C}$ and then at room temprature overnight. $\mathrm{Na}_{2} \mathrm{SO}_{3}(2.00 \mathrm{~g})$ was added, and the mixture was stirred for 1 h. EtOAc (20 mL) was added, and the aqueous layer was extracted with EtOAc for three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $50 \% \mathrm{EtOAc} /$ hexanes to give diol $\mathbf{5 d}(1.84 \mathrm{~g}, 3.62 \mathrm{mmol}, 98 \%)$ as a yellow solid: $\mathrm{R}_{f}(50 \% \mathrm{EtOAc} /$ hexanes $)=0.24$; mp: $129-130^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{26}=+6.9\left(c=0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, 88% ee); IR (thin film, cm^{-1}) 3453, 1669, 1585, 1570, 1264, 1015, 697; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}$,
$6 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 7 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.29(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J$ $=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{br}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.6,181.9$, 158.7, 156.6, 138.7, 138.2, 137.1, 136.4, 136.2, 136.1, 134.9, 128.9, 128.8(2C), 128.7, $127.9,126.8,125.2,123.7,121.4,120.2,119.1,76.9,73.6,71.0,69.0,39.2,23.5$; ESIHRMS calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}\right]^{+}$: 531.1778, found 531.1778. The ee value was determined by the use of Mosher's reagent.

Preparation of (R)-3-(1,5-bis(benzyloxy)-9,10-dioxo-9,10-dihydroanthracen-2-yl)-2-

hydroxy-2-methylpropyl 4-methylbenzenesulfonate(5e)

To a solution of diol $5 \mathbf{d}(1.83 \mathrm{~g}, 3.60 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36.0 \mathrm{~mL})$ were added dibutyltin oxide ($\sim 1 \mathrm{mg}$), p-toluenesulfonyl chloride ($1.03 \mathrm{~g}, 5.40 \mathrm{mmol}$), triethylamine $(0.75 \mathrm{~mL}, 5.40 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight. After completion of reaction the mixture was quenched with water. The layers were separated, and the water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 3% $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $5 \mathrm{e}(2.18 \mathrm{~g}, 3.29 \mathrm{mmol}, 91 \%)$ as a yellow solid: $\mathrm{R}_{f}(20 \%$ EtOAc/hexanes) $=0.14 ; \mathrm{mp}: 174-175^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=+13.6\left(c=0.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) $3492,2930,1670,1586,1265,1176,984,843 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=$ $8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 9 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{br}$, $1 \mathrm{H}), 2.99(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.6,181.8,158.8,156.7,145.0$, $138.0,137.4,137.2,136.7,136.3,136.2,134.9,132.5,129.9,128.9,128.8,128.7,128.6$,
128.0, 127.9, 126.8, 125.2, 123.7, 121.5, 120.2, 119.1, 76.9, 75.5, 72.0, 71.1, 39.1, 24.2, 21.6; ESI-HRMS calcd for $\left[\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{SNa}\right]^{+}$: 685.1867, found 685.1872.

Preparation (R)-1,5-bis(benzyloxy)-2-((2-methyloxiran-2-yl)methyl)anthracene-9,10dione(18)

To a solution of $\mathbf{5 e}(331 \mathrm{mg}, 0.50 \mathrm{mmol})$ in dry THF (50 mL) was added $\mathrm{NaH}(100 \mathrm{mg}$, $c a .60 \%$ in oil, 2.50 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature overnight. After completion of reaction the mixture was quenched with water. The layers were separated, and the water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give epoxide $\mathbf{1 8}(227 \mathrm{mg}, 0.463 \mathrm{mmol}, 92 \%)$ as a yellow solid: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.26 ; \mathrm{mp}: 114-115^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{21}=-27.9\left(c=0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2932, 1670, 1585, 1452, 1262, 1022, 699; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{dd}, J=8.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 7 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.8,182.0,158.7,157.0,138.3,137.2,137.0,136.9,136.3,136.2$, $134.8,128.7,128.6,128.5,128.2,127.9,126.8,125.2,123.3,121.5,120.1,119.0,76.5$, $71.0,56.6,53.2,36.2,21.3$; ESI-HRMS calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 513.1672$, found 513.1681.

Preparation of (R)-1,5-bis(benzyloxy)-2-((2-methyl-4-oxooxetan-2-

 yl)methyl)anthracene-9,10-dione(19)

A six-chamber stainless-steel high-pressure reactor was dried overnight under vacuum at $100{ }^{\circ} \mathrm{C}$. In a glove box, 8 mL vials equipped with Teflon-coated magnetic stir bars were charged with 20.0 mg (0.0408 mmol) of epoxide 18 and 2.0 mL of a 0.0020 M stocksolution of $\left[\mathrm{Cl}(\mathrm{TPP}) \mathrm{Al}(\mathrm{THF})_{2}\right]^{+}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}(4.4 \mathrm{mg}, 0.0040 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in THF. The vials were then placed in a custom-made 6 -well high-pressure reactor. The reactor was sealed taken out of the glove box and pressured with carbon monoxide to 900 psi. The reactor was then sealed again and the reaction mixtures were stirred for 20 h at $40{ }^{\circ} \mathrm{C}$. The reactor was then cooled to ambient temperature and carefully vented in a well-ventilated hood. The crude reaction mixtures were concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give β-lactone 19 as a yellow solid ($14.8 \mathrm{mg}, 0.0285 \mathrm{mmol}$, 70%). Residual amounts of ethylacetate and hexanes were removed by suspending the powder in methanol and subsequently removing all volatiles under vacuum at $22{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}$ $(20 \%$ EtOAc/hexanes $)=0.11 ; \mathrm{mp}: 134-135{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}=-10.2\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2926, 1818, 1669, 1585, 1261, 734, 696; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.4$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 7 \mathrm{H}), 5.34(\mathrm{~s}$, $2 \mathrm{H}), 5.08(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ $(\mathrm{d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 182.7,181.7,167.2,158.7,157.0,137.5,137.0,136.9$, 136.7, 136.1(2C), 134.9, 128.7(2C), 128.5, 128.4, 127.9, 126.7, 125.2, 123.5, 121.3, 120.0, 119.0, 77.8, 76.9, 70.9, 47.3, 38.5, 24.8; ESI-HRMS calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}\right]^{+}$: 541.1622, found 541.1625.

Preparation of (R)-methyl 4-(1,5-bis(benzyloxy)-9,10-dioxo-9,10-dihydroanthracen-

2-yl)-3-hydroxy-3-methylbutanoate(20)

To a solution of 19 ($52 \mathrm{mg}, 0.10 \mathrm{mmol}$) in methanol (1 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (18 mg , 0.13 mmol), and the reaction was stirred at room temperature for 1 h . The mixture was quenched with water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 20% EtOAc/hexanes to give ester $20(53 \mathrm{mg}, 0.096 \mathrm{mmol}, 96 \%)$ as a yellow solid: $\mathrm{R}_{f}(20 \%$ EtOAc/hexanes $)=0.10 ; \mathrm{mp}: 34-36{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=+0.30\left(c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-} ${ }^{1}$) $3499,2927,1731,1670,1585,1452,1262,1015 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 5 \mathrm{H})$, 7.44-7.30 (m, 7H), $5.34(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{br}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.7$, 182.0, 173.1, 158.6, 157.0, 138.6, $138.4,137.2,136.8,136.4,136.2,134.8,128.7,128.6,128.4,128.3,127.9,126.7,125.1$, 123.2, 121.4, 120.1, 119.0, 76.6, 71.7, 71.0, 51.5, 44.4, 41.3, 27.3; ESI-HRMS calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}_{7}\right]^{+}: 551.2070$, found 551.2072.

Preparation of (R)-methyl 4-(1,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl)-3-hydroxy-3-methylbutanoate (3)

To a solution of ester 20 ($33 \mathrm{mg}, 0.0599 \mathrm{mmol}$) in ethanol (0.4 mL) were added 1,4cyclohexadiene (0.1 mL) and $10 \% \mathrm{Pd}-\mathrm{C}(10 \mathrm{mg})$, and the mixture was stirred at reflux for 2 h . The reactant was filtered on a short pad of silica. After concentration under reduced pressure, the crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give $3(19 \mathrm{mg}, 0.0513 \mathrm{mmol}, 86 \%)$ as a yellow solid: R_{f}
$(20 \%$ EtOAc/hexanes $)=0.33 ; \mathrm{mp}: 107-109{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=-11.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film, cm^{-1}) $3490,2924,1726,1627,1432,1372,1315,1259,792 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.17(\mathrm{~s}, 1 \mathrm{H}), 12.65(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{br}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.3,187.7,173.3,162.7,161.3,139.7,136.6,134.6,133.1,131.7,125.0,119.3,118.8$, $116.1,115.5,71.8,51.8,44.3,40.4,27.2$. ESI-HRMS calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{7}\right]^{+}: 371.1125$, found 371.1137.

Preparation of (R)-methyl 4-(1,5-bis(methoxymethoxy)-9,10-dioxo-9,10-dihydroanthracen-2-yl)-3-(methoxymethoxy)-3-methylbutanoate(21)

To a solution of $\mathbf{3}(111 \mathrm{mg}, 0.300 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ were added DIPEA (0.522 $\mathrm{mL}, 3.00 \mathrm{mmol})$ and $\mathrm{MOMCl}(0.139 \mathrm{~mL}, 1.80 \mathrm{mmol})$, and the mixture was stirred at room temperature for 2 days. The reactant was quenched with satd. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was then washed with 1 N aqueous HCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, the crude product was purified using silica gel flash chromatography eluting with $30 \% \mathrm{EtOAc} /$ hexanes to give 21 ($143 \mathrm{mg}, 0.284 \mathrm{mmol}, 95 \%$) as a yellow oil: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.09 ;[\alpha]_{\mathrm{D}}^{22}=-$ $31.8\left(c=0.73, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (thin film, cm^{-1}) 2984, 1735, 1670, 1586, 1439, 1264, 1154, $734 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}$, $2 \mathrm{H}), 5.16$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}$, $3 \mathrm{H}), 3.20(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.7,182.2,171.0,157.1,156.5,138.7,138.3$, $136.9,135.9,134.7,124.1,122.8,121.8,121.5,121.0,102.2,95.1,91.1,77.6,57.8,56.5$,
55.4, 51.5, 44.2, 39.5, 23.1. ESI-HRMS calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{10} \mathrm{Na}\right]^{+}$: 525.1731, found 525.1744.

Preparation of (R)-methyl 4-(9,10-dimethoxy-1,5-bis(methoxymethoxy)anthracen-2-

 yl)-3-(methoxymethoxy)-3-methylbutanoate(22)

A solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(2.24 \mathrm{~g}, 12.9 \mathrm{mmol})$ in degassed water $(49 \mathrm{~mL})$ was added to a suspension of anthraquinone $24(650 \mathrm{mg}, 1.29 \mathrm{mmol})$ and $n \mathrm{Bu} 4_{4} \mathrm{NBr}(103 \mathrm{mg}, 0.32 \mathrm{mmol})$ in degassed THF (22 mL). After stirring at room temperature for $2 \mathrm{~h}, 50 \%$ degassed aqueous $\mathrm{KOH}(1.94 \mathrm{~mL})$ was added to the mixture, which was stirred for 10 min . After adding $\mathrm{Me}_{2} \mathrm{SO}_{4}(0.33 \mathrm{~mL}, 3.23 \mathrm{mmol})$ and stirring for 30 min , the reaction was stopped by adding water at $0{ }^{\circ} \mathrm{C}$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to give $22(433 \mathrm{mg}, 0.813 \mathrm{mmol}, 63 \%)$ as a brown oil: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.18 ;[\alpha]_{\mathrm{D}}^{23}=-10.8\left(c=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right)$ 2929, 1736, 1449, 1359, 1294, 1152, 1033, 972, 924, 810, 765; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (dd, $J=8.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H})$, 3.90 (s, 3H), 3.70 (s, 3H), 3.63 (s, 3H), 3.61 (s, 3H), 3.43-3.30 (m, 2H), 3.35 (s, 3H), 2.77 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,153.1,150.1,148.6,146.9,129.6,128.4,127.9,127.3,125.2,119.3,118.6,118.4$, $116.8,110.0,101.2,96.0,91.2,78.5,63.3,62.7,58.0,56.5,55.3,51.4,44.1,40.0,23.3$. ESI-HRMS calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{10}\right]^{+}: 533.2381$, found 533.2391.
Preparation of (R)-methyl 4-(1,5-dihydroxy-9,10-dimethoxyanthracen-2-yl)-3-hydroxy-3-methylbutanoate(23)

23
To a solution of $\mathbf{2 5}(74 \mathrm{mg}, 0.139 \mathrm{mmol})$ and $\mathrm{EtSH}(0.21 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.17 \mathrm{~mL}, 1.39 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . Then the temperature was gradually warmed to $-30^{\circ} \mathrm{C}$ during 30 min . The reactant was quenched with satd. NaHCO_{3}, extracted with EtOAc and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, the crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give 23 ($50 \mathrm{mg}, 0.125 \mathrm{mmol}$, $90 \%)$ as a yellow oil: $\mathrm{R}_{f}(20 \% \mathrm{EtOAc} /$ hexanes $)=0.20 ;[\alpha]_{\mathrm{D}}^{21}=-6.8\left(c=0.70, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ (thin film, cm^{-1}) 3334, 2987, 1730, 1361, 1276, 1261, 1020,764; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20(\mathrm{brs}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 173.1,154.5,151.5,148.9,148.6,132.3,127.5,126.3$, $125.4,118.4,117.2,116.9,113.2,112.4,109.0,73.1,64.6,64.5,51.4,45.5,41.7,27.4$; ESI-HRMS calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{7}\right]^{+}: 401.1595$, found 401.1598 .

Preparation of $\quad(R)$-methyl $\quad 4-(6-((2 R, 4 R, 5 R, 6 R)-4,5$-bis(benzyloxy)-6-methyltetrahydro- 2 H -pyran-2-yl)-1,5-dihydroxy-9,10-dimethoxyanthracen-2-yl)-3-hydroxy-3-methylbutanoate(2)

To a stirred mixture of $\mathrm{Cp}_{2} \mathrm{HfCl}_{2}(208 \mathrm{mg}, 0.548 \mathrm{mmol}), \mathrm{AgClO}_{4}(226 \mathrm{mg}, 1.09 \mathrm{mmol})$ and powdered molecular sieves $4 \AA(1.60 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $22(73 \mathrm{mg}$,
$0.182 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and $17(135 \mathrm{mg}, 0.364 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$. The temperature was then gradually raised to $0{ }^{\circ} \mathrm{C}$ during 1 h . The reactant was then quenched with satd. aqueous NaHCO_{3}. The mixture was filtered through Celite, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, the crude product was purified using silica gel flash chromatography eluting with $20 \% \mathrm{EtOAc} /$ hexanes to give $23(62 \mathrm{mg}, 0.0872 \mathrm{mmol}, 48 \%)$ as a yellow oil: R_{f} $(20 \% \mathrm{EtOAc} /$ hexanes $)=0.13 ;[\alpha]_{\mathrm{D}}^{20}=+40.4\left(c=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3320$, $2926,1732,1533,1453,1417,1362,1259,1112,1004,749$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 10.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 11 \mathrm{H}), 5.12(\mathrm{dd}, J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}$, $3 \mathrm{H}), 3.92(\mathrm{ddd}, J=14.0,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dq}, J=$ $9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (ddd, $J=12.4$, $5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, J=12.4,11.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,150.8,148.8,148.3,147.8,138.6,138.6$, $131.4,128.4(2 \mathrm{C}), 128.1,127.7,127.6(2 \mathrm{C}), 127.5,125.0,124.7,120.7,117.1,116.2$, $115.9,112.8,112.0,84.2,81.2,75.8,75.3,72.7,71.3,70.8,64.1,64.0,51.5,44.4,41.1$, 37.5, 27.4, 18.7; ESI-HRMS calcd for $\left[\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{O}_{10}\right]^{+}: 711.3164$, found 711.3169.

Preparation of Vineomycinone B_{2} methyl ester(1)

To a solution of $23(29 \mathrm{mg}, 0.0408 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ was added $\mathrm{BBr}_{3}(275 \mathrm{mg}$, $1.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 25 min , the reactant was then quenched with satd. aqueous NaHCO_{3}. After stirring for 5 min , the mixture was acidified with 1 N aqueous HCl , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration under reduced pressure, the crude product was purified using silica gel flash chromatography eluting with EtOAc to give vineomycinone B_{2} methyl ester $\mathbf{1}$ (18 $\mathrm{mg}, 0.0360 \mathrm{mmol}, 88 \%$). Recrystallization from CHCl_{3}-hexanes gave $\mathbf{1}$ as orange needles:
$\mathrm{R}_{f}(\mathrm{EtOAc})=0.52 ;[\alpha]_{\mathrm{D}}^{20}=+109(c=0.27$, dioxane $) ;$ IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3392,2923,1726$, $1626,1581,1476,1432,1374,1260,1070,1020,792 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $13.22(\mathrm{~s}, 1 \mathrm{H}), 13.10(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=11.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 3.86 (ddd, $J=12.0,8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dq}, J=8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (dd, $J=9.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (ddd, $J=12.4,5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{br}$, $1 \mathrm{H}, \mathrm{OH}), 2.26(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.48(\mathrm{ddd}, J=12.4,11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.2,188.1,173.3,161.3,158.9$, 139.6, 138.2, 134.6, 133.3, 131.8, 131.7, 119.4, 118.9, 115.6, 115.4, 78.1, 76.0, 73.1, 71.8, 71.2, 51.8, 44.3, 40.4, 39.4, 27.2, 18.1; ESI-HRMS calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{10}\right]^{+}: 501.1755$, found 501.1768.

