1. General and Materials.

Materials were obtained from commercial suppliers and purified by standard procedures unless otherwise noted. Solvents were also purchased from commercial suppliers, degassed via N_2 bubbling, and further dried over molecular sieves (MS 4Å). NMR spectra were recorded on JEOL JNM-ECX400P and JNM-ECS400 spectrometer (¹H: 400 MHz and ¹³C: 100 MHz). Tetramethylsilane (¹H) and CDCl₃ (¹³C) were employed as external standards, respectively. [Ir(OMe)(cod)]₂ was synthesized according to the reported procedure.¹ Tetradecane was used as an internal standard to determine GC yield. GLC analyses were conducted with a Shimadzu GC-2014 or GC-2025 equipped with ULBON HR-1 glass capillary column (Shinwa Chemical Industries) and a FID detector. Elemental analyses and high-resolution mass spectra were recorded at the Center for Instrumental Analysis, Hokkaido University.

2. General Experimental Procedures.

A Representative Procedure for the Iridium(I)-Catalyzed Vinylic C–H Borylation of 1a (Table 1).

 $[Ir(OMe)(cod)]_2$ (4.97 mg, 0.0075 mmol) and bis(pinacolato)diboron (B₂pin₂) (**2**) (140 mg, 0.55 mmol), AsPh₃(triphenylarsine) (9.19 mg, 0.030 mmol) were placed in an oven-dried two neck flask. The flask was connected to a vacuum/nitrogen manifold through a rubber tube. It was evacuated and then backfilled with nitrogen. This cycle was repeated three times. Octane (3 mL) was added in the flask through the rubber septum, and stirred at room temperature for 10 min. Then, **1a** (70.1 mg, 0.5 mmol) was added to the reaction mixture, and stirred at 80 or 120 °C. After the reaction was complete, the reaction mixture was concentrated and purified by flash column chromatography (SiO₂, EtOAc/hexane, 1:99–5:95) to give the corresponding alkenylboronate **3a** as a colorless oil.

The Procedure for One-pot Synthesis of 4.

 $[Ir(OMe)(cod)]_2$ (49.7 mg, 0.15 mmol) and B_2pin_2 (2) (1.40 g, 5.5 mmol), AsPh₃ (91.9 mg, 0.3 mmol) were placed in an oven-dried two neck flask. The flask was connected to a vacuum/nitrogen manifold through a rubber tube. It was evacuated and then backfilled with nitrogen. This cycle was repeated three times. Octane (15 mL) was added in the flask through the rubber septum *via* a syringe, and stirred at room temperature for 10 min. Then, **1a** (701 mg, 5.0 mmol) was added to the reaction

mixture, and stirred at 80 °C for 16 h. The reaction mixture was cooled to r.t., and H₂O (1.5 ml) was added and stirred for 10 min. Without purification, PdCl₂(dppf) (92.0 mg, 0.125 mmol), K₃PO₄ (1.59 g, 7.50 mmol), and 2-bromonaphthalene (518 mg, 2.50 mmol) were added to the reaction mixture and stirred at 80 °C for 8 h. After the reaction was complete, the reaction mixture was cooled to r.t. and extracted with EtOAc three times. The combined organic layer was dried over MgSO₄. After filtration, the solvents were removed by evaporation. The crude product was purified by flash column chromatography to obtain 4 (271.3 mg, 47%(78% GC yield)) as a syrup. ¹H NMR (400 MHz, CDCl₃, δ): 1.75–1.85 (m, 4H), 2.44–2.55 (m, 4H), 3.37 (s, 3H), 7.28 (dd, *J* = 7.0, 1.8 Hz, 1H), 7.42–7.48 (m, 2H), 7.58–7.62 (m, 1H), 7.77–7.82 (m, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.9 (CH₂), 22.5 (CH₂), 26.7 (CH₂), 32.6 (CH₂), 51.2 (CH₃), 125.0 (CH), 125.59 (CH), 125.64 (CH), 125.9 (CH), 127.4 (CH), 127.6 (CH), 127.9 (CH), 128.0 (C), 132.4 (C), 133.2 (C), 140.8 (C). 145.7 (C), 170.3 (C). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₁₈O₂Na, 289.11990; found, 289.12018.

3. Preparation of Substrates.

In a vacuum dried three-necked, 500 mL, round bottomed flask, cyclohexanecarboxylic acid (50.3 mL, 400 mmol) and thionyl chloride (36.3 mL, 500 mL) was added and stirred at 90 °C for 2 h. Then the reaction mixture was cooled to 80 °C and red phosphorus (0.65 g) was added with stirring. Bromine (25.8 mL, 500 mmol) was added dropwise as temperature was maintained below 100 °C. The reaction mixture was heated at 100 °C for an additional 5 h and then cooled to 0 °C and dry methanol (85.0 mL, 2.10 mol) was added dropwise. The reaction mixture was heated to reflux for 1 h. After that, the reaction mixture was quenched by addition of ice-cold water and extracted with Et₂O four times. The combined organic layer was washed with 1M Na₂S₂O₃ aq. once and saturated NaHCO₃ aq. three times and saturated NaCl aq. once. The combined organic layer was dried over MgSO₄. After filtration, the solvents were removed by evaporation. The crude product was purified by vacuum distillation to obtain methy 1-bromocyclohexanecarboxylate (86.5 g, 392 mmol, 98%) as a colorless oil.

In a vacuum dried 300 mL of a round bottomed flask, methyl 1-bromocyclohexanecarboxylate (86.2 g, 390 mmol) and quinoline (74.0 mL, 624 mmol) was added and the flask was heated to 120 °C for 2 h under nitrogen atmosphere. After 15 min of heating, a slight exothermic reaction was noted and the mixture separated into two layers. The reaction mixture was cooled and quenched by

addition of 20% HCl aq. and extracted with hexane four times. The combined organic layer was washed with 10% HCl aq. and saturated NaHCO₃ aq. and saturated NaCl aq. and was dried over MgSO₄. After filtration, the solvents were removed by evaporation. The crude product was purified by vacuum distillation to obtain **1a** (37.8 g, 270 mmol, 69%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 1.55–1.73 (m, 4H), 2.14–2.32 (m, 4H), 3.73 (s, 3H), 6.95–7.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.3 (*C*H₂), 21.9 (*C*H₂), 24.0 (*C*H₂), 25.6 (*C*H₂), 51.3 (*C*H₃), 130.1 (*C*), 139.6 (*C*H), 167.9 (*C*). HRMS-ESI (m/z): [M]⁺ calcd for C₈H₁₂O₂, 140.08373; found, 140.08332.

Preparation of ethyl cyclohex-1-enecarboxylate (1b).

1b (5.94 g, 38.5 mmol, 39%, colorless oil) was prepared from cyclohexanecarboxylic acid (12.8 g, 100 mmol) and ethanol (24.2 g, 525 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.29 (t, *J* = 7.4 Hz, 3H), 1.56–1.68 (m, 4H), 2.16–2.28 (m, 4H), 4.18 (q, *J* = 7.2 Hz, 2H), 6.97–7.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 13.7 (*C*H₃), 21.0 (*C*H₂), 21.6 (*C*H₂), 23.6 (*C*H₂), 25.2 (*C*H₂), 59.5 (*C*H₂), 129.9 (*C*), 138.7 (*C*H), 166.8 (*C*). HRMS-EI (m/z): [M]⁺ calcd for C₉H₁₄O₂, 154.09938; found, 154.09907.

Preparation of isopropyl cyclohex-1-enecarboxylate (1c).

1c (2.44 g, 14.5 mmol, 73%, colorless oil) was prepared from cyclohexanecarboxylic acid (2.56 g, 20.0 mmol) and propan-2-ol (6.01 g, 100 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.26 (d, *J* = 6.4 Hz, 6H), 1.56–1.68 (m, 4H), 2.15–2.27 (m, 4H), 5.06 (sep, *J* = 6.2 Hz, 1H), 6.94–6.97 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.4 (*C*H₂), 21.8 (*C*H₃), 22.0 (*C*H₂), 24.0 (*C*H₂), 25.6 (*C*H₂), 67.1 (*C*H), 130.7 (*C*), 138.9 (*C*H), 167.0 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₀H₁₆O₂Na, 191.10425; found, 191.10468.

Preparation of *tert*-Butyl cyclohex-1-enecarboxylate (1d).³

MgSO₄ (4.81 g, 40.0 mmol) was placed in an oven-dried two neck flask. The flask was connected

to a vacuum/nitrogen manifold through a rubber tube, evacuated and backfilled with nitrogen. CH_2Cl_2 (40 mL) was added in the flask through the rubber septum. Then, H_2SO_4 (0.53 mL, 10.0 mmol) was added dropwise at room temperature. After the addition of H_2SO_4 was complete, cyclohex-1-enecarboxylic acid (1.26 g, 10.0 mmol) and 2-methylpropan-2-ol (3.71 g, 50.0 mmol) was added and stirred at room temperature. The reaction was quenched by addition of saturated NaHCO₃ aq. (75 mL) and extracted with CH_2Cl_2 three times. The combined organic layer was dried over MgSO₄. After filtration, the solvents ware removed by evaporation. The crude product was purified by flash column chromatography to obtain **1d** (0.773 g, 4.24 mmol, 42%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 1.48 (s, 9H), 1.55–1.67 (m, 4H), 2.15–2.23 (m, 4H), 6.87–6.90 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.4 (*C*H₂), 22.0 (*C*H₂), 24.0 (*C*H₂), 25.5 (*C*H₂), 27.9 (*C*H₃), 79.4 (*C*), 131.6 (*C*), 138.1 (*C*H), 166.7 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₁H₁₈O₂Na, 201.11990; found, 205.12001.

Preparation of phenyl cyclohex-1-enecarboxylate (1e).⁴

In a vacuum dried 300 mL of a round bottomed flask, cyclohex-1-enecarboxylic acid (2.52 g, 20.0 mmol) and phenol (2.07 g, 22.0 mmol) were dissolved in dry CH₂Cl₂ (110 mL) and the flask was cooled to 0 °C under nitrogen atmosphere. 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (4.60 g, 24.0 mmol) and *N*,*N*-dimethyl-4-aminopyridine (DMAP) (0.244 g, 2.0 mmol) were then added portion wise. After stirred for 14 h at room temperature, the reaction mixture was quenched by addition of saturated NH₄Cl aq. and extracted with CH₂Cl₂ three times. The combined organic layer was then dried over MgSO₄. After filtration, the solvents were removed by evaporation. The crude product was purified by flash column chromatography to obtain **1e** (3.40 g, 16.8 mmol, 84%) as a solid. ¹H NMR (400 MHz, CDCl₃, δ): 1.63–1.76 (m, 4H), 2.24–2.31 (m, 2H), 2.35–2.43 (m, 2H), 7.10 (d, *J* = 7.2 Hz, 2H), 7.20–7.26 (m, 2H), 7.38 (t, *J* = 9.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.3 (CH₂), 22.0 (CH₂), 24.2 (CH₂), 26.0 (CH₂), 121.7 (CH), 125.5 (CH), 129.3 (CH), 129.8 (C), 141.9 (CH), 151.1 (C), 166.0 (C). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₃H₁₄O₂Na, 255.08860; found, 225.08847.

Preparation of 3-chloropropyl cyclohex-1-enecarboxylate (1f).

1f (1.60 g, 7.9 mmol, 79%, colorless oil) was prepared from cyclohex-1-enecarboxylic acid (1.26 g,

10.0 mmol) and 3-chloropropan-1-ol (1.04 g, 11.0 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.57–1.69 (m, 4H), 2.14 (quint, *J* = 6.2 Hz, 2H), 2.18–2.27 (m, 4H), 3.64 (t, *J* = 6.4 Hz, 2H), 4.28 (t, *J* = 6.0 Hz, 2H), 6.98–7.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.2 (*C*H₂), 21.8 (*C*H₂), 23.9 (*C*H₂), 25.5 (*C*H₂), 31.5 (*C*H₂), 41.1 (*C*H₂), 60.6 (*C*H₂), 129.9 (*C*), 139.7 (*C*H), 167.0 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₀H₁₅ClO₂Na, 225.06528; found, 225.06545.

Preparation of 4,4,4-trifluorobutyl cyclohex-1-enecarboxylate (1g).

1g (0.885 g, 3.75 mmol, 75%, colorless oil) was prepared from cyclohex-1-enecarboxylic acid (0.57 g, 4.5 mmol) and 4,4,4-trifluorobutan-1-ol (0.64 g, 5.0 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.57–1.69 (m, 4H), 1.91–1.98 (m, 2H), 2.14–2.27 (m, 6H), 4.19 (t, J = 6.2 Hz, 2H), 6.99–7.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.3 (*C*H₂), 21.6 (d, ³ $J_{C-F} = 2.0$ Hz, *C*H₂), 21.9 (*C*H₂), 24.0 (*C*H₂), 25.7 (*C*H₂), 30.7 (q, ² $J_{C-F} = 28.7$ Hz, *C*H₂), 62.2 (*C*H₂), 126.9 (q, ¹ $J_{C-F} = 274$ Hz, *C*), 129.9 (*C*), 140.0 (*C*H), 167.1 (*C*). HRMS-APCl (m/z): [M+H]⁺ calcd for C₁₁H₁₆F₃O₂, 237.10969; found, 237.11000.

Preparation of 3-methoxypropyl cyclohex-1-enecarboxylate (1h).

1h (3.76 g, 19.0 mmol, 95%, colorless oil) was prepared from cyclohex-1-enecarboxylic acid (2.52 g, 20.0 mmol) and 3-methoxypropan-1-ol (1.98 g, 22.0 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.57–1.69 (m, 4H), 1.94 (quint, *J* = 6.4 Hz, 2H), 2.17–2.31 (m, 4H), 3.35 (s, 3H), 3.47 (t, *J* = 6.4 Hz, 2H), 4.21 (t, *J* = 6.4 Hz, 2H), 6.98–7.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.2 (*C*H₂), 21.8 (*C*H₂), 23.8 (*C*H₂), 25.4 (*C*H₂), 28.8 (*C*H₂), 58.3 (*C*H₃), 61.0 (*C*H₂), 68.9 (*C*H₂), 130.0 (*C*), 139.2 (*C*H), 167.1 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₁H₁₈O₃Na, 221.11482; found, 221.11446.

Preparation of 4-oxopentyl cyclohex-1-enecarboxylate (1i).

1i (0.836 g, 4.0 mmol, 40%, colorless oil) was prepared from cyclohex-1-enecarboxylic acid (1.26 g,

10.0 mmol) and 5-hydroxypentan-2-one (1.02 g, 10.0 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.57–1.69 (m, 4H), 1.95 (quint, *J* = 7.0 Hz, 2H), 2.17 (s, 3H), 2.17–2.26 (m, 4H), 2.54 (t, *J* = 7.6 Hz, 2H), 4.13 (t, *J* = 6.4 Hz, 2H), 6.96–6.99 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.3 (*C*H₂), 21.9 (*C*H₂), 22.7 (*C*H₂), 23.9 (*C*H₂), 25.6 (*C*H₂), 29.8 (*C*H₃), 39.8 (*C*H₂), 63.1 (*C*H₂), 130.0 (*C*), 139.6 (*C*H), 167.3 (*C*), 207.6 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₈O₃Na, 233.11482; found, 233.11434.

Preparation of 4-methoxy-4-oxobutyl cyclohex-1-enecarboxylate (1j).

1j (1.01 g, 4.47 mmol, 47%, colorless oil) was prepared from cyclohex-1-enecarboxylic acid (1.26 g, 10.0 mmol) and methyl 4-hydroxybutanoate (1.30 g, 11.0 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.57–1.68 (m, 4H), 2.01 (quint, J = 7.2 Hz, 2H), 2.15–2.28 (m, 4H), 2.43 (t, J = 7.6 Hz, 2H), 3.69 (s, 3H), 4.16 (t, J = 6.4 Hz, 2H), 6.97–6.99 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.4 (CH₂), 22.0 (CH₂), 24.0 (CH₂), 24.1 (CH₂), 25.7 (CH₂), 30.7 (CH₂), 51.6 (CH₃), 63.1 (CH₂), 130.1 (C), 139.8 (CH), 167.4 (C), 173.3 (C). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₂H₁₈O₄Na, 249.10973; found, 249.11012.

Preparation of 3-((methoxycarbonyl)(methyl)amino)propyl cyclohex-1-enecarboxylate (1k).

1k (1.06 g, 4.13 mmol, 41%, colorless oil) was prepared from cyclohex-1-enecarboxylic acid (1.26 g, 10.0 mmol) and methyl (3-hydroxypropyl)(methyl)carbamate (1.62 g, 11.0 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.54–1.73 (m, 4H), 1.82–1.97 (m, 2H), 2.19–2.28 (m, 4H), 2.85–2.97 (m, 3H), 3.29–3.44 (m, 2H), 3.68 (s, 3H), 4.08–4.21 (m, 2H), 6.98–7.01 (m, 1H). ¹³C NMR (100 MHz, C₆D₆, 50 °C, δ): 22.3 (CH₂), 22.9 (CH₂), 25.1 (CH₂), 26.3 (CH₂), 28.1 (CH₂), 34.7 (CH₃), 46.6 (CH₂), 52.6 (CH₃), 62.3 (CH₂), 131.4 (C), 139.6 (CH), 157.1 (C), 167.3 (C). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₃H₂₁O₄NNa, 278.13628; found, 278.13566.

Preparation of 3-(oxiran-2-yl)propyl cyclohex-1-enecarboxylate (11).

Pent-4-en-1-yl cyclohex-1-enecarboxylate (1.38 g, 7.00 mmol, 71%) was prepared from

cyclohex-1-enecarboxylic acid (1.26 g, 10.0 mmol) and pent-4-en-1-ol (0.947 g, 11.0 mmol) the procedure described for phenyl cyclohex-1-enecarboxylate according to (**4e**). m-Chloroperoxybenzoic acid (1.45 g, 8.40 mmol) was placed in an oven-dried 200 mL of a round bottomed flask. The flask was connected to a vacuum/nitrogen manifold through a rubber tube, evacuated and backfilled with nitrogen. The solution of pent-4-en-1-yl cyclohex-1-enecarboxylate (1.38 g, 7.00 mmol) and dry CH₂Cl₂ (70 mL) was added dropwise to the flask. After the reaction was complete, the reaction mixture was extracted with CH₂Cl₂ and saturated NaHCO₃ aq. three times. The crude mixture was purified by flash column chromatography to obtain 11 (0.703 g, 3.34 mmol, 48%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃, δ): 1.57–1.72 (m, 6H), 1.76–1.92 (m, 2H), 2.15–2.26 (m, 4H), 2.48–2.50 (m, 1H), 2.77 (t, J = 4.4 Hz, 1H), 2.93–2.98 (m, 1H), 4.18 (t, J = 6.6 Hz, 2H), 6.97–7.00 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.4 (CH₂), 22.0 (CH₂), 24.1 (CH₂), 25.2 (CH₂), 25.7 (CH₂), 29.1 (CH₂), 47.0 (CH₂), 51.7 (CH), 63.6 (CH₂), 130.2 (C), 139.7 (CH), 167.5 (*C*). HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{12}H_{18}O_3Na$, 233.11482; found, 233.11494.

Preparation of methyl cyclopent-1-enecarboxylate (1m).

1m (7.33 g, 58.2 mmol, 58%, colorless oil) was prepared from cyclopentanecarboxylic acid (11.4 g, 100 mmol) and methanol (21.3 mL, 525 mmol) according to the procedure described above.

¹H NMR (400 MHz, CDCl₃, δ): 1.96 (quint, *J* = 7.6 Hz, 2H), 2.42–2.61 (m, 4H), 3.74 (s, 3H), 6.77–6.79 (m, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 22.8 (*C*H₂), 31.0 (*C*H₂), 33.0 (*C*H₂), 50.9 (*C*H₃), 136.1 (*C*), 143.4 (*C*H), 165.3 (*C*). HRMS-APCl (m/z): [M+H]⁺ calcd for C₇H₁₁O₂, 127.07536; found, 127.07559.

Preparation of methyl cyclohept-1-enecarboxylate (1n).

1n (1.28 g, 8.30 mmol, 59%, colorless oil) was prepared from cycloheptanecarboxylic acid (1.99 g, 14.0 mmol) and methanol (2.24 g, 70.0 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.49–1.57 (m, 4H), 1.75–1.81 (m, 2H), 2.29 (dt, J = 6.3, 3.2 Hz, 2H), 2.51–2.54 (m, 2H), 3.72 (s, 3H), 7.18 (t, J = 7.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 25.6 (CH₂), 26.1 (CH₂), 27.2 (CH₂), 28.6 (CH₂), 31.9 (CH₂), 51.5 (CH₃), 136.3 (C), 144.3 (CH), 168.4 (C). HRMS-EI (m/z): [M]⁺ calcd for C₉H₁₄O₂, 154.09938; found, 154.09963.

Preparation of (E)-methyl cyclooct-1-enecarboxylate (10).

10 (0.972 g, 5.78 mmol, 58%, colorless oil) was prepared from cyclooctanecarboxylic acid (1.56 g, 10.0 mmol) and methanol (1.67 g, 52.0 mmol) according to the procedure described above. ¹H NMR (400 MHz, CDCl₃, δ): 1.43–1.51 (m, 4H), 1.54–1.62 (m, 4H), 2.28 (dt, J = 8.8, 4.0 Hz, 2H), 2.45–2.48 (m, 2H), 3.73 (s, 3H), 6.99 (t, J = 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.5 (CH₂), 25.7 (CH₂), 26.3 (CH₂), 27.0 (CH₂), 28.8 (CH₂), 28.9 (CH₂), 51.3 (CH₃), 132.9 (C), 142.3 (CH), 167.8 (C). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₀H₁₆O₂Na, 191.10425; found, 191.10465.

4. Characterization of Borylation Products.

Methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3a).

Product **3a** (125.3 mg, 87% Isolated yield, 99% GC yield) was obtained from **1a** (70.1 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.34 (s, 12H), 1.54–1.66 (m, 4H), 2.20–2.24 (m, 4H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.2 (*C*H₂), 21.6 (*C*H₂), 24.0 (*C*H₂), 24.6 (*C*H₃), 27.8 (*C*H₂), 51.6 (*C*H₃), 83.2 (*C*), 133.6 (*C*), 147.6 (br, B–*C*), 169.2 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₄H₂₃BO₄Na, 288.16179; found, 288.16138.

Ethyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3b).

Product **3b** (87% GC yield) was obtained from **1b** (77.1 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.27 (t, *J* = 7.2 Hz, 3H), 1.33 (s, 12H), 1.54–1.66 (m, 4H), 2.17–2.27 (m, 4H), 4.21 (q, *J* = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 13.9 (*C*H₃), 21.1 (*C*H₂), 21.6 (*C*H₂), 23.8 (*C*H₂), 24.4 (*C*H₃), 27.6 (*C*H₂), 60.4 (*C*H₂), 83.0 (*C*), 133.8 (*C*), 148.1 (br, B–*C*), 168.8 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₅H₂₅BO₄Na, 302.17744; found, 302.17752.

Isopropyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3c).

Product **3c** (77% GC yield) was obtained from **1c** (84.1 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.24 (d, *J* = 6.6 Hz, 6H), 1.33 (s, 12H), 1.54–1.68 (m, 4H), 2.15–2.25 (m, 4H), 5.07 (sep, *J* = 6.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.2 (*C*H₂), 21.6 (*C*H₂), 21.6 (*C*H₃), 23.7 (*C*H₂), 24.5 (*C*H₃), 27.6 (*C*H₂), 67.8 (*C*H), 82.9 (*C*), 134.3 (*C*), 148.4 (br, B–*C*), 168.7 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₆H₂₇BO₄Na, 316.19309; found, 316.19331.

tert-Butyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3d).

Product **3d** (85% GC yield) was obtained from **1d** (91.1 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.20–1.27 (m, 1H), 1.32 (s, 11H), 1.46 (s, 9H), 1.54–1.63 (m, 4H), 2.12–2.22 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.4 (*C*H₂), 21.9 (*C*H₂), 24.0 (*C*H₂), 24.7 (*C*H₃), 27.5 (*C*H₂), 28.0 (*C*H₃), 80.8 (*C*), 82.9 (*C*H), 135.8 (*C*), 148.6 (br, B–*C*), 169.2 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₇H₂₉BO₄Na, 330.20874; found, 330.20853.

Phenyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3e).

Product **3e** (96% GC yield) was obtained from **1e** (101 mg, 0.50 mmol) as a powder, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.24 (s, 12H), 1.61–1.74 (m, 4H), 2.29–2.41 (m, 4H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 8.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.3 (*C*H₂), 21.8 (*C*H₂), 24.6 (*C*H₂), 24.8 (*C*H₃), 28.4 (*C*H₂), 83.7 (*C*), 121.9 (*C*H), 125.6 (*C*H), 129.2 (*C*H), 133.7 (*C*), 149.0 (br, B–*C*), 150.8 (*C*), 166.6 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₉H₂₅BO₄Na, 350.17744;

found, 350.17718.

3-Chloropropyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3f).

Product **3f** (86% GC yield) was obtained from **1f** (101 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.20–1.28 (m, 2H), 1.34 (s, 10H), 1.55–1.66 (m, 4H), 2.12 (quint, J = 6.4 Hz, 2H), 2.19–2.26 (m, 4H), 3.61 (t, J = 6.6 Hz, 2H), 4.29 (t, J = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.2 (*C*H₂), 21.7 (*C*H₂), 24.0 (*C*H₂), 24.6 (*C*H₃), 27.9 (*C*H₂), 31.6 (*C*H₂), 41.1 (*C*H₂), 61.3 (*C*H₂), 83.3 (*C*), 133.6 (*C*), 148.9 (br, B–*C*), 168.7 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₆H₂₆BO₄ClNa, 350.15412; found, 350.15387.

4,4,4-Trifluorobutyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3g).

Product **3g** (93% GC yield) was obtained from **1g** (118 mg, 0.50 mmol) as a powder, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.17–1.27 (m, 1H), 1.33 (s, 11H), 1.55–1.69 (m, 4H), 1.89–1.96 (m, 2H), 2.12–2.25 (m, 6H), 4.20 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.1 (*C*H₂), 21.4 (*C*H₂), 21.6 (*C*H₂), 23.9 (*C*H₂), 24.5 (*C*H₃), 27.8 (*C*H₂), 30.5 (q, ²*J*_{C-F} = 29.5 Hz, *C*H₂), 62.7 (*C*H₂), 83.2 (*C*), 126.7 (q, ¹*J*_{C-F} = 277 Hz, *C*), 133.5 (*C*), 149.2 (br, B–*C*), 168.6 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₇H₂₆BO₄F₃Na, 384.18048; found, 384.17999.

3-Methoxypropyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3h).

Product 3h (83% GC yield) was obtained from 1h (99.1 mg, 0.50 mmol) as an oil, according to the

general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.17–1.26 (m, 1H), 1.33 (s, 11H), 1.54–1.69 (m, 4H), 1.91 (quint, *J* = 6.4 Hz, 2H), 2.20–2.24 (m, 4H), 3.33 (s, 3H), 3.44 (t, *J* = 6.4 Hz, 2H), 4.23 (t, *J* = 6.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.3 (*C*H₂), 21.7 (*C*H₂), 24.0 (*C*H₂), 24.6 (*C*H₃), 27.8 (*C*H₂), 28.8 (*C*H₂), 58.5 (*C*H₃), 61.7 (*C*H₂), 69.0 (*C*H₂), 83.2 (*C*H), 133.9 (*C*), 148.6 (br, B–*C*), 169.0 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₇H₂₉BO₅Na, 346.20366; found, 346.20410.

4-Oxopentyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3i).

Product **3i** (65% GC yield) was obtained from **1i** (105 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.18–1.26 (m, 1H), 1.33 (s, 11H), 1.55–1.66 (m, 4H), 1.93 (quint, J = 6.6 Hz, 2H), 2.15 (s, 3H), 2.18–2.27 (m, 4H), 2.51 (t, J = 7.4 Hz, 2H), 4.15 (t, J = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.2 (*C*H₂), 21.7 (*C*H₂), 22.6 (*C*H₂), 24.0 (*C*H₂), 24.6 (*C*H₃), 27.8 (*C*H₂), 29.8 (*C*H₃), 39.6 (*C*H₂), 63.7 (*C*H₂), 83.2 (*C*), 133.7 (*C*), 148.8 (br, B–*C*), 168.9 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₂₉BO₅Na, 358.20366; found, 358.20419.

4-Methoxy-4-oxobutyl

2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3j).

Product **3j** (74% GC yield) was obtained from **1j** (113 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.17–1.26 (m, 1H), 1.33 (s, 11H), 1.56–1.66 (m, 4H), 1.98 (quint, J = 6.8 Hz, 2H), 2.19–2.24 (m, 4H), 2.41 (t, J = 7.4 Hz, 2H), 3.68 (s, 3H), 4.17 (t, J = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.1 (CH₂), 21.6 (CH₂), 23.7 (CH₂), 23.9 (CH₂), 24.5 (CH₃), 30.2 (CH₂), 51.3 (CH₃), 63.5 (CH₂), 83.2 (C), 133.6 (C), 148.7 (br, B–C), 168.8 (C), 173.0 (C). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₂₉BO₆Na, 374.19857; found, 374.19894.

3-((Methoxycarbonyl)(methyl)amino)propyl

2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3k).

Product **3k** (72% GC yield) was obtained from **1k** (128 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.17–1.27 (m, 2H), 1.33 (s, 10H), 1.59–1.69 (m, 4H), 1.81–1.95 (m, 2H), 2.17–2.28 (m, 4H), 2.85–2.94 (m, 3H), 3.28–3.40 (m, 2H), 3.68 (s, 3H), 4.10–4.16 (m, 2H). ¹³C NMR (100 MHz, C₆D₆, 50 °C, δ): 22.3 (*C*H₂), 22.8 (*C*H₂), 25.2 (*C*H₂), 25.6 (*C*H₃), 28.0 (*C*H₂), 29.0 (*C*H₂), 34.7 (*C*H₃), 46.7 (*C*H₂), 52.7 (*C*H₃), 62.7 (*C*H₂), 83.7 (*C*), 134.4 (*C*), 149.8 (br, B–*C*), 157.1 (*C*), 169.3 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₉H₃₂BO₆NNa, 403.22512; found, 403.22465.

3-(Oxiran-2-yl)propyl

2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-1-enecarboxylate (3l).

Product **3l** (79% GC yield) was obtained from **1l** (105 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.17–1.27 (m, 1H), 1.33 (s, 11H), 1.53–1.71 (m, 6H), 1.74–1.88 (m, 2H), 2.19–2.24 (m, 4H), 2.49 (dd, J = 5.1, 2.6 Hz, 1H), 2.76 (t, J = 4.6 Hz, 1H), 2.92–2.97 (m, 1H), 4.14–4.25 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.3 (*C*H₂), 21.8 (*C*H₂), 24.1 (*C*H₂), 24.7 (*C*H₃), 25.1 (*C*H₂), 27.9 (*C*H₂), 29.0 (*C*H₂), 47.0 (*C*H₂), 51.7 (*C*H), 64.2 (*C*H₂), 83.4 (*C*), 133.9 (*C*), 148.9 (br, B–*C*), 169.1 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₂₉BO₅Na, 358.20366; found, 358.20327.

Methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopent-1-enecarboxylate (3m).

Product **3m** (20% GC yield) was obtained from **1m** (63.1 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.26–1.27 (m, 1H), 1.34 (s, 11H), 1.94 (quint, *J* = 8.0 Hz, 2H), 2.61 (t, *J* = 7.6 Hz, 4H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.0 (*C*H₂), 24.6 (*C*H₃), 33.3 (*C*H₂), 37.5 (*C*H₂), 51.3 (*C*H₃), 83.8 (*C*), 142.2 (*C*), 148.7 (br, B–*C*), 166.0 (*C*). HRMS-APCl (m/z): [M+H]⁺ calcd for C₁₃H₂₂BO₄,

252.16420; found, 252.16463.

Methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohept-1-enecarboxylate (3n).

Product **3n** (43% GC yield) was obtained from **1n** (77.1 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.19–1.27 (m, 1H), 1.33 (s, 11H), 1.46–1.59 (m, 4H), 1.75–1.81 (m, 2H), 2.32–2.34 (m, 2H), 2.50–2.55 (m, 2H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.7 (*C*H₃), 25.66 (*C*H₂), 25.69 (*C*H₂), 27.3 (*C*H₂), 31.0 (*C*H₂), 32.2 (*C*H₂), 52.4 (*C*H₃), 82.8 (*C*), 139.7 (*C*), 157.0 (br, B–*C*), 170.9 (*C*). HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₅H₂₅BO₄Na, 302.17744; found, 302.17709.

(E)-Methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclooct-1-enecarboxylate (30).

Product **30** (35% GC yield) was obtained from **10** (84.1 mg, 0.50 mmol) as an oil, according to the general procedure for the iridium(I)-catalyzed vinylic C–H borylation. ¹H NMR (400 MHz, CDCl₃, δ): 1.17–1.28 (m, 1H), 1.33 (s, 11H), 1.43–1.69 (m, 8H), 2.35 (t, *J* = 6.2 Hz, 2H), 2.44 (t, *J* = 6.0 Hz, 2H), 3.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.7 (*C*H₃), 24.9 (*C*H₂), 26.20 (*C*H₂), 26.22 (*C*H₂), 28.7 (*C*H₂), 29.0 (*C*H₂), 29.7 (*C*H₂), 52.1 (*C*H₃), 83.1 (*C*), 136.9 (*C*), 170.1 (*C*). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₆H₂₇BO₄Na, 316.19309; found, 316.19282.

References

- 1. R.Uson, L. A. Oro, J. A. Cabeza, Inorg. Synth., 2007, 23, 126-130.
- 2. W. D. Munslow, W. Reusch, J. Org. Chem., 1982, 47, 5096–5099.
- 3. S. W. Wright, D. L. Hageman, A. S. Wright, L. D. McClure, *Tetrahedron Lett.*, **1997**, *42*, 7345–7348.
- 4. S. Collon, C. Kouklovsky, Y. Langlois, Eur. J. Org. Chem., 2002, 3566–3572.
- 5. X.Lusinchi, G. Hanguet, Tetrahedron, 1997, 43, 13727-13738.

. . .

.

· ~ ` .

. .

.

•

بر -

-

.

. . .

.

an Tha an tao amin' an tao amin' ami

•

.

.

÷

•

. • • •

. .

.

1. A.

.

· . ·

•

.

_____^

•

•

. С. с.

· · · · · ·

. . .

.

.

· · ·

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

. .

.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

.