Support Information

Reaction of Trisubstituted Alkenes with Iron Porphyrin Carbenes: Facile Synthesis of Tetrasubstituted Dienes and Cyclopentadienes

Peng Wang, Saihu Liao, Sunewang R. Wang, Run-Duo Gao, Yong Tang*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

E-mail: tangy@sioc.ac.cn

1.	General Information	S2
2.	General Procedures for the Substituent Effect	S3
3.	Reaction Conditions for Synthesis of Tetrasubstituted Dienes	S6
4.	General Procedure for Synthesis of Tetrasubstituted Dienes	S7
5.	Reaction Conditions for Synthesis of Cyclopentadienes	S15
6.	General Procedure for Synthesis of Cyclopentadienes	S17
7.	Procedure for Chemical Transformation	S23
8.	Procedure for Deuterium Experiment	S24
9.	NMR Spectra of the Compounds	S27

General Information All reactions were carried out under N_2 unless otherwise noted. All carbonyl compounds and solvents were purified according to standard methods unless otherwise noted.

¹H NMR spectra were recorded on a VARIAN Mercury 300 MHz or VARIAN Mercury 400 MHz spectrometer in chloroform-d. All signals are reported in ppm with the internal TMS signal at 0.0 ppm or chloroform signal at 7.26 ppm as a standard. The data are reported as (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded on a VARIAN Mercury 75.5 MHz spectrometer in chloroform-d. All signals are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. IR spectra were recorded on a Perkin–Elmer 983, Digital FT–IR spectrometer or Bruker–Tensor 27; frequencies are given in reciprocal centimeters (cm⁻¹) and only selected absorbance is reported; Mass spectra were determined on an Agilent 5973N MSD (EI) and Shimadzu LCMS-2010EV (ESI) mass spectrometer or Agilent G6100 LC/MSD (ESI) single Quand mass spectrometer. High resolution mass spectra were recorded on Waters Micromass GCT Premier (EI) and Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS (ESI) mass spectrometers.

Fe(TCP)Cl was synthesized according to literature procedure.¹

2. General Procedures for the Substituent Effect

To a stirred suspension of phosphonium salt **1** (0.5 mmol) in dry PhCH₃ (2.0 mL) under N₂ at room temperature was added LiHMDS (0.6 mL, 1.0 M in THF, 0.6 mmol) in one portion. 10 minutes later, Fe(TCP)Cl (1.7 mg, 0.002 mmol) and MDA (50 μ L, 0.6 mmol) were added to the system respectively (Caution! N₂ Release!), then washed the Schlenk tube with dry PhCH₃ (1.0 mL), and the mixture stirred at room temperature for another 10 minutes. PCBA (56.0 mg, 0.4 mmol) and PhCH₃ (1.0 mL) were added and the resulting mixture was stirred at room temperature. After the reaction was complete, the resulting mixture was filtered rapidly through a funnel with a thin layer of silica gel and eluted with DCM. The filtrate was concentrated and analyzed by ¹H NMR, and then the residue was purified by chromatography on silica gel to afford the desired products.

For 1a and 1b, No desired products were formed.

For 1c, desired product 3a was isolated in 13% yield, 3E, 5E/3E, 5Z = 69/31.

(3E, 5E)-**3a**, white solid, ¹H NMR (CDCl₃, 400 MHz) δ 8.03 (d, *J* = 16.0 Hz, 1H), 7.41 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 16.0 Hz, 1H), 3.80 (s, 3H), 3.70 (s, 3H), 3.55 (s, 2H), 2.09 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.2, 167.9, 145.5, 135.6, 133.9, 132.3, 128.8, 128.6, 128.3, 123.1, 52.1, 51.9, 36.1, 16.2; IR (neat) v 2951 (m), 2847 (m), 1736 (s), 1706 (s), 1489 (m), 1433 (m), 1191 (s), 1166 (m), 965 (m), 812 (s); MS (EI, m/z, rel. intensity) 308 (52, M⁺), 293 (2.5), 277 (12), 248 (13), 235 (15), 217 (24), 203 (57), 189 (60), 171 (9.7), 153 (31), 127 (32), 113 (33), 99 (31), 84 (57), 71 (68), 57 (100), 43 (60), 41 (24); HRMS (EI) calcd for C₁₆H₁₇ClO₄ (M⁺): 308.0815; Found: 308.0811.

For **1d**, desired product **4a** was isolated in 49% yield, $3E_{,5}E/3E_{,5}Z = 83/17$, the direct Wittig reaction of phosphonium salt **1d** was also observed.

(2E, 4E)-9a 19% yield, white solid, ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (d, *J* = 16.0 Hz, 1H), 7.46 (dt, *J* =2.2, 8.8 Hz, 2H), 7.30 (dt, *J* = 2.2, 8.4 Hz, 2H), 7.22 (d, *J* = 16.0 Hz, 1H), 5.16 (s, 1H), 3.74 (s, 3H), 3.72 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.7, 166.5, 134.6, 134.5, 133.8, 128.8, 128.7, 120.6, 92.1, 55.4, 50.9; IR (neat) v 2951 (m), 2847 (m), 1703 (s), 1639 (m), 1583 (s), 1566 (m), 1490 (m), 1433 (m), 1145 (s), 970 (s); MS (EI, m/z, rel. intensity) 252 (28, M⁺), 221 (17), 192 (100), 178 (20), 158 (61), 149 (14), 127 (22), 115 (36), 101 (17), 89 (5.5), 75 (12), 59 (13); HRMS (EI) calcd for C₁₃H₁₃ClO₃ (M⁺): 252.0553; Found: 252.0556.

(2E, 4Z)-**9a**

4% yield, White solid, ¹H NMR (CDCl₃, 400 MHz) δ 7.25 (d, *J* = 8.8 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 12.8 Hz, 1H), 6.68 (d, *J* = 12.8 Hz, 1H), 5.19 (s, 1H), 3.71 (s, 3H), 3.54 (s, 3H).

40% yield, colorless liquid, ¹H NMR (CDCl₃, 400 MHz) δ 7.78 (d, *J* = 16.0 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 7.2 Hz, 2H), 6.98 (d, *J* = 16.4 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 3.54 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.8, 167.5, 164.9, 134.5, 134.4, 128.8, 128.5, 121.1, 113.4, 60.5, 51.9, 51.7, 32.6; IR (neat) v 2954 (m), 1735 (s), 1610 (m), 1589 (m), 1565 (m), 1491 (m), 1436 (m); MS (EI, m/z, rel. intensity) 324 (1.2, M⁺), 310 (2.3), 293 (1.8), 279 (2.7), 265 (4.1), 251 (12), 233 (9.6), 219 (36), 205 (14), 165 (100), 137 (20), 102 (24), 75 (8.7), 59 (11); HRMS (EI) calcd for C₁₆H₁₇ClO₅ (M⁺): 324.0765; Found: 324.0763.

9% yield, colorless liquid, ¹H NMR (CDCl₃, 400 MHz) δ 7.40-7.38 (m, 2H), 7.29-7.27 (m, 2H), 6.68 (d, *J* = 12.4 Hz, 1H), 6.45 (d, *J* = 12.8 Hz, 1H), 3.72 (s, 3H), 3.68 (s, 3H), 3.48 (s, 2H), 3.46 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.1, 167.5, 164.1, 134.2, 133.0, 130.1, 128.6, 121.7, 106.2, 56.5, 51.8, 51.4, 31.5; IR (neat) v 2953 (m), 1738 (s), 1587 (m), 1491 (m), 1437 (m); MS (EI, m/z, rel. intensity) 324 (0.7, M⁺), 293 (5.1), 265 (10), 251 (31), 233 (26), 219 (100), 205 (38), 165 (9.8), 139 (12), 102 (10), 75 (8.1), 59 (17); HRMS (EI) calcd for C₁₆H₁₇ClO₅ (M⁺): 324.0765; Found: 324.0773.

3. Reaction Conditions for Synthesis of Tetrasubstituted Dienes

	MeO	O ₂ Me ⊕ 1) Base, Sol ,PHPh ₃ 2) [Fe(TCP)(,⊖ 3) PCBA, RT	CIJ, MDA MeO ₂ C CO ₂ Me	₆ H₄CI-p
_	1d		4a	
Entry ^a	Base	Solvent	3E, 5E -4a (%) ^b	3E, 5E/3E, 5Z ^c
1	LiHMDS	THF	13	83/17
2	NaHMDS	THF	39	97/3
3	CH ₃ ONa	THF	48	98/2
4	K ₂ CO ₃	THF	30	84/16
5	t-BuOK	THF	78	97/3
6	t-BuOK	DME	85	98/2
7	t-BuOK	CH_2Cl_2	84	99/1
8	t-BuOK	PhCH ₃	81	95/5
9	t-BuOK	<i>n</i> -Hexane	21	
10	t-BuOK	CH ₃ CN	89	99/1
11^{d}	t-BuOK	CH ₃ CN	85	98/2

Table S1. Base and solvent effect on the reaction.

^{*a*} Phosphonium salt **1d** (235.5 mg, 0.5 mmol), base (0.6 mmol), MDA (50 μL, 0.6 mmol), PCBA (56 mg, 0.4 mmol), Fe(TCP)Cl (1.7 mg, 0.002 mmol), solvent (4.0 mL). ^{*b*} Isolated yield of single isomer. ^{*c*} Determined by ¹H NMR. ^{*d*} Using 0.1 mol% [Fe(TCP)Cl] as catalyst.

4. General Procedure for Synthesis of Tetrasubstituted Dienes

To a stirred suspension of phosphonium salt **1d** (236 mg, 0.5 mmol) in 2.0 mL dry CH_3CN under N_2 at room temperature was added *t*-BuOK (67.2 mg, 0.60 mmol) in one portion. After 10 min, Fe(TCP)Cl (1.7 mg, 0.002 mmol) and MDA (50 µL, 0.6 mmol) were added to the system respectively (Caution! N_2 Release!), washed the Schlenk tube with 1.0 mL dry CH_3CN , and the mixture stirred for another 10 min. Aldehyde (0.4 mmol) and CH_3CN (1.0 mL) were added and the resulting mixture was stirred at room temperature. After the reaction was complete, the resulting mixture was filtered rapidly through a funnel with a thin layer of silica gel and eluted with DCM. The filtrate was concentrated and the residue was purified by chromatography on silica gel to afford the desired products.

86% yield, white solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.79 (d, J = 16.2 Hz, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 15.9 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.71 (s, 3H), 3.53 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.8, 167.5, 164.9, 134.9, 134.5, 131.7, 128.8, 122.8, 121.2, 113.4, 60.5, 51.8, 51.7, 32.5; IR (KBr) v 2954 (m), 1734 (s), 1609 (m), 1584 (m), 1487 (m), 1438 (m), 1256 (m), 1205 (m), 1170 (m); MS (EI, m/z, rel. intensity) 369 (4, M⁺), 337 (12), 309 (13), 295 (45), 279 (23), 265 (100), 249 (30), 235 (4.6), 211 (5.4), 198 (8.4), 183 (8.7), 171 (8.5), 155 (8.2), 141 (10), 128 (18), 115 (10), 102 (19), 75 (7.3), 59 (32), 45 (5.3); HRMS (EI) calcd for C₁₆H₁₇BrO₅ (M⁺): 368.0259; Found: 368.0251.

(3E, 5E)-**4c**

78% yield, light yellow solid, ¹H NMR (CDCl₃, 400 MHz) δ 8.01-7.99 (m, 1H), 7.80-7.71 (m, 2H), 7.65-7.61 (m, 1H), 7.49-7.43 (m, 2H), 3.83 (s, 3H), 3.77 (s, 3H),

3.72 (s, 3H), 3.56 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.7, 167.4, 164.3, 148.0, 133.3, 132.0, 130.9, 128.96, 128.90, 125.2, 124,6, 114.2, 60.4, 51.9, 51.8, 32.4; IR (KBr) v 2952 (m), 1741 (s), 1710 (s), 1586 (m), 1524 (m), 1435 (s), 1346 (m); MS (EI, m/z, rel. intensity) 335 (19, M⁺), 318 (35), 304 (25), 276 (10), 262 (22), 244 (22), 230 (98), 216 (19), 200 (100), 188 (6.0), 170 (8.2), 156 (17), 141 (45), 128 (35), 120 (46), 102 (12), 92 (12), 77 (14), 59 (37), 45 (9.1); HRMS (EI) calcd for C₁₆H₁₇NO₇ (M⁺): 335.1005; Found: 335.1004.

83% yield, light yellow solid, ¹H NMR (CDCl₃, 400 MHz) δ 8.32 (t, J = 2.0 Hz, 1H), 8.15-8.13 (m, 1H), 7.92-7.86 (m, 2H), 7.57-7.53 (m, 1H), 7.08 (d, J = 16.8 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.72 (s, 3H), 3.56 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.5, 167.2, 164.0, 148.5, 137.8, 133.0, 132.5, 129.6, 123.5, 123.0, 122.0, 114.8, 60.5, 51.9, 51.8, 32.6; IR (KBr) v 2953 (m), 1732 (s), 1737 (s), 1705 (s), 1600 (m), 1519 (s), 1435 (m), 1443 (s); MS (EI, m/z, rel. intensity) 335 (6.7, M⁺), 304 (12), 276 (19), 262 (24), 244 (16), 230 (100), 216 (38), 200 (6.2), 184 (3.4), 170 (4.7), 155 (4.3), 141 (5.1), 128 (11), 115 (8.2), 102 (5.9), 89 (1.7), 75 (3.2), 59 (13), 45 (3.2); HRMS (EI) calcd for C₁₆H₁₇NO₇ (M⁺): 335.1005; Found: 335.1009.

(3E, 5E)-**4e**

90% yield, light yellow solid, ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 16.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 16.0 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.72 (s, 3H), 3.57 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.5, 167.2, 164.0, 147.3, 142.4, 132.9, 127.8, 124.8, 123.9, 115.4, 60.6, 51.91, 51.87, 32.6; IR (KBr) v 2953 (m), 1732 (s), 1737 (s), 1705 (s), 1600 (m), 1519 (s), 1435 (m), 1443 (s); MS (EI, m/z, rel. intensity) 335 (6.7, M⁺), 304 (12), 276 (19), 262

(24), 244 (16), 230 (100), 216 (38), 198 (5.9), 186 (3.0), 170 (5.5), 155 (3.3), 141 (3.7), 128 (10), 102 (6.8), 89 (2.0), 75 (2.8), 59 (15), 45 (3.5); HRMS (EI) calcd for $C_{16}H_{17}NO_7 (M^+)$: 335.1005; Found: 335.1009.

90% yield, white solid, ¹H NMR (CDCl₃, 400 MHz) δ 7.78 (d, *J* = 16.4 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 2H), 7.37-7.27 (m, 3H), 7.04 (d, *J* = 16.0 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.70 (s, 3H), 3.54 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.0, 167.6, 165.2, 136.0, 128.8, 128.6, 127.4, 120.4, 112.9, 60.4, 51.8, 51.7, 32.6; IR (KBr) v 2955(m), 1732 (s), 1689 (m), 1607 (m), 1575 (m), 1437 (m); MS (EI, m/z, rel. intensity) 290 (3.8, M⁺), 259 (9.6), 231 (16), 217 (46), 199 (32), 185 (100), 171 (43), 157 (6.5), 141 (13), 128 (21), 115 (15), 103 (12), 91 (4.0), 77 (9.8), 59 (14), 45 (3.2); HRMS (EI) calcd for C₁₆H₁₈O₅ (M⁺): 290.1154; Found: 290.1157.

(3E, 5E)-4g

71% yield, colorless liquid, ¹H NMR (CDCl₃, 400 MHz) δ 7.67-7.63 (m, 2H), 7.30 (d, *J* = 16.0 Hz, 1H), 7.22-7.17 (m, 3H), 3.76 (m, 6H), 3.71 (s, 3H), 3.54 (s, 2H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.0, 167.6, 165.4, 136.4, 134.9, 133.6, 130.4, 128.6, 126.2, 126.0, 121.3, 112.7, 60.4, 51.8, 51.7, 32.6, 19.7; IR (KBr) v 2950 (m), 1741(s), 1710 (s), 1619 (m), 1587 (m), 1435 (m); MS (EI, m/z, rel. intensity) 304 (1.2, M⁺), 273 (6.7), 245 (12), 231 (47), 213 (19), 199 (100), 185 (32), 153 (26), 128 (12), 115 (24), 105 (4.2), 84 (43), 59 (18), 45 (4.5); HRMS (EI) calcd for C₁₇H₂₀O₅ (M⁺): 304.1311; Found: 304.1310.

(3E, 5E)-4h

77% yield, colorless liquid, ¹H NMR (CDCl₃, 400 MHz) δ 7.78 (d, *J* = 16.0 Hz, 1H), 7.34-7.32 (m, 2H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.02(d, *J* = 16.4 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 3.54 (s, 2H), 2.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.0, 167.6, 165.4, 138.2, 136.2, 135.8, 129.7, 128.5, 127.9, 124.6, 120.1, 112.6, 60.4, 51.8, 51.6, 32.5, 21.2; IR (KBr) v 2950 (s), 2842 (m), 1743(s), 1712 (s), 1621 (m), 1588 (m), 1435 (m); MS (EI, m/z, rel. intensity) 304 (1.9, M⁺), 273 (4.8), 245 (10), 230 (52), 213 (36), 199 (100), 185 (40), 171 (5.2), 155 (7.9), 141 (10.9), 128 (13), 115 (17), 105 (2.2), 84 (10), 59 (14), 51 (5.3), 45 (2.5); HRMS (EI) calcd for C₁₇H₂₀O₅ (M⁺): 304.1311; Found: 304.1319.

77% yield, colorless liquid, ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (d, *J* = 16.0 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 16.0 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.70 (s, 3H), 3.53 (s, 2H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.1, 167.7, 165.6, 139.0, 136.0, 133.2, 129.4, 127.4, 119.4, 112.4, 60.5, 51.8, 51.7, 32.6, 21.2; IR (KBr) v 2950 (s), 2842 (m), 1741(s), 1710 (s), 1620 (m), 1585 (m), 1435 (m); MS (EI, m/z, rel. intensity) 304 (2.1, M⁺), 273 (4.9), 245 (10), 231 (35), 213 (34), 199 (100), 185 (44), 171 (9.2), 155 (14), 128 (16), 115 (24), 105 (4.7), 84 (91), 71 (9.5), 59 (22), 43 (11); HRMS (EI) calcd for C₁₇H₂₀O₅ (M⁺): 304.1311; Found: 304.1304.

55% yield, colorless liquid, ¹H NMR (CDCl₃, 400 MHz) δ 7.67 (d, *J* = 16.0 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.01 (d, *J* = 16.4 Hz, 1H), 6.89 (d, *J* = 9.2 Hz, 2H), 3.83 (s, 3H), 3.76 (s, 3H), 3.74 (s, 3H), 3.70 (s, 3H), 3.53 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.2, 167.8, 165.8, 160.3, 135.8, 128.9, 128.8, 118.3, 114.1, 112.0, 60.6,

55.3, 51.9, 51.7, 32.7; IR (KBr) v 2951(m), 2840 (m), 1741 (s), 1709 (s), 1602 (m), 1512 (m), 1435 (m); MS (EI, m/z, rel. intensity) 320 (7.2, M^+), 289 (3.9), 261 (11), 246 (57), 229 (51), 215 (100), 201 (30), 187 (5.6), 171 (6.4), 161 (6.5), 145 (4.9), 128 (9.2), 115 (8.8), 103 (2.2), 89 (3.1), 77 (3.7), 59 (11), 45 (2.9); HRMS (EI) calcd for $C_{17}H_{20}O_6(M^+)$: 320.1260; Found: 320.1262.

95% yield, white solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.73 (d, *J* = 16.8 Hz, 1H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.41-7.24 (m, 3H), 3.78 (s, 3H), 3.77 (s, 3H), 3.72 (s, 3H), 3.55 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.7, 167.4, 164.6, 134.7, 134.5, 132.8, 130.5, 129.4, 127.9, 127.3, 123.2, 114.1, 60.5, 51.9, 51.7, 32.5; IR (KBr) v 2954(m), 1734 (s), 1696 (m), 1608 (m), 1581 (m), 1437 (m), 1368 (m); MS (EI, m/z, rel. intensity) 358 (4.3, M⁺), 327 (7.2), 299 (24), 285 (34), 267 (22), 253 (100), 239 (52), 225 (6.4), 211 (4.9), 199 (7.2), 173 (8.8), 162 (11), 139 (11), 113 (7.7), 99 (10), 86 (5.8), 75 (8.8), 59 (44), 49 (10); HRMS (EI) calcd for C₁₆H₁₆Cl₂O₅ (M⁺): 358.0375; Found: 358.0381.

86% yield, colorless liquid, ¹H NMR (CDCl₃, 300 MHz) δ 8.15 (d, *J* = 7.5 Hz, 1H), 7.90-7.82 (m, 5H), 7.58-7.46 (m, 3H), 3.85 (s, 3H), 3.77 (s, 3H), 3.73 (s, 3H), 3.58 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.0, 167.6, 165.2, 133.6, 133.3, 132.8, 131.2, 129.1, 128.6, 126.3, 125.8, 125.5, 124.4, 123.2, 123.0, 113.0, 60.5, 51.9, 51.7, 32.6; IR (KBr) v 2950(m), 2841 (m), 1742 (s), 1613 (m), 1582 (m), 1508 (m), 1435 (m), 797 (m), 775 (m); MS (EI, m/z, rel. intensity) 341 (2.3, M⁺), 309 (5.6), 267 (40), 249 (14). 235 (100), 221 (24), 206 (5.1), 189 (16), 178 (7.8), 165 (4.6), 152 (10), 127 (2.0), 113 (1.8), 101 (0.5), 89 (1.1), 76 (1.6), 59 (11), 45 (1.8); HRMS (EI) calcd for $C_{20}H_{20}O_5(M^+)$: 340.1311; Found: 340.1314.

64%, yield, white solid, ¹H NMR (CDCl₃, 400 MHz) δ 7.44 (d, J = 7.2 Hz, 2H), 7.36-7.24 (m, 4H), 7.01-6.95 (m, 1H), 6.90-6.83 (m, 1H), 6.75 (d, J = 15.2 Hz, 1H), 3.75 (s, 3H), 3.71 (s, 3H), 3.70 (s, 3H), 3.52 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.0, 167.6, 165.2, 136.7, 136.63, 136.60, 128.6, 128.27, 128.23, 126.7, 124.3, 112.8, 60.6, 51.9, 51.7, 32.6; IR (KBr) v 2950(m), 2850 (m), 1738 (s), 1707 (s), 1605 (m), 1256 (m), 1054 (s), 998 (s), 788 (m), 751 (m), 738 (m), 693 (m); MS (EI, m/z, rel. intensity) 316 (23, M⁺), 285 (4.5), 270 (5.5), 256 (5.6), 242 (27), 225 (20), 211 (100), 197 (62), 181 (19), 157 (88), 153 (33), 128 (89), 115 (51), 105 (84), 91 (91), 84 (78). 59 (100), 43 (78); HRMS (EI) calcd for C₁₈H₂₀O₅ (M⁺): 316.1311; Found: 316.1305.

72% yield, colorless liquid, ¹H NMR (CDCl₃, 300 MHz) δ 7.31-7.26 (m, 2H), 7.20-7.19 (m, 3H), 6.95 (d, *J* = 15.6 Hz, 1H), 6.29-6.20 (m, 1H), 3.71 (s, 3H), 3.68 (s, 3H), 3.58 (s, 3H), 3.45 (s, 2H), 2.82-2.77 (m, 2H), 2.60-2.53 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.1, 167.8, 165.1, 141.2, 138.9, 128.32, 128.31, 125.9, 122.7, 110.8, 59.9, 51.8, 51.6, 35.0, 34.5, 32.4; IR (KBr) v 2949 (m), 2850 (m), 1739 (s), 1712 (s), 1589 (m), 1435 (m), 1193 (s), 1053 (s), 1015 (s), 801 (s), 736 (s), 700 (s); MS (EI, m/z, rel. intensity) 318 (17, M⁺), 286 (5.6), 254 (8.4), 227 (22), 213 (100), 195 (5.9), 173 (9.8), 167 (12), 139 (8.3), 117 (10), 109 (12), 91 (68), 77 (4.8), 65 (10.2), 59 (9.4), 41 (2.9); HRMS (EI) calcd for C₁₈H₂₂O₅ (M⁺): 318.1467; Found: 318.1469.

49% yield, colorless liquid, ¹H NMR (CDCl₃, 400 MHz) δ 6.92 (d, J = 16.0 Hz,

1H), 6.28-6.20 (m, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 3.66 (s, 3H), 3.46 (s, 2H), 2.26-2.20 (m, 2H), 1.48-1.45 (m, 2H), 1.30-1.28 (m, 8H), 0.88-0.87 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.2, 167.8, 165.4, 140.3, 122.0, 110.4, 60.0, 51.8, 51.5, 32.8, 32.4, 31.7, 29.1, 29.0, 28.7, 22.5, 14.0; IR (KBr) v 2926(m), 2855 (m), 1742 (s), 1715 (s), 1640 (m), 1590 (m), 1435 (m), 1194 (m), 1117 (m), 1059 (m), 978 (m), 800 (m); MS (EI, m/z, rel. intensity) 312 (8.4, M⁺), 281 (5.8), 253 (5.0), 213 (100), 196 (5.7), 177 (4.8), 164 (16), 149 (3.1), 137 (4.0), 123 (8.1), 109 (9.3), 95 (9.1), 79 (6.1), 59 (7.7), 41 (13); HRMS (EI) calcd for C₁₇H₂₈O₅ (M⁺): 312.1937; Found: 312.1941.

X-Ray Structure of (3E, 5E)-4e (CCDC 932306)

î.	, ⁰¹					
			•	OMe		
× • • •			=			
	0	2 C14	$O_2 N$			
07			(3	E, 5E <i>)-</i> 4e		
Bond precision:	C-C = 0	0.0026 A		Wavelength=0.71073		
Cell: a=7.57	752(9)	b=9.2925(12)	c=11.91	191(15)		
alpha=	=90.060(2)	beta=98.984(2)	gamma	=95.356(2)		
Temperature: 293 K						
	Calculated		-	Reported		
Volume	825.00(18)			825.00(18)		
Space group	P -1			P-1		
Hall group	-P 1			?		
Moiety formula	C16 H17 N O7			?		
Sum formula	C16 H17 N	O7		C16 H17 N O7		
Mr	335.31			335.31		
Dx,g cm-3	1.350			1.350		
Ζ	2			2		
Mu (mm-1)	0.107			0.107		
F000	352.0			352.0		
F000'	352.22					
h,k,lmax	9,11,14			9,11,14		
Nref	3260			3205		
Tmin,Tmax	0.958,0.974			0.786,1.000		
Tmin'	0.958					
Correction method=	EMPIRICA	L				
Data completeness= 0.983 Theta(max)= 26.000						
R(reflections) = 0.05	71(2472)	wR2(re	eflections)=	= 0.1731(3205)		
S = 1.032	Npar=	221				

5. Reaction Conditions for Synthesis of Cyclopentadienes

	Ph ₃ P 2c	PhCOCHI CO ₂ Et Fe(TCP)	N ₂ , Solvent, RT CI (0.5 mol%) 24 h	Ph CO ₂ Et	
Entry ^a	Solvent	Yield (%) b	Entry	Solvent	Yield $(\%)^b$
1	THF	44	7	PhCH ₃	47
2	DME	54	8	PhCl	48
3	MTBE	23	9	EtOAc	46
4	1,4-Dioxane	44	10	<i>i</i> -PrOAc	47
5	DCM	45	11	CH ₃ CN	33
6	DCE	60	12	DMF	trace

Table S2Solvent effects

^{*a*} Condition: ylide **2c** (167.4 mg, 0.4 mmol), PhCOCHN₂ (116.8 mg, 0.8 mmol), Fe(TCP)Cl (1.7 mg, 0.002 mmol), solvent (4.0 mL), RT; ^{*b*} Isolated yield.

Table S3 Reaction time

	Ph ₃ P	DEt PhCOCI CO ₂ Et Fe(TCP)	HN ₂ , DCE, RT)CI (0.5 mol%) <i>t</i> h	Ph 5c OEt	
Entry ^a	t (h)	Yield (%) b	Entry	t (h)	Yield $(\%)^b$
1	6	69	4	36	47
2	15	60	5	48	52
3	24	60			

^{*a*} Condition: ylide **2c** (167.4 mg, 0.4 mmol), PhCOCHN₂ (116.8 mg, 0.8 mmol), Fe(TCP)Cl (1.7 mg, 0.002 mmol), DCE (4.0 mL); ^{*b*} Isolated yield.

	Ph ₃ P 2c	PhCOC CO2Et Fe(TCP	HN ₂ , DCE, RT P)CI (0.5 mol%) 6 h	Ph CO ₂ Et	
Entry ^a	Ylide/Diazo	Yield (%) b	Entry	Ylide/Diazo	$\text{Yield}\left(\%\right)^{b}$
1	1.0/1.0	45	4	1.0/1.5	67
2	1.0/1.2	55	5	1.0/2.0	69
3	1.0/1.4	67	6	1.0/2.5	54

Table S4 Loading of diazo phenylethanone

^{*a*} Condition: ylide **2c** (167.4 mg, 0.4 mmol), PhCOCHN₂, Fe(TCP)Cl (1.7 mg, 0.002 mmol), DCE (4.0 mL), 6 h; ^{*b*} Isolated yield.

Table S5 Reaction temperature

	O Ph ₃ P	Et PhCOCHN CO ₂ Et Fe(TCP)C	N ₂ , DCE, T °C ► Cl (0.5 mol%) 6 h	Ph CO ₂ Et 5c	
Entry ^a	T(°C)	Yield (%) b	Entry ^a	T (°C)	Yield (%) ^b
1	0	70	5	45	62
2	10	74	6	55	59
3	20	76	7 ^c	20	65
4	35	68			

^{*a*} Condition: ylide **2c** (167.4 mg, 0.4 mmol), PhCOCHN₂ (81.8 mg, 0.56 mmol), Fe(TCP)Cl (1.7 mg, 0.002 mmol), DCE (4.0 mL), 6 h; ^{*b*} Isolated yield; ^{*c*} Under the same condition, t = 12 h.

6. General Procedure for Synthesis of Cyclopentadienes

General procedure: To a stirred suspension of ylide **2** (0.4 mmol) in dry DCE (2.0 mL) under N_2 at room temperature was added Fe(TCP)Cl (1.7 mg, 0.002 mmol) and RCOCHN₂ (0.56 mmol) sequentially at 20 °C. (Caution! N_2 Release!) The resulting mixture was stirred at 20 °C for 6 hours. After the reaction was complete, the resulting mixture was concentrated and the residue was purified by chromatography on silica gel to afford the desired products.

65% yield, light yellow solid, ¹H NMR (CDCl₃, 400 MHz) δ 7.58 (d, J = 6.8 Hz, 2H), 7.39-7.29 (m, 3H), 6.93 (s, 1H), 4.04 (s, 3H), 3.78 (s, 3H), 3.70 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.2, 164.3, 152.9, 134.3, 128.80, 128.79, 125.5, 119.0, 104.6, 58.6, 50.8, 38.3; IR (KBr) v 2946 (m), 1697 (s), 1673 (s), 1610 (m), 1456 (m), 1392 (m), 1209 (s), 1079 (s); MS (EI, m/z, rel. intensity) 230 (81, M⁺), 199 (21), 171 (100), 155 (13), 142 (10), 128 (48), 115 (17), 105 (17), 91 (5.5), 77 (16), 57 (4); HRMS (EI) calcd for C₁₄H₁₄O₃ (M⁺): 230.0943; Found: 230.0947.

74% yield, light yellow solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.58 (d, *J* = 7.5 Hz, 2H), 7.40-7.29 (m, 3H), 6.90 (s, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 3.70 (s, 2H), 1.47 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.7, 164.4, 152.7, 134.4, 128.8, 128.76, 125.5, 119.7, 104.8, 67.1, 50.7, 38.1, 15.2; IR (KBr) v 2983 (m), 2945 (m), 1697 (s), 1674 (s), 1609 (m), 1448 (m), 1386 (m), 1208 (s), 1074 (s); MS (EI, m/z, rel. intensity) 244 (83, M⁺), 213 (17), 185 (38), 157 (77), 128 (100), 115 (18), 108 (12), 102 (21), 91 (5.5), 77 (16); HRMS (EI) calcd for C₁₅H₁₆O₃ (M⁺): 244.1099; Found: 244.1100.

76% yield, light yellow solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.57 (d, J = 6.9 Hz, 2H), 7.40-7.30 (m, 3H), 6.89 (s, 1H), 4.35-4.20 (m, 4H), 3.69 (s, 2H), 1.47 (t, J = 7.0 Hz, 3H), 1.33 (t, J = 7.0 Hz, 3H).

50% yield, light yellow solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.56 (d, *J* = 6.9 Hz, 2H), 7.38-7.26 (m, 3H), 6.87 (s, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.62 (s, 2H), 1.54 (s, 9H), 1.46 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.0, 163.8, 151.8, 134.7, 128.8, 128.5, 125.5, 119.8, 106.9, 79.0, 66.8, 38.2, 28.5, 15.2; IR (KBr) v 2976 (m), 2928 (m), 1693 (s), 1670 (s), 1610 (m), 1413 (m), 1389 (m), 1168 (s), 1063 (m); MS (EI, m/z, rel. intensity) 286 (30, M⁺), 244 (26), 230 (48), 213 (24), 184 (55), 157 (74), 128 (100), 115 (17), 108 (26), 91 (9), 77 (20), 57 (36); HRMS (EI) calcd for C₁₈H₂₂O₃ (M⁺): 286.1569; Found: 286.1565.

40% yield, light yellow liquid, ¹H NMR (CDCl₃, 300 MHz) δ 7.57 (d, *J* = 7.5 Hz, 2H), 7.40-7.28 (m, 3H), 6.90 (s, 1H), 5.96-5.82 (m, 1H), 5.13 (m, 2H), 4.34-4.22 (m, 4H), 3.68 (s, 2H), 2.47 (q, *J* = 6.8 Hz, 2H), 1.47 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.8, 164.0, 152.6, 134.7, 134.4, 128.8, 128.7, 125.5, 119.7, 116.8, 104.9, 67.0, 62.5, 37.9, 33.4, 15.2; IR (KBr) v 2979 (m), 2927 (m), 1698 (s), 1672 (s), 1609 (m), 1205 (s), 1071 (s); MS (EI, m/z, rel. intensity) 284 (30, M⁺), 255 (5.6), 230 (10), 213 (30), 199 (15), 186 (50), 157 (100), 128 (85), 115 (20), 108 (63), 102 (21), 91 (11), 77 (23), 55 (46); HRMS (EI) calcd for C₁₈H₂₀O₃ (M⁺): 284.1412; Found: 284.1413.

45% yield, light yellow solid, ¹H NMR (CDCl₃, 400 MHz) δ 7.49 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 6.89 (s, 1H), 4.33-4.21 (m, 4H), 3.84 (s, 3H), 3.64 (s, 2H), 1.46 (t, J = 7.0 Hz, 3H), 1.32 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.2, 164.1, 160.1, 152.5, 127.4, 127.0, 117.7, 114.1, 104.0, 67.0, 59.2, 55.3, 38.0, 15.2, 14.6; IR (neat) v 2926 (m), 2853 (m), 1667 (s), 1605 (s), 1506 (m), 1425 (m), 1254 (s), 1207 (s), 1074 (s), 1025 9s), 811 (m), 738 (m); MS (EI, m/z, rel. intensity) 288 (43, M⁺), 259 (4.8), 243 (11), 231 (4.3), 215 (36), 203 (5.0), 187 (70), 172 (11), 158 (14), 144 (21), 128 (27), 115 (100), 102 (13), 89 (42), 77 (29), 63 (26), 55 (17), 43 (19); HRMS (EI) calcd for C₁₇H₂₀O₄ (M⁺): 288.1362; Found: 288.1366.

49% yield, light yellow solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.46 (d, *J* = 8.1 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.83 (s, 1H), 4.33-4.20 (m, 4H), 3.66 (s, 2H), 2.36 (s, 3H), 1.46 (t, *J* = 7.0 Hz, 3H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.9, 164.1, 152.7, 138.8, 131.8, 129.4, 125.4, 118.8, 104.5, 67.0, 59.2, 38.0, 21.3, 15.2, 14.5; IR (KBr) v 2984 (m), 2892 (m), 1674 (s), 1610 (s), 1425 (m), 1281 (m), 1200 (s), 1074 (m), 801 (m); MS (EI, m/z, rel. intensity) 272 (61, M⁺), 227 (23), 199 (31), 191 (100), 171 (84), 141 (40), 128 (22), 115 (48), 91 (14); HRMS (EI) calcd for C₁₇H₂₀O₃ (M⁺): 272.1412; Found: 272.1413.

57% yield, light yellow solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.57-7.52 (m, 2H), 7.08-7.03 (m, 2H), 6.82 (s, 1H), 4.34-4.20 (m, 4H), 3.65 (s, 2H), 1.46 (t, *J* = 7.0 Hz, 3H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.6, 164.0 (d, *J* = 14.8 Hz, 1C), 161.6, 151.2, 130.8 (d, *J* = 4.0 Hz, 1C), 127.3 (d, *J* = 7.5 Hz, 1C), 119.6,

115.8 (d, J = 22.6 Hz, 1C), 105.0, 67.0, 59.2, 38.2, 15.1, 14.5; ¹⁹F NMR (CDCl₃, 376 MHz) δ -112.2 – -112.3 (m, 1F); IR (neat) v 2982 (m), 2926 (m), 1691 (s), 1610 (s), 1503 (s), 1207 (s), 1097 (s), 823 (s), 736 (s); MS (EI, m/z, rel. intensity) 337 (22, M⁺), 308 (8.0), 276 (48), 248 (4.7), 231 (17), 203 (41), 175 (100), 146 (84), 133 (19), 120 (24), 101 (8.2), 83 (13), 57 (7.6), 43 (13); HRMS (EI) calcd for C₁₆H₁₇FO₃ (M⁺): 276.1162; Found: 276.1163.

48% yield, light yellow solid, ¹H NMR (CDCl₃, 400 MHz) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.8 Hz, 2H), 6.87 (s, 1H), 4.33-4.21 (m, 4H), 3.64 (s, 2H), 1.46 (t, *J* = 7.2 Hz, 3H), 1.32 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.4, 163.9, 150.9, 134.4, 133.0, 129.0, 126.7, 120.3, 105.4, 67.1, 59.3, 38.1, 15.2, 15.0; IR (KBr) v 2979 (m), 2929 (m), 1662 (s), 1610 (m), 1434 (m), 1206 (s), 1103 (m), 813 (m); MS (EI, m/z, rel. intensity) 292 (90, M⁺), 264 (8.1), 247 (25), 220 (60), 191 (100), 155 (25), 127 (46), 115 (13), 101 (12), 75 (10), 43 (10); HRMS (EI) calcd for C₁₆H₁₇ClO₃ (M⁺): 292.0866; Found: 292.0867.

48% yield, light yellow solid, ¹H NMR (CDCl₃, 400 MHz) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.8 Hz, 2H), 6.89 (s, 1H), 4.33-4.21 (m, 4H), 3.64 (s, 2H), 1.46 (t, *J* = 7.0 Hz, 3H), 1.32 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.4, 163.9, 150.9, 133.3, 131.9, 126.9, 122.6, 120.4, 105.5, 67.1, 59.3, 38.0, 15.1, 14.5; IR (neat) v 2982 (m), 2854 (m), 1689 (s), 1664 (s), 1610 (s), 1206 (s), 1069 (s), 810 (s), 736 (s); MS (EI, m/z, rel. intensity) 337 (22, M⁺), 308 (8.0), 291 (21), 264 (92), 235 (100), 155 (42), 128 (79), 115 (27), 101 (22), 75 (20), 43 (15); HRMS (EI) calcd for C₁₆H₁₇BrO₃ (M⁺): 336.0361; Found: 336.0358.

70% yield, light yellow solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.70 (s, 1H), 7.49-7.40 (m, 2H), 7.26-7.20 (m, 1H), 6.90 (s, 1H), 4.34-4.20 (m, 4H), 3.64 (s, 2H), 1.46 (t, *J* = 6.9 Hz, 3H), 1.33 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.2, 163.8, 150.5, 136.5, 131.4, 130.3, 128.4, 124.0, 123.0, 121.1, 105.8, 67.1, 59.3, 38.0, 15.1, 14.5; IR (KBr) v 2982 (m), 2929 (m), 1693 (s), 1610 (s), 1561 (m), 1209 (s), 1070 (s), 737 (s); MS (EI, m/z, rel. intensity) 338 (19, M⁺), 293 (9.1), 264(34), 235 (33), 153 (92), 127 (31), 110 (52), 97 (95), 81 (61), 57 (100), 43 (97); HRMS (EI) calcd for C₁₆H₁₇BrO₃ (M⁺): 336.0361; Found: 336.0366.

46% yield, light yellow solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.46 (d, *J* = 8.2 Hz, 2H), 7.35 (t, *J* = 8.2 Hz, 2H), 7.29-7.24 (m, 1H), 7.00 (d, *J* = 16.2 Hz, 1H), 6.90 (d, *J* = 15.9 Hz, 1H), 6.52 (s, 1H), 4.28-4.20 (m, 4H), 3.54 (s, 2H), 1.44 (t, *J* = 7.0 Hz, 3H), 1.32 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.7, 164.0, 151.8, 136.5, 131.7, 128.8, 128.2, 126.6, 123.8, 123.3, 104.5, 67.0, 59.2, 36.5, 15.1, 14.6; IR (KBr) v 2986 (m), 2939 (m), 1669(s), 1693 (s), 1595 (s), 1524 (m), 1210 (s), 1147 (m), 1069 (s); MS (EI, m/z, rel. intensity) 284 (93, M⁺), 239 (30), 210 (52), 183 (80), 165 (100), 153 (78), 141 (37), 128 (35), 115 (26), 102 (9.0), 91 (12), 77 (16), 55(19); HRMS (EI) calcd for C₁₈H₂₀O₃ (M⁺): 284.1412; Found: 284.1415.

70% yield, light yellow solid, ¹H NMR (CDCl₃, 300 MHz) δ 7.42 (s, 2H), 6.75 (s, 1H), 6.55 (d, *J* = 3.0 Hz, 1H), 6.46-6.44 (m, 1H), 4.32-4.19 (m, 4H), 3.60 (s, 2H), 1.45 (t, *J* = 6.9 Hz, 3H), 1.32 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 167.8, 164.0, 150.9, 142.9, 141.5, 118.1, 111.9, 108.7, 103.7, 67.0, 59.2, 36.9, 15.1, 14.5; IR

(KBr) v 2980 (m), 2934 (m), 1697(s), 1620 (m), 1577 (s), 1523 (m), 1217 (s), 1199 (m), 1068 (s); MS (EI, m/z, rel. intensity) 248 (48, M^+), 175 (47), 147 (100), 118 (16), 91 (19), 77 (5.4), 65 (11), 55(3.7); HRMS (EI) calcd for C₁₄H₁₆O₄ (M^+): 248.1049; Found: 248.1052.

7. Procedure for Chemical Transformation²

To a solution of **5c** (103.3 mg, 0.4 mmol) in CHCl₃ (8.0 mL) was added aq. HCl (8.0 mL, 2.0 M in H₂O) at room temperature. After stirred at the same temperature for 24 hours, the aqueous layer was extracted with CHCl₃ (3×10 mL). The combined organic layer was dried over Mg₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the desired product **6** (85.6 mg, 94% yield).

¹H NMR (CDCl₃, 400 MHz) δ 7.69-7.67 (m, 2H), 7.53-7.45 (m, 3H), 6.53 (t, *J* = 1.8 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.63 (dd, *J* = 2.2, 10.5Hz, 1H), 3.55 (ddd, *J* = 1.9, 2.9, 18.0 1H), 3.25 (ddd, *J* = 1.7, 3.3, 18.2 Hz, 1H), 1.32 (t, *J* = 7.0 Hz, 3H).

8. General Procedure for Deuterium Experiment

Synthesis of d_3 -MDA^{3,4}

$$CD_3OD + O \xrightarrow{MsN_3, NaOAc} O \xrightarrow{O} O \xrightarrow{KOH} N_2 \xrightarrow{O} OCD_3 \xrightarrow{KOH} OCD_3 \xrightarrow{d_3 MDA} OCD_3$$

To a mixture of MsN₃ (9.1 g, 75 mmol), NaOAc (492 mg, 6 mmol) in CH₃CN (60 mL) was added CD₃OD (2.7 mL, 60 mmol) under N₂. The resulting mixture was heated to 60 °C, and then diketene (9.2 mL, 120 mmol) in CH₃CN (10 mL) was added dropwise in 7 hours. After refluxed for 20 hours, the reaction system was cooled to room temperature and diluted with brine (50 mL). The aqueous layer was extracted with Et₂O (3×50 mL), and the combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was subjected to the next step without further purification.

To a solution of upper products in Et₂O (200 mL) was added KOH (150 mL, 7 wt% in water, 210 mmol) at 0 °C, and then he reaction was warmed up to room temperature. After the reaction was complete, the organic layer was separated and the aqueous layer was extracted with Et₂O (3 × 50 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by distillation under vacuum to afford d_3 -MDA as a light yellow liquid (2.2 g, 43% for two steps).

¹H NMR (CDCl₃, 400 MHz) δ 4.76 (brs, 1H).

Deuterium Experiment

To a stirred suspension of phosphorus ylide 2a (195 mg, 0.5 mmol) in dry CH₃CN (2.0 mL) under N₂ at room temperature was added Fe(TCP)Cl (1.7 mg, 0.002 mmol), d_3 -MDA (50 μ L, 0.6 mmol) and CH₃CN (1.0 mL) were added to the system

sequentially (Caution! N₂ Release!). Ten minutes later, o-NO₂C₆H₄CHO (60.4 mg, 0.4 mmol) and CH₃CN (1.0 mL) were added and the resulting mixture was stirred at room temperature for 6 hours. After the reaction was complete, the resulting mixture was filtered rapidly through a funnel with a thin layer of silica gel and eluted with CH₂Cl₂. The filtrate was concentrated and the residue was purified by chromatography on silica gel to afford the desired products (**3E, 5E)-4c** as a light yellow solid (123.8 mg, 92% yield).

OMe CO₂C(H/D)₃ (80%) NO₂ CO₂C(H/D)₃ (20%) 4c

92% yield, light yellow solid, ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (d, *J* = 8.4 Hz, 1 H), 7.81-7.71 (m, 2H), 7.63 (t, *J* = 7.0 Hz, 1H), 7.50-7.43 (m, 2H), 3.83 (s, 3H), 3.77 (s, 2.4 H), 3.72 (s, 0.6 H), 3.56 (s, 2H).

References:

- 1. V. V. Borovkov, J. M. Lintuluoto, Y. Inove, Synlett. 1999, 61.
- 2. M. Hatanaka, Y. Himeda, R. Imashiro, Y. Tanaka, I. Ueda, J. Org. Chem. 1994, 59, 111.
- 3. a) H. M. L. Davies, J. H. Houser, G. Thornley, J. Org. Chem. **1995**, 60, 7529. b) K. Ohtaka, M. Kajiwara, J. Label. Compd. Radiopharm. **2003**, 46, 1177.
- 4. L. McElwee-White, D. A. Dougherty, J. Am. Chem. Soc. 1984, 106, 3466.

9. NMR Spectra of the Compounds

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

QМе CO₂Me ĊO₂Me Cl

.CO₂Me CI ́МеО

¹H NMR (400 M Hz in CDCl₃)

QМе O_2N CO₂Me ĊO₂Me

ŅМе CO₂Me ĊO₂Me $O_2 N'$

ŌМе CI °CO₂Me ĊO₂Me Cl

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

¹H NMR (300 M Hz in CDCl₃)

