ELECTRONIC SUPPORTING INFORMATION

BELONGING TO THE PAPER

Hydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(II) complex

Thorsten Höke, Eberhardt Herdtweck and Thorsten Bach*

1. Synthetic procedures and analytical data	S2
2. NMR spectra of new compounds	S38
3. HPLC traces of chiral products	S66
4. Crystallographic data	S 76
5. References	S85

1. Synthetic procedures and analytical data

General information

All reactions, sensitive to air or moisture, were carried out in flame-dried glassware under positive pressure of argon using standard techniques. Dry tetrahydrofuran (THF), dichloromethane (CH₂Cl₂) and diethyl ether (Et₂O) were obtained from an MBraun MB-SPS 800 solvent purification system. Other dry solvents were obtained from Fluka and Acros in the highest purity available and used without further purification. All solvents for chromatography were distilled prior to use. TLC was performed on silica coated glass plates (silica gel 60 F254) with detection by UV (254 nm), KMnO₄ or ceric ammonium molybdate (CAM) with subsequent heating. Flash chromatography was performed on silica gel 60 (Merck, 230-400 mesh) with the indicated eluent. HPLC analyses were performed using a chiral stationary phase (ChiralPak AD-H, ChiralCell OD or ChiralPak AS-RH, UV detection; Daicel Chemical Industries) employing n-hexane/i-PrOH (AD-H, OD) or acetonitrile/water (AS-RH) as eluents. For the separation of enantiomers, semipreparative HPLC with a chiral stationary phase (Daicel ChiralPak AD, 250×20 mm) was used. IR-spectra were recorded on a JASCO IR-4100 (ATR), MS/HRMS-measurements were performed on a Finnigan MAT 8200 (EI), a Finnigan MAT 95S (HR-EI), a Finnigan LCQ classic (ESI), a Thermo Scientific LTQ Orbitrap XL (HRMS-ESI) or a Thermo Scientific LTQ_FT ultra (HRMS-ESI). ¹H-and ¹³C-NMR-spectra were recorded in the stated solvent at 300 K on a Bruker AV-250, a Bruker AV-360 or a Bruker AV-500 spectrometer. Chemical shifts are reported in δ units relative to the residual non-deuterated solvent [CHCl₃: δ (¹H) = 7.26 ppm, δ (¹³C) = 77.16 ppm, DMSO d_{6} : δ (¹H) = 2.50 ppm, δ (¹³C) = 39.52 ppm; THF- d_{8} : δ (¹H) = 1.73 ppm, 3.58 ppm; δ (¹³C) = 25.30 ppm] or TMS [δ (¹H) = 0.00 ppm]. Apparent multiplets which occur as a result of coincidental equality of coupling constants to those of magnetically non-equivalent protons are marked as virtual (*virt*.). The multiplicity of the ¹³C-NMR signals were determined by DEPT experiments and assignments are based on two-dimensional NMR spectroscopy (COSY, NOESY, HSQC, HMBC). Melting points were measured on a Büchi 510 and are not corrected. Specific rotations were measured using a Perkin-Elmer 241 MC (sodium vapor lamp or mercury lamp).

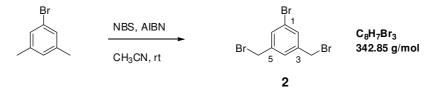
General procedures

General procedure 1 (GP1): Grignard addition to aldehydes

Magnesium turnings (2.5 eq) were suspended in a small amount of THF and approx. 1/3 of the corresponding neat aryl bromide (2.5 eq) was added. The mixture was stirred until the solution became turbid and heat evolution was observed (in case of no reaction one or two drops of 1,2-dibromoethane were added). A solution of remaining aryl bromide in THF (1.0 M, total Grignard concentration) was added over 10 minutes. The reaction mixture was heated at reflux for one hour, then was cooled to room temperature and added to a suspension of aldehyde **S1**^[5] (1.0 eq) in THF (0.4 M) at 0 °C. After heating at reflux for two hours the reaction was quenched by addition of saturated NH₄Cl solution/water (3/1). The organic layer was separated and the aqueous layer was extracted with dichloromethane ($3 \times \sim 16$ mL/mmol aldehyde). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was redissolved in dichloromethane/methanol, loaded onto Celite and subjected to flash column chromatography.

General procedure 2 (GP2): Dehydroxylation of quinolones

To a suspension of the corresponding alcohol (1.0 eq) and triethylsilane (2.5 eq) in dichloromethane (0.2 M) was added trifluoroacetic acid $(CH_2Cl_2/TFA = 2/1 \text{ or } 5.0 \text{ eq TFA})$ for substrate **S6a** respectively). The reaction mixture was stirred for 15-20 minutes at room temperature (40 minutes at 0 °C for substrate **S6a**) and then poured carefully into a saturated NaHCO₃ solution. The mixture was extracted with dichloromethane $(3 \times 20 \text{ mL/mmol})$ quinolone) and the combined organic layers were dried over Na₂SO₄. After removal of the solvent under reduced pressure, the crude product was dissolved in dichloromethane/methanol, loaded onto Celite and subjected to flash column chromatography.

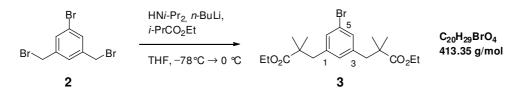

General procedure 3 (GP3): Synthesis of acid chlorides

The corresponding carboxylic acid (1.0 eq) was treated with thionyl chloride (2.5 eq) and heated at reflux for two hours. Excess thionyl chloride was removed at room temperature under high vacuum to afford the acid chloride, which was used without further purification.

General procedure 4 (GP4): Rh-catalyzed CH-amination reactions using **6** or $Rh_2esp_2^{[1]}$ A flask was charged with 2,2,2-trichloroethyl sulfamate (22.8 mg, 0.1 mmol, 1.0 eq), catalyst **6** or Rh_2esp_2 (2 µmol, 0.02 eq) and the corresponding quinolone (1.0 eq or 2.0 eq). The mixture was dissolved in dry benzene (4 mM) and PhI(OAc)₂ was added (48.3 mg, 0.15 mmol, 1.5 eq) at room temperature in seven portions over the course of one hour (one portion every 10 minutes). The reaction was further stirred for 18 hours at room temperature. The solvent was removed under reduced pressure and the crude product subjected to flash column chromatography.

Synthesis of the Rhodium-catalyst 6 and the substrates

1-Bromo-3,5-bis(bromomethyl)benzene (2)^[2]



To a solution of 5-bromo-*m*-xylene (3.50 g, 18.9 mmol, 1.0 eq) and *N*-bromosuccinimide (7.07 g, 39.7 mmol, 2.1 eq) in acetonitrile (135 mL) was added azobisisobutyronitrile (62.1 mg, 0.378 mmol, 0.02 eq) and the reaction mixture heated at reflux for four hours. The solvent was then removed under reduced pressure. Carbon tetrachloride (60 mL) was added and the mixture was heated at reflux for 10 minutes. After cooling to room temperature, the solution was separated from insoluble succinimide by filtration. The solvent was removed under reduced pressure and the residue recrystallized twice from ethanol to afford the title compound as colorless needles (3.13 g, 48%).

¹**H-NMR** (250 MHz, CDCl₃): δ [ppm] = 4.41 (s, 4 H, CH₂Br), 7.32-7.36 (m, 1 H, 4-H), 7.47 (d, ${}^{4}J$ = 1.5 Hz, 2 H, 2-H, 6-H). ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 31.6 (t, CH₂Br), 122.8 (s, C-1), 128.4 (d, C-4), 132.1 (d, C-2, C-6), 140.4 (s, C-3, C-5).

The data obtained matched those reported in the literature.^[2]

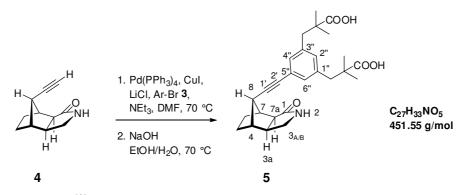
Diethyl 3,3'-(5-bromo-1,3-phenylene)bis(2,2-dimethylpropanoate) (3)

To a solution of diisopropylamine (0.35 mL, 2.50 mmol, 2.5 eq) in THF (2 mL) was added *n*butyllithium (1.0 mL, 2.50 mmol, 2.5 eq, 2.5 M in *n*-hexane) at 0 °C dropwise. The solution was stirred at this temperature for 30 minutes after which it was cooled to -78 °C and a solution of ethyl isobutyrate (290 mg, 2.50 mmol, 2.5 eq) in THF (2 mL) was added over 10 minutes. The reaction mixture was allowed to warm to 0 °C, stirred for 10 minutes and then was quenched by addition of saturated NH₄Cl solution (15 mL) and water (15 mL). The mixture was extracted with EtOAc (3 × 15 mL), the combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was subjected to flash column chromatography (SiO₂, 17 × 2 cm, pentane/EtOAc 95/5, CAM) to afford ester **3** as a colorless solid (378 mg, 92%).

m.p.: 66-67 °C

TLC: $R_{\rm f} = 0.60$ (pentane/EtOAc = 6/1) [CAM].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3015 (w, CH), 2927 (w, CH), 2870 (w, CH), 1721 (vs, C=O), 1567 (C=C), 1477 (w), 1386 (m), 1299 (m), 1188 (vs, C-O), 1131 (s), 1033 (m), 946 (w), 878 (m), 822 (m).


¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.16 (s, 12 H, C(CH₃)₂), 1.24 (t, ${}^{3}J$ = 7.1 Hz, 6 H, OCH₂CH₃), 2.78 (s, 4 H, CH₂Ar), 4.12 (q, ${}^{3}J$ = 7.1 Hz, 4 H, OCH₂CH₃), 6.81 (s, 1 H, 2-H), 7.13 (s, 2 H, 4-H, 6-H).

¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 14.3 (q, OCH₂<u>C</u>H₃), 25.1 (q, C(<u>C</u>H₃)₂), 43.6 (s, <u>C</u>(CH₃)₂), 45.8 (t, <u>C</u>H₂Ar), 60.7 (t, O<u>C</u>H₂CH₃), 121.7 (s, C-5), 131.1 (d, C-2), 131.2 (d, C-4, C-6), 139.9 (s, C-1), 177.2 (s, CO).

MS (EI, 70 eV): m/z (%) = 414 (35) [M⁺ (⁸¹Br)], 412 (37) [M⁺ (⁷⁹Br)], 366 (6), 340 (96), 338 (100), 294 (63), 265 (40), 225 (87), 185 (63), 128 (42).

HRMS (EI): $C_{20}H_{29}^{79}BrO_4$ [M⁺]: calcd.: 412.1244; found: 412.1236.

3,3'-(5-(((3aS,4R,7S,7aR,8R)-1-oxooctahydro-1*H*-4,7-methanoisoindol-8-yl)ethynyl)-1,3-phenylene)bis(2,2-dimethylpropanoic acid) (5)

A mixture of alkyne $4^{[3]}$ (51.6 mg, 0.295 mmol, 1.0 eq), copper(I) iodide (5.6 mg, 29.4 μ mol, 0.1 eq) and dry lithium chloride (74.9 mg, 1.77 mmol, 6 eq) in DMF (2.95 mL) and triethylamine (0.82 mL) was degassed by three pump-freeze-thaw cycles. Upon addition of Pd(PPh₃)₄ (34.0 mg, 29.4 µmol, 0.1 eq) the reaction was stirred at 70 °C for 20 hours. Water (15 mL) was added and the mixture was extracted with EtOAc (3×10 mL). The combined organic layers were successively washed with water (10 mL) and saturated NaCl solution (10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (SiO₂, 9×2.5 cm, pentane/EtOAc 3/7, CAM). The coupling product was obtained as a colorless solid (134 mg, max. 0.263 mmol), containing inseparable phosphine-impurities. The compound was dissolved in ethanol (1.3 mL) and sodium hydroxide (52.6 mg, 1.32 mmol, 5 eq) and water were successively added until the sodium hydroxide was dissolved (0.5 mL). The reaction mixture was stirred at 70 °C for 18 hours. Water (20 mL) was added and the aqueous layer was washed with Et₂O (2 \times 6 mL), acidified (white precipitate) with HCl (3N) and extracted with Et₂O (3 \times 15 mL). The combined organic layers were dried over Na₂SO₄, the solvent was removed under reduced pressure and the residue subjected to flash column chromatography (SiO₂, $11 \times$ 2.5 cm, CH₂Cl₂/MeOH 99/1 + 1% AcOH, CAM) to afford the title compound as a colorless solid (97.7 mg, 73%).

т.р.: 177-179 °С

TLC: $R_{\rm f} = 0.47$ (CH₂Cl₂/MeOH = 9/1) [CAM].

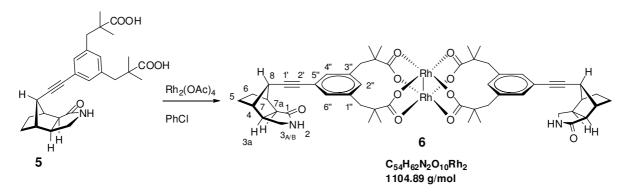
Specific Rotation: [98% ee, based on enantiomeric purity of compound 4]

 $[\alpha]_D^{20} = -27.6 \ (c = 0.66, \text{CHCl}_3).$

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3055 (w), 2964 (w, CH), 2922 (w, CH), 2877 (w, CH), 1697 (vs,

C=O), 1644 (s, C=O), 1596 (m, C=C), 1472 (m), 1450 (m), 1306 (m), 1202 (s), 1161 (m), 1129 (m), 929 (m), 884 (m), 852 (m).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.06 (s, 6 H, C(CH₃)₂), 1.17-1.29 (m, 2 H, 5-H_{endo}, 6-H_{endo}), 1.25 (s, 6 H, C(CH₃)₂), 1.58-1.74 (m, 2 H, 5-H_{exo}, 6-H_{exo}), 2.44 (d, ${}^{3}J$ = 3.9 Hz, 1 H, 4-H), 2.48-2.55 (m, 2 H, 3a-H, 8-H), 2.57-2.63 (m, 3 H, CH_aH_bAr, 7a-H), 2.89 (d, ${}^{3}J$ = 3.9 Hz, 1 H, 7-H), 2.94 (d, ${}^{2}J$ = 13.0 Hz, 2 H, CH_aH_bAr), 3.47-3.56 (m, 2 H, 3-H), 6.82 (s, 1 H, 2''-H), 7.08 (s, 2 H, 4''-H, 6''-H), 7.55 (s, 1 H, NH), 9.75 (bs, 2 H, CO₂H).


¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 23.7 (q, C(<u>C</u>H₃)₂), 25.5 (q, C(<u>C</u>H₃)₂), 28.8, 28.8 (2 t, C-5, C-6), 39.0 (d, C-8), 41.8 (d, C-3a), 44.2 (s, <u>C</u>(CH₃)₂), 45.0 (d, C-7), 46.4 (d, C-4), 46.5 (t, <u>C</u>H₂Ar), 47.8 (t, C-3), 51.5 (d, C-7a), 83.0 (s, C-2'), 89.1 (s, C-1'), 123.0 (s, C-5''), 130.7 (d, C-4'', C-6''), 132.0 (d, C-2''), 137.7 (s, C-1'', C-3''), 181.1 (s, C-1), 182.4 (s, CO₂H).

 $C_{27}H_{33}NNaO_5 [(M+Na)^+]:$ $C_{54}H_{67}N_2O_{10} [(2M+H)^+]:$

HRMS (ESI): $C_{27}H_{34}NO_5 [(M+H)^+]$:

calcd.: 452.2431; found: 452.2419 calcd.: 474.2250; found: 474.2235 calcd.: 903.4790; found: 903.4786.

Bis[rhodium(3,3'-(5-(((3aS,4R,7S,7aR,8R)-1-oxooctahydro-1*H*-4,7-methanoisoindol-8yl)ethynyl)-1,3-phenylen)bis(2,2-dimethylpropanoate))] (6)

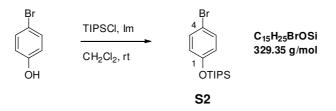
Rh₂(OAc)₄ (137 mg, 0.309 mmol, 1.0 eq) and **5** (293 mg, 0.649 mmol, 2.1 eq) were dissolved in chlorobenzene (35 mL) and the mixture was stirred at the boiling point (oilbath ~140-145 °C) while the solvent was slowly removed by distillation over the course of three hours. The crude product was dissolved in THF, loaded onto Celite and purified by flash column chromatography (SiO₂, 16 × 3.25 cm, CH₂Cl₂/MeOH 98/2 + 1% AcOH \rightarrow 96/4 + 1% AcOH \rightarrow 90/10 + 1% AcOH, UV/ CAM). The title complex **6** (318 mg, 93%) was obtained as a pale blue solid after repeated evaporation with toluene (removal of AcOH) under reduced pressure and drying over night *in vacuo* at 50 °C. If not sufficiently pure (¹H-NMR), complex **6** was further purified by repeated washing (2-3 times) with dichloromethane. The structure of $\mathbf{6}$ was confirmed by X-ray diffraction analysis of a single crystal, obtained by slow diffusion of ethyl acetate vapor into a solution of $\mathbf{6}$ in DMSO.

m.p.: > 250 °C

TLC: $R_{\rm f} = 0.45$ (CH₂Cl₂/MeOH = 9/1) [UV, CAM].

Specific Rotation: [98% ee, based on enantiomeric purity of compound 4]

 $[\alpha]_{365}^{20} = -43.2 \ (c = 0.25, \text{THF}).$

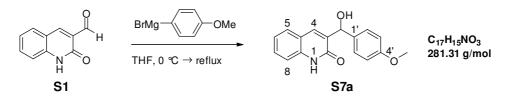

IR (ATR): $\tilde{\nu}$ [cm⁻¹] =2952 (w, CH), 2925 (w, CH), 2875 (w, CH), 1667 (s, C=O), 1580 (vs), 1407 (vs), 1257 (m), 1200 (w), 1137 (w), 1082 (w), 1049 (w) 1019 (w), 932 (w), 878 (m).

¹**H-NMR** (500 MHz, THF-d₈): δ [ppm] = 0.93 (s, 24 H, C(CH₃)₂), 1.15-1.25 (m, 4 H, 5-H_{endo}, 6-H_{endo}), 1.55-1.69 (m, 4 H, 5-H_{exo}, 6-H_{exo}), 2.28 (d, ³J = 9.3 Hz, 2 H, 7a-H), 2.35 (d, ³J = 3.4 Hz, 2 H, 4-H), 2.42-2.49 (m, 2 H, 3a-H), 2.52-2.57 (m, 10 H, 8-H, C<u>H</u>₂Ar), 2.70 (d, ³J = 3.4 Hz, 2 H, 7-H), 3.40-3.49 (m, 4 H, 3-H), 6.04 (s, 2 H, NH), 6.84 (d, ⁴J = 1.4 Hz, 4 H, 4"-H, 6"-H), 6.88 (s, 2 H, 2"-H).

¹³**C-NMR** (125.8 MHz, THF-d₈): δ [ppm] = 26.1 (q, C(<u>C</u>H₃)₂), 29.4 (t, C-6), 29. 5 (t, C-5), 39.7 (d, C-8), 42.8 (d, C-3a), 45.3 (d, C-7), 46.2 (s, <u>C</u>(CH₃)₂), 46.6 (t, C-3), 47.3 (t, <u>C</u>H₂Ar), 47.6 (d, C-4), 51.0 (d, C-7a), 83.4 (s, C-2'), 88.6 (s, C-1'), 123.3 (s, C-5''), 131.3 (d, C-2''), 131.5 (d, C-4'', C-6''), 139.1 (s, C-1'', C-3''), 177.5 (s, C-1), 195.9 (s, CO₂Rh).

HRMS (ESI): $C_{54}H_{63}N_2O_{10}Rh_2 [(M+H)^+]$:calcd.: 1105.2587; found: 1105.2553 $C_{54}H_{62}N_2NaO_{10}Rh_2 [(M+Na)^+]$:calcd.: 1127.2407; found: 1127.2361.

(4-Bromophenoxy)triisopropylsilane (S2)^[4]


To a solution of 4-bromophenol (1.73 g, 10.0 mmol, 1.0 eq) and imidazole (1.70 g, 25.0 mmol, 2.5 eq) in dichloromethane (63 mL) was added triisopropylsilyl chloride (2.56 mL, 12.0 mmol, 1.2 eq). The reaction was stirred over night at room temperature. The solvent was removed under reduced pressure and pentane (50 mL) and water (100 mL) were added. The layers were separated and the aqueous layer was extracted with pentane (2 \times 50 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed

under reduced pressure. The residue was subjected to flash column chromatography (SiO₂, 14 \times 3.25 cm, pentane, UV/CAM) to afford the title compound S2 as colorless oil (3.26 g, 99%).

TLC: $R_f = 0.57$ (pentane) [UV, CAM]. ¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 1.10 (d, ³J = 7.3 Hz, 18 H, Si(CH(C<u>H</u>₃)₂)₃), 1.19-1.30 (m, 3 H, Si(C<u>H</u>(CH₃)₂)₃), 6.73-6.79 (m, 2 H, 2-H), 7.29-7.34 (m, 2 H, 3-H). ¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 12.8 (d, Si(<u>C</u>H(CH₃)₂)₃), 18.0 (q, Si(CH(<u>C</u>H₃)₂)₃), 113.3 (s, C-4), 121.8 (d, C-Ar), 132.4 (d, C-Ar), 155.4 (s, C-1).

The data obtained matched those reported in the literature.^[4]

3-(Hydroxy(4-methoxyphenyl)methyl)quinolin-2(1*H*)-one (S7a)

According to *GP1*, aldehyde **S1**^[5] (1.50 g, 8.66 mmol, 1.0 eq) in THF (22 mL) was reacted with the Grignard-reagent, prepared from magnesium turnings (528 mg, 21.7 mmol, 2.5 eq) and 4-bromoanisole (2.72 mL, 21.7 mmol, 2.5 eq) in THF (22 mL). After work-up, as described in *GP1*, the crude product was subjected to flash column chromatography (SiO₂, 15 × 3.25 cm, CH₂Cl₂/MeOH 98/2 \rightarrow 97/3, UV/CAM) to afford the title compound as a colorless solid (1.93 g, 79%).

m.p.: 168-170 °C

TLC: $R_f = 0.16 (CH_2Cl_2/MeOH = 97/3) [UV, CAM].$

IR (ATR): \tilde{v} [cm⁻¹] = 3009 (w, CH), 2935 (w, CH), 2889 (w), 2839 (w), 1651 (s, C=O), 1611 (m, C=C), 1566 (m, C=C), 1509 (m, C=C), 1430 (m), 1301 (m) 1240 (s, C-O), 1171 (m), 958 (m), 836 (m), 797 (m), 756 (vs).


¹**H-NMR** (360 MHz, DMSO-d₆): δ [ppm] = 3.70 (s, 3 H, OCH₃), 5.71 (d, ${}^{3}J$ = 4.2 Hz, 1 H, CHO<u>H</u>), 5.75 (d, ${}^{3}J$ = 4.2 Hz, 1 H, C<u>H</u>OH), 6.81-6.86 (m, 2 H, 3'-H), 7.14-7.19 (*virt.* t, ${}^{3}J \approx$ 7.5 Hz, 1 H, 6-H), 7.26-7.33 (m, 3 H, 2'-H, 8-H), 7.42-7.47 (m, 1 H, 7-H), 7.71 (d, ${}^{3}J$ = 7.8 Hz, 1 H, 5-H), 8.02 (s, 1 H, 4-H), 11.71 (s, 1 H, NH).

¹³**C-NMR** (90.6 MHz, DMSO-d₆): δ [ppm] = 55.0 (q, OCH₃), 68.5 (d, CHOH), 113.3 (d, C-

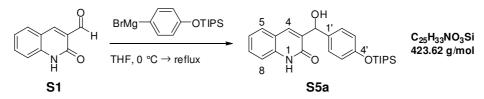
3'), 114.7 (d, C-8), 119.2 (s, C-4a), 121.8 (d, C-6), 127.8 (d, C-5), 127.9 (d, C-2'), 129.6 (d, C-7), 133.8 (d, C-4), 136.0 (s, C-1'), 137.1 (s, C-3), 137.8 (s, C-8a), 158.2 (s, C-4'), 160.8 (s, C-2).

HRMS (ESI):	$C_{17}H_{14}NO_2 [(M-OH)^+]:$	calcd.: 264.1019; found: 264.1013
	$C_{17}H_{16}NO_3 [(M+H)^+]:$	calcd.: 282.1125; found: 282.1119
	C ₁₇ H ₁₅ NNaO ₃ [(M+Na) ⁺]:	calcd.: 304.0944; found: 304.0937.

3-(Hydroxy(*p*-tolyl)methyl)quinolin-2(1*H*)-one (S4a)

According to *GP1*, aldehyde **S1**^[5] (500 mg, 2.89 mmol, 1.0 eq) in THF (7.2 mL) was reacted with the Grignard-reagent, prepared from magnesium turnings (175 mg, 7.22 mmol, 2.5 eq) and 1-bromo-4-methylbenzene (1.23 g, 7.22 mmol, 2.5 eq) in THF (7.2 mL). After work-up, as described in *GP1*, the crude product was subjected to flash column chromatography (SiO₂, 17×3.25 cm, CH₂Cl₂/EtOAc 4/1, UV/CAM) to afford the title compound as a colorless solid (721 mg, 94%).

m.p.: 157-158 °C **TLC**: *R*_f = 0.52 (EtOAc) [UV, CAM].


IR (ATR): \tilde{v} [cm⁻¹] = 3012 (w, CH), 2855 (w, CH), 1653 (vs, C=O), 1618 (m, C=C), 1571 (s, C=C), 1500 (m, C=C), 1431 (s), 1394 (m), 1256 (m), 1219 (s, C-O), 1009 (s), 950 (s), 902 (m), 749 (vs).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 2.36 (s, 3 H, CH₃), 4.75 (d, ${}^{3}J$ = 5.0 Hz, 1 H, CHO<u>H</u>), 5.95 (d, ${}^{3}J$ = 5.0 Hz, 1 H, C<u>H</u>OH), 7.20 (d, ${}^{3}J$ = 8.0 Hz, 2 H, 3'-H), 7.21 (*virt.* t, ${}^{3}J \approx$ 7.8 Hz, 1 H, 6-H), 7.29 (d, ${}^{3}J$ = 8.2 Hz, 1 H, 8-H), 7.41 (d, ${}^{3}J$ = 8.2 Hz, 2 H, 2'-H), 7.46-7.51 (m, 1 H, 7-H), 7.51 (d, ${}^{3}J$ = 8.1 Hz, 1 H, 5-H), 7.56 (s, 1 H, 4-H), 12.05 (s, 1 H, NH).

¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 21.3 (CH₃), 73.4 (d, CHOH), 115.9 (d, C-8), 120.1 (s, C-4a), 123.2 (d, C-6), 126.9 (d, C-2'), 128.3 (d, C-5), 129.3 (d, C-3'), 130.6 (d, C-7), 134.4 (s, C-3), 137.2 (d, C-4), 137.5 (s, C-8a), 137.6 (s, C-4'), 138.6 (s, C-1'), 164.3 (s, C-2).

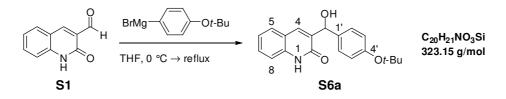
HRMS (ESI):	$C_{17}H_{14}NO [(M-OH)^{+}]:$	calcd.: 248.1070; found: 248.1069
	$C_{17}H_{16}NO_2 [(M+H)^+]:$	calcd.: 266.1175; found: 266.1176
	$C_{17}H_{15}NNaO_2 [(M+Na)^+]:$	calcd.: 288.0995; found: 288.0997.

3-(Hydroxy(4-((triisopropylsilyl)oxy)phenyl)methyl)quinolin-2(1H)-one (S5a)

According to *GP1*, aldehyde **S1**^[5] (260 mg, 1.50 mmol, 1.0 eq) in THF (3.6 mL) was reacted with the Grignard-reagent, prepared from magnesium turnings (91.1 mg, 3.75 mmol, 2.5 eq) and arylbromide **S2** (1.24 g, 3.75 mmol, 2.5 eq) in THF (3.6 mL). After work-up, as described in *GP1*, the crude product was subjected to flash column chromatography (SiO₂, 17 × 3.25 cm, CH₂Cl₂/EtOAc 4/1, UV/CAM) to afford the title compound as a colorless solid (573 mg, 90%).

m.p.: 120-123 °C

TLC: $R_{\rm f} = 0.62$ (EtOAc) [UV, CAM].


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3164 (w), 3062 (w, CH), 2941 (m, CH), 2891 (w, CH), 2865 (m, CH), 1651 (vs, C=O), 1605 (m, C=C), 1571 (m, C=C), 1507 (s, C=C), 1462 (w), 1431 (w), 1261 (s, C-O), 910 (m), 882 (m), 753 (m) 682 (m).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.10 (d, ${}^{3}J$ = 7.6 Hz, 18 H, Si(CH(C<u>H</u>₃)₂)₃), 1.21-1.31 (m, 3 H, Si(C<u>H</u>(CH₃)₂)₃), 4.82 (d, ${}^{3}J$ = 4.5 Hz, 1 H, CHO<u>H</u>), 5.94 (d, ${}^{3}J$ = 4.5 Hz, 1 H, C<u>H</u>OH), 6.89-6.93 (m, 2 H, 3'-H), 7.21 (ddd, ${}^{3}J$ = 8.2 Hz, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 1.2 Hz, 1 H, 6-H), 7.31 (d, ${}^{3}J$ = 8.3 Hz, 1 H, 8-H), 7.35-7.39 (m, 2 H, 2'-H), 7.46 (s, 1 H, 4-H), 7.45-7.51 (m, 2 H, 5-H, 7-H), 12.26 (s, 1 H, NH).

¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 12.8 (d, Si(<u>C</u>H(CH₃)₂)₃), 18.1 (q, Si(CH(<u>C</u>H₃)₂)₃), 73.1 (d, CHOH), 115.9 (d, C-8), 120.1 (d, C-3'), 120.1 (s, C-4a), 123.2 (d, C-6), 128.2, 128.3 (2 d, C-2', C-5), 130.6 (d, C-7), 133.8 (s, C-1'), 134.6 (s, C-3), 137.2 (d, C-4), 137.5 (s, C-8a), 155.9 (s, C-4'), 164.5 (s, C-2).

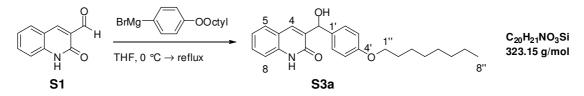
HRMS (ESI):	$C_{25}H_{32}NO_2Si[(M-OH)^+]:$	calcd.: 406.2197; found: 406.2192
	$C_{50}H_{67}N_2O_6Si_2$ [(2M+H) ⁺]:	calcd.: 847.4532; found: 847.4533.

3-((4-(*tert*-Butoxy)phenyl)(hydroxy)methyl)quinolin-2(1*H*)-one (S6a)

According to *GP1*, aldehyde **S1**^[5] (260 mg, 1.50 mmol, 1.0 eq) in THF (3.6 mL) was reacted with the Grignard-reagent, prepared from magnesium turnings (91.1 mg, 3.75 mmol, 2.5 eq) and 1-bromo-4-(*tert*-butoxy)benzene (859 mg, 3.75 mmol, 2.5 eq) in THF (3.6 mL). After work-up, as described in *GP1*, the crude product was subjected to flash column chromatography (SiO₂, 16 × 3.25 cm, CH₂Cl₂/EtOAc 4/1 \rightarrow 1/1, UV/CAM) to afford the title compound as a colorless solid (396 mg, 82%).

m.p.: 183-184 °C

TLC: $R_{\rm f} = 0.60$ (EtOAc) [UV, CAM].


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2973 (w, CH), 1650 (vs, C=O), 1606 (m, C=C), 1570 (m, C=C), 1499 (m, C=C), 1364 (m), 1234 (m, C-O), 1160 (s), 898 (s), 858 (m), 757 (s).

¹**H-NMR** (500 MHz, DMSO-d₆): δ [ppm] = 1.26 (s, 9 H, C(CH₃)₃), 5.76 (d, ${}^{3}J$ = 4.4 Hz, 1 H, CHO<u>H</u>), 5.77 (d, ${}^{3}J$ = 4.4 Hz, 1 H, C<u>H</u>OH), 6.86-6.90 (m, 2 H, 3'-H), 7.17 (ddd, ${}^{3}J$ = 8.3 Hz, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 1.1 Hz, 1 H, 6-H), 7.27-7.33 (m, 3 H, 8-H, 2'-H), 7.45 (ddd, ${}^{3}J$ = 8.3 Hz, ${}^{3}J$ = 7.1 Hz, ${}^{4}J$ = 1.5 Hz, 1 H, 7-H), 7.72 (dd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 1.5 Hz, 1 H, 7-H), 7.72 (dd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 1.5 Hz, 1 H, 5-H), 8.04 (s, 1 H, 4-H), 11.72 (s, 1 H, NH).

¹³C-NMR (125.8 MHz, DMSO-d₆): δ [ppm] = 28.6 (q, C(<u>C</u>H₃)₃), 68.5 (d, <u>C</u>HOH), 77.7 (s, <u>C</u>(CH₃)₃), 114.8 (d, C-8), 119.2 (s, C-4a), 121.8 (d, C-6), 123.0 (d, C-3'), 127.4 (d, C-2'), 127.9 (d, C-5), 129.7 (d, C-7), 134.0 (d, C-4), 137.0 (s, C-3), 137.8 (s, C-8a), 138.6 (s, C-1'), 153.9 (s, C-4'), 160.9 (s, C-2).

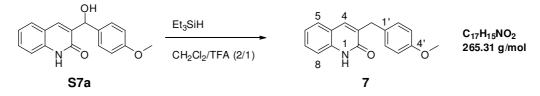
HRMS (ESI):	$C_{20}H_{20}NO_2 [(M-OH)^+]:$	calcd.: 306.1489; found: 306.1489
	$C_{20}H_{21}NNaO_3 [(M+Na)^+]:$	calcd.: 346.1414; found: 346.1414
	$C_{40}H_{42}N_2NaO_6[(2M+Na)^+]:$	calcd.: 669.2935; found: 669.2938.

3-(Hydroxy(4-(octyloxy)phenyl)methyl)quinolin-2(1*H*)-one (S3a)

According to *GP1*, aldehyde **S1**^[5] (173 mg, 1.00 mmol, 1.0 eq) in THF (2.5 mL) was reacted with the Grignard-reagent, prepared from magnesium turnings (60.8 mg, 2.50 mmol, 2.5 eq) and 1-bromo-4-(octyloxy)benzene (713 mg, 2.50 mmol, 2.5 eq) in THF (2.5 mL). After workup, as described in *GP1*, the crude product was subjected to flash column chromatography (SiO₂, 17 × 2 cm, CH₂Cl₂/EtOAc 4/1 \rightarrow 1/1, UV/CAM) to afford the title compound as a colorless solid (328 mg, 87%).

m.p.: 117-118 °C

TLC: $R_{\rm f} = 0.58$ (EtOAc) [UV, CAM].


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2925 (w, CH), 2853 (w, CH), 1650 (vs, C=O), 1608 (m, C=C), 1568 (s, C=C), 1508 (s, C=C), 1394 (w), 1240 (vs, C-O), 1172 (m), 1021 (m), 832 (s), 756 (vs).

¹**H-NMR** (500 MHz, DMSO-d₆): δ [ppm] = 0.84 (t, ${}^{3}J$ = 6.9 Hz, 3 H, 8''-H), 1.18-1.32 (m, 8 H, 4''-H, 5''-H, 6''-H, 7''-H), 1.33-1.40 (m, 2 H, 3''-H), 1.66 (*virt.* quint, ${}^{3}J \approx 6.8$ Hz, 2 H, 2''-H), 3.89 (t, ${}^{3}J$ = 6.5 Hz, 2 H, 1''-H), 5.70 (d, ${}^{3}J$ = 4.2 Hz, 1 H, CHO<u>H</u>), 5.75 (d, ${}^{3}J$ = 4.2 Hz, 1 H, C<u>H</u>OH), 6.79-6.85 (m, 2 H, 3'-H), 7.16 (ddd, ${}^{3}J$ = 8.3 Hz, ${}^{3}J$ = 7.6 Hz, ${}^{4}J$ = 1.1 Hz, 1 H, 6-H), 7.26-7.32 (m, 3 H, 2'-H, 8-H), 7.44 (ddd, ${}^{3}J$ = 8.3 Hz, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 1.4 Hz, 1 H, 7-H), 7.71 (dd, ${}^{3}J$ = 7.6 Hz, ${}^{4}J$ = 1.4 Hz, 1 H, 5-H), 8.02 (s, 1 H, 4-H), 11.71 (s, 1 H, NH).

¹³**C-NMR** (90.6 MHz, DMSO-d₆): δ [ppm] = 13.9 (q, C-8''), 22.1 (t, CH₂), 25.5 (t, C-3''), 28.6, 28.7, 28.7 (3 t, C-2'', 2 CH₂), 31.2 (t, CH₂), 67.3 (t, C-1''), 68.5 (<u>C</u>HOH), 113.8 (d, C-3'), 114.7 (d, C-8), 119.2 (s, C-4a), 121.7 (d, C-6), 127.8 (d, C-5), 127.9 (d, C-2'), 129.6 (d, C-7), 133.8 (d, C-4), 135.8 (s, C-1'), 137.1 (s, C-3), 137.8 (s, C-8a), 157.6 (s, C-4'), 160.8 (s, C-2).

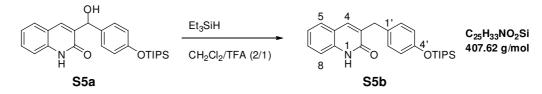
HRMS (ESI):	$C_{24}H_{28}NO_2 [(M-OH)^+]:$	calcd.: 362.2114; found: 362.2112
	$C_{24}H_{29}NNaO_3 [(M+Na)^+]:$	calcd.: 402.2040; found: 402.2042
	$C_{48}H_{58}N_2NaO_6 [(2M+Na)^+]:$	calcd.: 781.4187; found: 781.4198.

3-(4-Methoxybenzyl)quinolin-2(1*H*)-one (7)

According to *GP2*, quinolone **S7a** (551 mg, 1.96 mmol, 1.0 eq) was reacted with triethylsilane (0.78 mL, 4.90 mmol, 2.5 eq) in dichloromethane/trifluoroacetic acid (9.4 mL/4.7 mL) at room temperature for 20 minutes. After work-up, as described in *GP2*, the crude product was subjected to flash column chromatography (SiO₂, 13 × 3.25 cm, CH₂Cl₂/MeOH 97/3, UV/CAM) to afford the title compound as colorless solid (515 mg, 99%).

m.p.: 185-186 °C

TLC: $R_{\rm f} = 0.65 (CH_2Cl_2/MeOH = 9/1) [UV, CAM].$


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2837 (w, CH), 1651 (s, C=O), 1608 (w, C=C), 1572 (m, C=C), 1508 (m, C=C), 1239 (s, C-O), 1177 (m), 1029 (s), 909 (s), 760 (vs), 689 (m).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 3.81 (s, 3 H, OCH₃), 3.96 (s, 2 H, C<u>H</u>₂Ar), 6.87-6.91 (m, 2 H, 3'-H), 7.16 (ddd, ³*J* = 8.0 Hz, ³*J* = 7.2, ⁴*J* = 1.1 Hz, 1 H, 6-H), 7.24–7.28 (m, 2 H, 2'-H), 7.29-7.32 (m, 1 H, 8-H), 7.41-7.46 (m, 3 H, 5-H, 4-H, 7-H), 11.57 (s, 1 H, NH).

¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 35.5 (t, <u>C</u>H₂Ar), 55.4 (q, OCH₃), 114.1 (d, C-3'), 115.8 (d, C-8), 120.4 (s, C-4a), 122.5 (d, C-6), 127.4 (d, C-5), 129.7 (d, C-7), 130.5 (d, C-2'), 131.3 (s, C-1'), 134.0 (s, C-3), 137.4 (d, C-4), 137.6 (s, C-8a), 158.4 (s, C-4'), 164.2 (s, C-2). **HRMS** (ESI): $C_{17}H_4$ (NO₂ [(M+H)⁺]: calcd : 266 1176; found: 266 1179

HRMS (ESI):	$C_{17}H_{16}NO_2 [(M+H)^+]:$	calcd.: 266.1176; found: 266.1179
	$C_{17}H_{15}NNaO_2 [(M+Na)^+]:$	calcd.: 288.0995; found: 288.0999
	$C_{34}H_{31}N_2O_4$ [(2M+H) ⁺]:	calcd.: 531.2278; found: 531.2291.

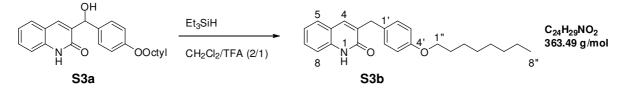
3-(4-((Triisopropylsilyl)oxy)benzyl)quinolin-2(1*H*)-one (S5b)

According to *GP2*, quinolone **S5a** (414 mg, 0.977 mmol, 1.0 eq) was reacted with triethylsilane (388 μ L, 2.44 mmol, 2.5 eq) in dichloromethane/trifluoroacetic acid (4.9 mL/2.5 mL) at room temperature for 15 minutes. After work-up, as described in *GP2*, the

crude product was subjected to flash column chromatography (SiO₂, 18×2.5 cm, CH₂Cl₂/MeOH 99/1, UV/CAM) to afford the title compound as colorless solid (377 mg, 95%).

m.p.: 117-118 °C

TLC: $R_f = 0.41$ (CH₂Cl₂/MeOH = 95/5) [UV, CAM].


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 2942 (w, CH), 2865 (w, CH), 1651 (s, C=O), 1606 (w, C=C), 1573 (m, C=C), 1504 (s, C=C), 1258 (s, C-O), 908 (vs), 882 (vs), 811 (m), 750 (s), 672 (s).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.11 (d, ${}^{3}J$ = 7.4 Hz, 18 H, Si(CH(C<u>H</u>₃)₂)₃), 1.21-1.32 (m, 3 H, Si(C<u>H</u>(CH₃)₂)₃), 3.96 (s, 2 H, C<u>H</u>₂Ar), 6.84-6.89 (m, 2 H, 3'-H), 7.13-7.17 (m, 1 H, 6-H), 7.17-7.20 (m, 2 H, 2'-H), 7.35-7.38 (m, 2 H, 4-H, 8-H), 7.39-7.42 (m, 1 H, 5-H), 7.42-7.47 (m, 1 H, 7-H), 12.12 (s, 1 H, NH).

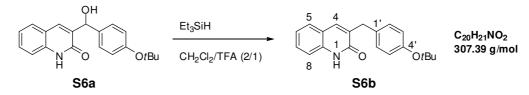
¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 12.8 (d, Si(<u>C</u>H(CH₃)₂)₃), 18.1 (q, Si(CH(<u>C</u>H₃)₂)₃), 35.5 (t, <u>C</u>H₂Ar), 115.8 (d, C-8), 120.1 (d, C-3'), 120.4 (s, C-4a), 122.5 (d, C-6), 127.3 (d, C-5), 129.6 (d, C-7), 130.5 (d, C-2'), 131.5 (s, C-1'), 134.2 (s, C-3), 137.4 (d, C-4), 137.6 (s, C-8a), 154.7 (s, C-4'), 164.4 (s, C-2).

HRMS (ESI): $C_{25}H_{34}NO_2Si [(M+H)^+]$:calcd.: 408.2353; found: 408.2356 $C_{50}H_{67}N_2O_4Si_2 [(2M+H)^+]$:calcd.: 815.4634; found: 815.4637.

3-(4-(Octyloxy)benzyl)quinolin-2(1H)-one (S3b)

According to *GP2*, quinolone **S3a** (288 mg, 0.759 mmol, 1.0 eq) was reacted with triethylsilane (302 μ L, 1.90 mmol, 2.5 eq) in dichloromethane/trifluoroacetic acid (3.6 mL/1.8 mL) at room temperature for 15 minutes. After work-up, as described in *GP2*, the crude product was subjected to flash column chromatography (SiO₂, 17 × 2 cm, CH₂Cl₂/MeOH 99/1 \rightarrow 95/5, UV/CAM) to afford the title compound as colorless solid (261 mg, 95%).

m.p.: 116-117 °C **TLC**: $R_f = 0.62 \text{ (CH}_2\text{Cl}_2\text{/MeOH} = 9/1) \text{ [UV, CAM]}.$ **IR** (ATR): $\tilde{\nu} \text{ [cm}^{-1} \text{]} = 3054 \text{ (w, CH)}, 2954 \text{ (w, CH)}, 2920 \text{ (w, CH)}, 2848 \text{ (w, CH)}, 2767 \text{ (w)},$ 1655 (s, C=O), 1610 (w, C=C), 1574 (m, C=C), 1508 (s, C=C), 1241 (vs, C-O), 1174 (m), 902 (s), 847 (m).


¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 0.88 (t, ${}^{3}J$ = 6.7 Hz, 3 H, 8''-H), 1.22-1.38 (m, 8 H, 4''-H, 5''-H, 6''-H, 7''-H), 1.45 (*virt.* quint, ${}^{3}J \approx 7.0$ Hz, 2 H, 3''-H), 1.77 (*virt.* quint, ${}^{3}J \approx 6.8$ Hz, 2 H, 2''-H), 3.94 (t, ${}^{3}J$ = 6.6 Hz, 2 H, 1''-H), 3.96 (s, 2 H, CH₂Ar), 6.85-6.89 (m, 2 H, 3'-H), 7.13-7.18 (m, 1 H, 6-H), 7.23-7.27 (m, 2 H, 2'-H), 7.34 (d, ${}^{3}J$ = 8.3 Hz, 1 H), 7.40-7.46 (m, 3 H, 4-H, 5-H, 7-H), 12.13 (s, 1 H, NH).

¹³**C-NMR** (125.8 MHz, CDCl₃): δ [ppm] = 14.3 (q, C-8''), 22.8 (t, CH₂), 26.2 (t, C-3''), 29.4, 29.5, 29.5 (3 t, C-2'', 2 CH₂), 32.0 (t, CH₂), 35.5 (t, <u>C</u>H₂Ar), 68.1 (t, C-1''), 114.7 (d, C-3'), 115.8 (d, C-8), 120.3 (s, C-4a), 122.5 (d, C-6), 127.4, 129.6 (2 d, C-5, C7), 130.5 (d, C-2'), 131.0 (s, C-1'), 134.0 (s, C-3), 137.4, 137.6 (d, C-4, s, C-8a), 157.9 (s, C-4'), 164.3 (s, C-2). **HRMS** (ESI): C₂₄H₃₀NO₂ [(M+H)⁺]: calcd.: 364.2271; found: 364.2267

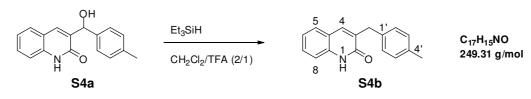
 $C_{48}H_{59}N_2O_4$ [(2M+H)⁺]:

```
calcd.: 727.4469; found: 727.4460.
```

3-(4-(*tert*-Butoxy)benzyl)quinolin-2(1*H*)-one (S6b)

According to *GP2*, quinolone **S6a** (283 mg, 0.875 mmol, 1.0 eq) was reacted with triethylsilane (348 μ L, 2.19 mmol, 2.5 eq) and trifluoroacetic acid (337 μ L, 4.38 mmol, 5.0 eq) in dichloromethane (5.3 mL) at 0 °C for 40 minutes. After work-up, as described in *GP2*, the crude product was subjected to flash column chromatography (SiO₂, 17 × 2 cm, CH₂Cl₂/MeOH 98/2, UV/CAM) to afford the title compound as colorless solid (241 mg, 90%).

m.p.: 176-178 °C


TLC: $R_f = 0.55$ (CH₂Cl₂/MeOH = 9/1) [UV, CAM].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3013 (w, CH), 2975 (w, CH), 2910 (w, CH), 2835 (w, CH), 1656 (vs, C=O), 1604 (w, C=C), 1572 (s, C=C), 1500 (s, C=C), 1435 (m), 1388 (w, C(CH₃)₃), 1362 (w, C(CH₃)₃), 1232 (s, C-O), 1160 (vs), 894 (vs).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.34 (s, 9 H, C(CH₃)₃), 3.97 (s, 2 H, C<u>H</u>₂Ar), 6.94-6.98 (m, 1 H, 3'-H), 7.16 (ddd, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 7.1 Hz, ${}^{4}J$ = 1.0 Hz, 1 H, 6-H), 7.20-7.25 (m, 2 H, 2'-H), 7.31 (d, ${}^{3}J$ = 8.1 Hz, 1 H, 8-H), 7.40 (s, 1 H, 4-H), 7.41-7.47 (m, 2 H, 5-H, 7-H), 11.42 (s, 1 H, NH). ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 29.0 (q, C(<u>C</u>H₃)₃), 35.6 (t, <u>C</u>H₂Ar), 78.4 (s, <u>C</u>(CH₃)₃), 115.7 (d, C-3'), 120.3 (s, C-4a), 122.5 (d, C-6), 124.4 (d, C-3'), 127.4 (d, C-5), 129.7 (d, C-7), 130.0 (d, C-2'), 133.9 (s, C-3), 134.1 (s, C-1'), 137.6, 137.6 (d, C-4, s, C-8a), 154.0 (s, C-4'), 164.2 (s, C-2). **HRMS** (ESI): C₂₀H₂₂NO₂ [(M+H)⁺]: calcd.: 308.1645; found: 308.1643

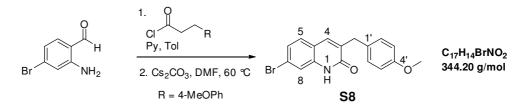
 $C_{20}H_{21}NNaO_2 [(M+Na)^+]$: calcd.: 330.1464; found: 330.1464.

3-(4-Methylbenzyl)quinolin-2(1*H*)-one (S4b)

According to *GP2*, quinolone **S4a** (420 mg, 1.58 mmol, 1.0 eq) was reacted with triethylsilane (0.63 mL, 3.95 mmol, 2.5 eq) in dichloromethane/trifluoroacetic acid (7.9 mL/4.0 mL) at room temperature for 15 minutes. After work-up, as described in *GP2*, the crude product was subjected to flash column chromatography (SiO₂, 19 × 2.5 cm, CH₂Cl₂/MeOH 98/2, UV/CAM) to afford the title compound as colorless solid (368 mg, 93%).

m.p.: 177-178 °C

TLC: $R_f = 0.35$ (CH₂Cl₂/MeOH = 95/5) [UV, CAM].


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3148 (w), 3004 (w, CH), 2894 (w, CH), 2853 (w, CH), 2773 (w), 1650 (vs, C=O), 1620 (m, C=C), 1570 (s, C=C), 1511 (m, , C=C), 1434 (s), 1268 (w), 1229 (w), 1146 (w), 898 (s).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 2.34 (s, 3 H, CH₃), 3.99 (s, 2 H, C<u>H</u>₂Ar), 7.13-7.17 (m, 3 H, 3'-H, 6-H), 7.24 (d, ${}^{3}J$ = 7.8 Hz, 2 H, 2'-H), 7.34 (d, ${}^{3}J$ = 8.3 Hz, 1 H, 8-H), 7.41-7.45 (m, 3 H, 4-H, 5-H, 7-H), 12.08 (s, 1 H, NH).

¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 21.2 (q, CH₃), 35.9 (<u>C</u>H₂Ar), 115.8 (d, C-8), 120.4 (s, C-4a), 122.5 (d, C-6), 127.3 (d, C-5), 129.4 (d, C-3'), 129.5 (d, C-2'), 129.6 (d, C-7), 133.9 (s, C-3), 136.0 (s, C-4'), 136.2 (s, C-1'), 137.5 (d, C-4), 137.7 (s, C-8a), 164.3 (s, C-2).

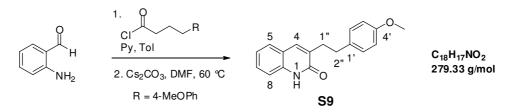
HRMS (ESI):	$C_{17}H_{16}NO [(M+H)^{+}]:$	calcd.: 250.1226; found: 250.1226
	$C_{17}H_{15}NNaO[(M+Na)^{+}]:$	calcd.: 272.1046; found: 272.1045
	$C_{34}H_{31}N_2O_2$ [(2M+H) ⁺]:	calcd.: 499.2380; found: 499.2384
	$C_{34}H_{30}N_2NaO_2 [(2M+Na)^+]:$	calcd.: 521.2199; found: 521.2202.

7-Bromo-3-(4-methoxybenzyl)quinolin-2(1*H*)-one (S8)^[6]

According to GP3, 3-(4-methoxyphenyl)propanoic acid was converted to the corresponding acid chloride (1.52 g, 7.67 mmol, 1.3 eq), dissolved in toluene (8 mL) and added to a solution of 2-amino-4-bromobenzaldehyde^[7] (1.18 g, 5.90 mmol, 1.0 eq) and pyridine (0.48 mL, 5.90 mmol, 1.0 eq) in toluene (18 mL) at 0 °C. The reaction mixture was stirred for two hours at room temperature, then was quenched with water (50 mL) and extracted with EtOAc $(3 \times 30 \text{ mL})$. The combined organic layers were successively washed with HCl (25 mL, 0.25 M), saturated NaHCO₃ solution (25 mL) and saturated NaCl solution (25 mL) and dried over Na₂SO₄. After removal of the solvent under reduced pressure the residue was redissolved in DMF (61 mL). Cesium carbonate (9.61 g, 29.5 mmol, 5.0 eq) was added and the mixture stirred at 60 °C over night. The solvent was removed under reduced pressure and saturated NH₄Cl solution (100 mL) and water (100 mL) were added to the residue. The formed precipitate was collected by filtration, repeatedly washed with water and dried by evaporation with toluene under reduced pressure. The crude product was redissolved in dichloromethane/methanol, loaded onto Celite and purified by flash column chromatography (SiO₂, 18×3.25 cm, CH₂Cl₂/EtOAc 9/1 \rightarrow 4/1, UV/CAM) to afford the title compound as a colorless solid (1.37 g, 67%).

m.p.: 193-194 °C

TLC: $R_{\rm f} = 0.62$ (EtOAc) [UV, CAM].


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3150 (w), 3001 (w, CH), 2932 (w, CH), 2834 (w, CH), 1659 (vs, C=O), 1605 (m, C=C), 1567 (s, C=C), 1509 (m, C=C), 1402 (w), 1241 (m, C-O), 1177 (w), 1034 (w), 805 (w).

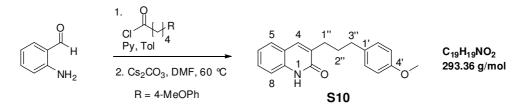
¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 3.81 (s, 3, OCH₃), 3.93 (s, 2 H, C<u>H</u>₂Ar), 6.88-6.92 (m, 2 H, 3'-H), 7.24-7.29 (m, 3 H, 2'-H, 6-H), 7.30 (d, ${}^{3}J$ = 8.4 Hz, 1 H, 5-H), 7.38 (s, 1 H, 4-H), 7.52 (s, 1 H, 8-H), 11.85 (s, 1 H, NH).

¹³**C-NMR** (125.8 MHz, CDCl₃): δ [ppm] = 35.6 (t, <u>C</u>H₂Ar), 55.4 (q, OCH₃), 114.2 (d, C-3'), 118.4 (d, C-8), 119.2 (s, C-4a), 123.7 (s, C-7), 126.0 (d, C-6), 128.7 (d, C-5), 130.6 (d, C-2'), 130.7 (s, C-1'), 134.5 (s, C-3) 136.8 (d, C-4), 138.4 (s, C-8a), 158.4 (s, C-4'), 164.1 (s, C-2).

HRMS (ESI):
$$C_{17}H_{15}BrNO_2 [(M+H)^+]$$
:calcd.: 344.0281; found: 344.0281 $C_{17}H_{14}BrNNaO_2 [(M+Na)^+]$:calcd.: 366.0100; found: 366.0099 $C_{34}H_{29}Br_2N_2O_4 [(2M+H)^+]$:calcd.: 687.0489; found: 687.0501 $C_{34}H_{28}Br_2N_2NaO_4 [(2M+Na)^+]$:calcd.: 709.0307; found: 709.0317.

3-(4-Methoxyphenethyl)quinolin-2(1*H*)-one (S9)^[6]

According to *GP3*, 4-(4-methoxyphenyl)butanoic acid was converted to the corresponding acid chloride (1.52 g, 7.15 mmol, 1.3 eq), dissolved in toluene (8 mL) and added to a solution of 2-aminobenzaldehyde^[8] (660 mg, 5.45 mmol, 1.0 eq) and pyridine (0.44 mL, 5.45 mmol, 1.0 eq) in toluene (24 mL) at 0 °C. The reaction mixture was stirred for one hour at 0 °C, then was quenched with water (30 mL) and extracted with EtOAc (3×30 mL). The combined organic layers were successively washed with HCl (30 mL, 2 M), saturated NaHCO₃ solution (30 mL) and saturated NaCl solution (30 mL) and dried over Na₂SO₄. After removal of the solvent under reduced pressure the residue was redissolved in DMF (55 mL). Cesium carbonate (8.89 g, 27.3 mmol, 5.0 eq) was added and the mixture was stirred at 60 °C over night. After quenching the reaction with saturated NH₄Cl solution (40 mL) the mixture was extracted with dichloromethane (50 mL). The organic layer was washed with water (2 × 40 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was dissolved in dichloromethane/methanol, loaded onto Celite and subjected to flash column chromatography (SiO₂, 18 × 3 cm, pentane/EtOAc 2/1, UV/CAM) to afford the title compound as a colorless solid (350 mg, 23%).


m.p.: 174-176 °C

TLC: $R_{\rm f} = 0.57 (CH_2Cl_2/MeOH = 9/1) [UV, CAM].$

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3011 (w, CH), 2909 (w, CH), 2835 (w, CH), 1655 (vs, C=O), 1611 (m, C=C), 1573 (s, C=C), 1509 (vs, C=C), 1243 (vs, C-O), 1175 (m), 1033 (s), 815 (s), 753 (vs). ¹H-NMR (500 MHz, CDCl₃): δ [ppm] = 2.97-3.00 (m, 4 H, 1''-H, 2''-H), 3.79 (s, 3 H, OCH₃), 6.82-6.86 (m, 2 H, 3'-H), 7.16-7.21 (m, 4 H, 2'-H, 6-H), 7.40 (d, ³*J* = 8.1 Hz, 1 H, 8H), 7.44-7.50 (m, 2 H, 5-H, 7-H), 7.53 (s, 1 H, 4-H), 11.86 (s, 1 H, NH). ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 32.8 (t, C-1''), 33.9 (t, C-2''), 55.4 (q, OCH₃), 113.9 (d, C-3'), 115.7 (d, C-8), 120.4 (s, C-4a), 122.5 (d, C-6), 127.3 (d, C-5), 129.6 (d, C-7), 129.6 (d, C-2'), 133.4 (s, C-3), 133.9 (s, C-1'), 137.3 (d, C-4), 137.7 (s, C-8a), 158.0 (s, C-4'), 164.3 (s, C-2).

HRMS (ESI):	$C_{18}H_{18}NO_2 [(M+H)^+]:$	calcd.: 280.1332; found: 280.1334
	$C_{18}H_{17}NNaO_2 [(M+Na)^+]:$	calcd.: 302.1151; found: 302.1152
	$C_{36}H_{35}N_2O_4 [(2M+H)^+]:$	calcd.: 559.2591; found: 559.2577.

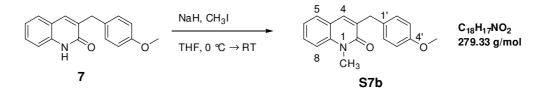
3-(3-(4-Methoxyphenyl)propyl)quinolin-2(1*H*)-one (S10)^[6]

According to *GP3*, 5-(4-methoxyphenyl)pentanoic acid was converted to the corresponding acid chloride (1.33 g, 5.88 mmol, 1.3 eq), dissolved in toluene (8 mL) and added to a solution of 2-aminobenzaldehyde^[8] (547 mg, 4.52 mmol, 1.0 eq) and pyridine (0.36 mL, 4.52 mmol, 1.0 eq) in toluene (16 mL) at 0 °C. The reaction mixture was stirred for one hour at 0 °C, then was quenched with water (30 mL) and extracted with EtOAc (3×30 mL). The combined organic layers were successively washed with HCl (30 mL, 2 M), saturated NaHCO₃ solution (30 mL) and saturated NaCl solution (30 mL) and dried over Na₂SO₄. After removal of the solvent under reduced pressure the residue was redissolved in DMF (20 mL). Cesium carbonate (7.36 g, 22.6 mmol, 5.0 eq) was added and the mixture stirred at 60 °C over night. After quenching the reaction with saturated NH₄Cl solution (40 mL) the mixture was extracted with dichloromethane (50 mL). The organic layer was washed with water (2×40 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was dissolved in dichloromethane/methanol, loaded onto Celite and subjected to flash column chromatography (SiO₂, 18 × 3, pentane/EtOAc 2/1, UV/CAM) to afford the title compound as a colorless solid (685 mg, 52%).

m.p.: 139-140 °C

TLC: $R_f = 0.58$ (CH₂Cl₂/MeOH = 9/1) [UV, CAM].

IR (ATR): \tilde{v} [cm⁻¹] = 3006 (w, CH), 2836 (w, CH), 1656 (s, C=O), 1608 (w, C=C), 1572 (s,


C=C), 1509 (s, C=C), 1240 (s, C-O), 1034 (s), 897 (s), 751 (vs), 695 (s).

¹**H-NMR** (360 MHz, CDCl₃): δ [ppm] = 1.97-2.10 (m, 2 H, 2''-H), 2.65-2.80 (m, 4 H, 1''-H, 3''-H), 3.79 (s, 3 H, OCH₃), 6.80-6.89 (m, 2 H, 3'-H), 7.13-7.23 (m, 3 H, 2'-H, 6-H), 7.35 (d, ³*J* = 8.3 Hz, 1 H, 8-H), 7.45 (ddd, ³*J* = 8.3 Hz, ³*J* = 7.3 Hz, ⁴*J* = 1.4 Hz, 1 H, 7-H), 7.48-7.52 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.4 Hz, 1 H, 5-H), 7.59 (s, 1 H, 4-H), 11.63 (s, 1H).

¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 30.1 (t, C-1''), 30.4 (t, C-2''), 34.9 (t, C-3''), 55.4 (q, OCH₃), 113.9 (d, C-3'), 115.6 (d, C-8), 120.4 (s, C-4a), 122.5 (d, C-6), 127.2 (d, C-5), 129.5 (d, C-2'), 129.5 (d, C-7) 134.1 (s, C-3), 134.4 (s, C-1'), 136.8 (d, C-4), 137.6 (s, C-8a), 157.9 (s, C-4'), 164.2 (s, C-2).

HRMS (ESI): $C_{19}H_{20}NO_2 [(M+H)^+]$:calcd.: 294.1489; found: 294.1488 $C_{19}H_{19}NNaO_2 [(M+Na)^+]$:calcd.: 316.1308; found: 316.1307.

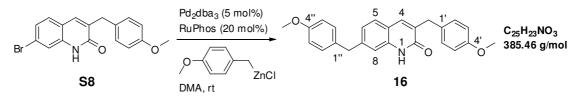
3-(4-Methoxybenzyl)-1-methylquinolin-2(1*H***)-one (S7b)**

To a solution of quinolone **7** (60.0 mg, 0.226 mmol, 1.0 eq) was added sodium hydride (13.6 mg, 0.339 mmol, 1.5 eq, 60% dispersion in mineral oil) at 0 °C. After stirring at this temperature for one hour, the solution was treated with methyl iodide (28.3 μ l, 0.452 mmol, 2.0 eq) and further stirred for 18 hours at room temperature. Saturated NH₄Cl solution (1 mL) was added, the mixture stirred for one hour and then diluted with water (5 mL). After extraction of the mixture with dichloromethane (3 × 10 mL), the combined organic layers were dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product purified by flash column chromatography (SiO₂, 11 x 1.5 cm, pentane/EtOAc 4/1, UV/CAM) to afford quinolone **S7b** as colorless solid (56.0 mg, 89%).

m.p.: 82-84 °C

TLC: $R_f = 0.48$ (pentane/EtOAc = 1/1) [UV, CAM].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3032 (w, CH), 2996 (w, CH), 2938 (w, CH), 2913 (w, CH), 2838 (w), 1645 (s, C=O), 1623 (m), 1593 (vs, C=C), 1573 (m, C=C), 1509 (s, C=C), 1461 (s), 1241, 1220 (vs, C-O, C-N), 1178 (s), 818 (s).


¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 3.75 (s, 3 H, NCH₃), 3.80 (s, 3 H, OCH₃), 3.92 (s, 2

H, C<u>H</u>₂Ar), 6.86-6.89 (m, 2 H, 3'-H), 7.18 (*virt.* t, ${}^{3}J \approx 7.5$ Hz, 1 H, 6-H), 7.21-7.24 (m, 2 H, 2'-H), 7.31-7.34 (m, 2 H, 4-H, 8-H), 7.44 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.5$ Hz, 5-H), 7.47-7.52 (m, 1 H, 7-H).

¹³**C-NMR** (90.6 MHz, CDCl₃): δ [ppm] = 29.9 (q, NCH₃), 36.3 (t, <u>C</u>H₂Ar), 55.4 (q, OCH₃), 114.0 (d, C-8), 114.1 (d, C-3'), 120.8 (s, C-4a), 122.1 (d, C-6), 128.4 (d, C-5), 129.7 (d, C-7), 130.5 (d, C-2'), 131.2 (s, C-1'), 133.9 (s, C-3), 135.7 (d, C-4), 139.1 (s, C-8a), 158.3 (s, C-4'), 162.5 (s, C-2).

HRMS (ESI):	$C_{18}H_{18}NO_2 [(M+H)^+]:$	calcd.: 280.1332; found: 280.1333
	$C_{18}H_{17}NNaO_2 [(M+Na)^+]:$	calcd.: 302.1151; found: 302.1151.

3,7-Bis(4-methoxybenzyl)quinolin-2(1*H*)-one (16)

Preparation of the organozinc stock solution (4-methoxybenzyl)zinc(II) chloride)^[9]

A flask was charged with dry lithium chloride (159 mg, 3.75 mmol, 1.25 eq) and dry zinc chloride (450 mg, 3.30 mmol, 1.1 eq). The mixture was heated twice under high vacuum until melting was observed. Magnesium turnings (182 mg, 7.5 mmol, 2.5 eq) and degassed THF (2.5 mL) were added and the magnesium was activated by treatment with diisobutyl-aluminium hydride (30 μ L, 30.0 μ mol, 0.01 eq, 1.0 M in THF). After stirring for 5 minutes at room temperature, 4-methoxybenzyl chloride (0.41 mL, 3.00 mmol, 1.0 eq) was added and the reaction mixture stirred for two hours at room temperature. The reaction solution was transferred into a syringe and filtrated through a preparative syringe filter into a new *Schlenk*-flask. The concentration of the organozinc solution was determined by iodometric titration (c = 0.82 M).

Negishi-coupling^[10]

To a solution of quinolone **S8** (34.4 mg, 0.1 mmol, 1.0 eq), $Pd_2(dba)_3$ (4.58 mg, 5.0 µmol, 0.05 eq) and RuPhos-ligand (9.3 mg, 20.0 µmol, 0.2 eq) in degassed *N*,*N*-dimethylacetamide (0.5 mL) was added (4-methoxybenzyl)zinc(II) chloride (0.37 mL, 0.30 mmol, 3.0 eq, 0.82 M in THF). The reaction was stirred at room temperature until TLC control (pentane/EtOAC = 1/1) showed complete conversion (20 hours). Saturated NH₄Cl solution (5 mL) and water

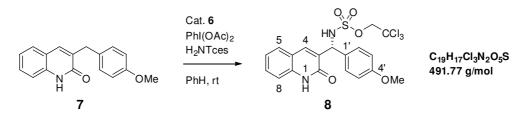
(5 mL) were added and the mixture was extracted with EtOAc (3×10 mL). The combined organic layers were successively washed with water (2×10 mL) and saturated NaCl solution (1×10 mL) and were dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was subjected to flash column chromatography (SiO₂, 13×1.5 cm, CH₂Cl₂/EtOAc 9/1, UV/CAM) to afford the title compound as a colorless solid (23.5 mg, 61%).

m.p.: 163-165 °C

TLC: $R_f = 0.36$ (CH₂Cl₂/MeOH = 95/5) [UV, CAM].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3136 (w), 3062 (w, CH), 3002 (w, CH), 2958 (w, CH), 2907 (w, CH), 2838 (w), 1648 (vs, C=O), 1609 (w, C=C), 1567 (m, C=C), 1509 (s, C=C), 1244 (s, C-O), 893 (m), 807 (m).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 3.75 (s, 3 H, OCH₃), 3.79 (s, 3 H, OCH₃), 3.93 (s, 2 H, C³-CH₂), 4.00 (s, 2 H, C⁷-CH₂), 6.82-6.85 (m, 2 H, 3''-H), 6.85-6.89 (m, 2 H, 3'-H), 6.95-6.99 (m, 1 H, 6-H), 7.09-7.13 (m, 2 H, 2''-H), 7.16 (s, 1 H, 8-H), 7.22-7.27 (m, 2 H, 2'-H), 7.34 (d, ${}^{3}J$ = 8.1 Hz, 1 H, 5-H), 7.38 (s, 1 H, 4-H), 11.84 (s, 1 H, NH).


¹³C-NMR (125.8 MHz, CDCl₃): δ [ppm] = 35.3 (t, C³-<u>C</u>H₂), 41.2 (t, C⁷-<u>C</u>H₂), 55.3 (q, OCH₃), 55.4 (q, OCH₃), 114.1 (d, C-3'), 114.1 (d, C-3''), 115.5 (d, C-8), 118.6 (s, C-4a), 123.7 (d, C-6), 127.5 (d, C-5), 130.1 (d, C-2''), 130.5 (d, C-2'), 131.3 (s, C-1'), 132.5 (s, C-1''), 133.1 (s, C-3), 137.2 (d, C-4), 137.8 (s, C-8a), 143.9 (s, C-7), 158.2 (s, C-4'), 158.2 (s, C-4''), 164.3 (s, C-2).

HRMS (ESI):	$C_{25}H_{24}NO_3 [(M+H)^+]:$	calcd.: 386.1751; found: 386.1752
	$C_{25}H_{23}NNaO_3 [(M+Na)^+]:$	calcd.: 408.1570; found: 408.1571
	$C_{50}H_{47}N_2O_6 [(2M+H)^+]:$	calcd.: 771.3429; found: 771.3447.

Rhodium-catalyzed C-H amination reactions

(R)-2,2,2-Trichloroethyl ((4-methoxyphenyl)(2-oxo-1,2-dihydroquinolin-3-

yl)methyl)sulfamate (8)

Following *GP4*, quinolone **7** (53.1 mg, 0.2 mmol, 2.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 μ mol, 0.02 eq) to afford the title compound as a colorless solid (25.8 mg, 52%, 71% *ee*) after purification by flash column chromatography (SiO₂, 15 × 1.5 cm, CH₂Cl₂/EtOAc 98/2 \rightarrow 95/5 \rightarrow 9/1 \rightarrow 8/2, UV/CAM).

The enantiomers were separated by semipreparative HPLC chromatography on a chiral stationary phase (Daicel ChiralPak AD, 250×20 mm, *n*-hexane/*i*-PrOH = 1:1). The absolute configuration of the separated major enantiomer (>99% *ee*, (-)-(*R*)-**8**) was determined by X-ray diffraction analysis of a single crystal, obtained by slow evaporation of a methanolic solution.

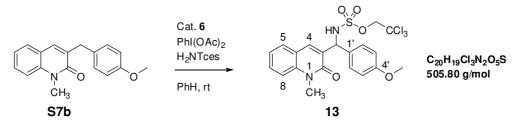
m.p.: 171-174 °C (decomposition)

TLC: $R_f = 0.47$ (CH₂Cl₂/MeOH = 95/5) [UV, CAM].

Specific Rotation: [>99% *ee*, determined by chiral HPLC]

 $[\alpha]_D^{20} = -8.5 \ (c = 0.33, \text{CHCl}_3).$

HPLC (AD-H, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 210 nm): $t_{\rm R}$ [racemate] = 10.5 min ((–)-(*R*)-**8**), 12.3 min ((+)-(*S*)-**8**).


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3007 (w, CH), 2947 (w, CH), 2839 (w), 2779 (w), 1651 (s, C=O), 1610 (m, C=C), 1570 (m, C=C), 1509 (m, C=C), 1421 (m), 1241 (m), 1174 (vs), 958 (s), 849 (vs), 824 (s).

¹**H NMR** (500 MHz, DMSO-d₆): δ [ppm] = 3.72 (s, 3 H, OCH₃), 4.59 (d, ${}^{2}J$ = 11.1 Hz, 1 H, OC<u>H</u>_aH_bCCl₃), 4.70 (d, ${}^{2}J$ = 11.1 Hz, 1 H, OCH_a<u>H</u>_bCCl₃), 5.82 (d, ${}^{3}J$ = 8.2 Hz, 1 H, C<u>H</u>NHTces), 6.89-6.93 (m, 2 H, 3'-H), 7.17-7.22 (m, 1 H, 6-H), 7.29-7.34 (m, 3 H, 2'-H, 8-H), 7.50 (ddd, ${}^{3}J$ = 8.4 Hz, ${}^{3}J$ = 7.2 Hz, ${}^{3}J$ = 1.3 Hz, 1 H, 7-H), 7.68 (d, ${}^{3}J$ = 7.3 Hz, 1 H, 5-H), 7.96 (s, 1 H, 4-H), 9.29 (d, ${}^{3}J$ = 8.2 Hz, 1 H, CHN<u>H</u>Tces), 11.99 (s, 1 H, NH).

¹³C-NMR (125.8 MHz, DMSO-d₆): δ [ppm] = 55.2 (q, OCH₃), 55.4 (d, <u>C</u>HNHTces), 77.3 (t,

O<u>C</u>H₂CCl₃), 93.8 (s, OCH₂<u>C</u>Cl₃), 113.8 (d, C-3'), 114.9 (d, C-8), 118.8 (s, C-4a), 122.1 (d, C-6), 128.1 (d, C-5), 128.7 (d, C-2'), 130.4 (d, C-7), 131.5 (s, C-1'), 132.9 (s, C-3), 136.1 (d, C-4), 138.0 (s, C-8a), 158.7 (s, C-4'), 160.6 (s, C-2). **HRMS** (ESI): $C_{19}H_{18}Cl_3N_2O_5S [(M+H)^+]$: calcd.: 490.9997; found: 490.9999 $C_{19}H_{17}Cl_3N_2NaO_5S [(M+Na)^+]$: calcd.: 512.9816; found: 512.9819.

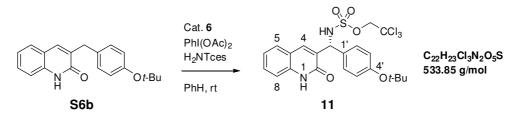
2,2,2-Trichloroethyl ((4-methoxyphenyl)(1-methyl-2-oxo-1,2-dihydroquinolin-3yl)methyl)sulfamate (13)

Following *GP4*, quinolone **S7b** (55.9 mg, 0.2 mmol, 2.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 μ mol, 0.02 eq) to afford the title compound as a colorless solid (14.6 mg, 29%, 10% *ee*). The compound **13** was obtained after purification by flash column chromatography (SiO₂, 15 × 1 cm, pentane/Et₂O 1/1, UV/CAM) yielding a mixture of starting material **S7b** and **13**, which were then separated by further flash column chromatography (SiO₂, 16 × 1 cm, CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 98/2, UV/CAM).

m.p.: 125-127 °C (decomposition)

TLC: *R*_f = 0.63 (CH₂Cl₂/MeOH 98/2) [UV, CAM].

HPLC (AD-H, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 210 nm): t_R [racemate] = 10.3 min, 12.8 min.


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3355 (m), 3193 (br), 2957 (s, CH), 2920 (vs, CH), 2850 (s, CH), 1640 (vs, C=O), 1586 (vs), 1511 (s, C=C), 1460 (s), 1258 (s), 1175 (vs), 849 (m), 752 (s), 722 (m).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 3.71 (s, 3 H, NCH₃), 3.77 (s, 3 H, OCH₃), 4.47 (d, ²J = 10.7 Hz, 1 H, OC<u>H</u>_aH_bCCl₃), 4.51 (d, ²J = 10.7 Hz, 1 H, OCH_a<u>H</u>_bCCl₃), 5.66 (d, ³J = 9.4 Hz, 1 H C<u>H</u>NHTces), 6.82-6.88 (m, 2 H, 3'-H), 7.30 (*virt.* t, ³J \approx 7.5 Hz, 1 H, 6-H), 7.36-7.41 (m, 3 H, 2'-H, 8-H), 7.53 (d, ³J = 9.4 Hz, 1 H, CHN<u>H</u>Tces), 7.59-7.65 (m, 2 H, 5-H, 7-H), 7.83 (s, 1 H, 4-H).

¹³C-NMR (125.8 MHz, CDCl₃): δ [ppm] = 29.8 (q, NCH₃), 55.4 (q, OCH₃), 61.2 (d, <u>CHNHTces</u>), 78.1 (t, O<u>C</u>H₂CCl₃), 93.4 (s, OCH₂<u>C</u>Cl₃), 114.2 (d, C-3'), 114.4 (d, C-8), 120.2

(s, C-4a), 123.1 (d, C-6), 127.8 (d, C-2'), 129.3 (d, C-5), 129.9 (s, C-3), 130.9 (s, C-1'), 131.2 (d, C-7), 137.7 (d, C-4), 139.5 (s, C-8a), 159.4 (s, C-4'), 161.5 (s, C-2). **HRMS** (ESI): $C_{20}H_{20}Cl_3N_2O_5S$ [(M+H)⁺]: calcd.: 505.0153; found: 505.0148 $C_{20}H_{19}Cl_3N_2NaO_5S$ [(M+Na)⁺]: calcd.: 526.9972; found: 526.9966 $C_{40}H_{39}Cl_6N_4O_{10}S_2$ [(2M+H)⁺]: calcd.: 1009.0233; found: 1009.0212.

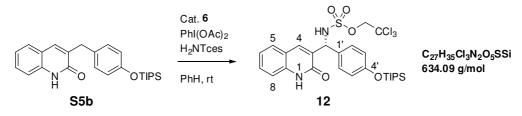
(*R*)-2,2,2-Trichloroethyl ((4-(*tert*-butoxy)phenyl)(2-oxo-1,2-dihydroquinolin-3-yl)methyl)sulfamate (11)

Following *GP4*, quinolone **S6b** (61.5 mg, 0.2 mmol, 2.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 μ mol, 0.02 eq) to afford the title compound as a colorless solid (20.2 mg, 38%, 49% *ee*) after purification by flash column chromatography (SiO₂, 15 × 1.5 cm, CH₂Cl₂/EtOAc 98/2 \rightarrow 95/5 \rightarrow 9/1 \rightarrow 4/1, UV/CAM).

m.p.: 168-170 °C (decomposition)

TLC: $R_{\rm f} = 0.42$ (CH₂Cl₂/MeOH = 95/5) [UV, CAM].

HPLC (AD-H, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 70/30, 1 mL/min, λ = 210 nm): $t_{\rm R}$ [racemate] = 10.2 min ((*R*)-11), 12.3 min ((*S*)-11).


IR (ATR): \tilde{v} [cm⁻¹] = 2975 (w, CH), 2924 (w, CH), 2854 (w), 1656 (vs, C=O), 1608 (w, C=C), 1572 (m, C=C), 1505 (m, C=C), 1365 (m), 1242 (m), 1182 (s), 853 (s), 755 (m).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.31 (s, 9 H, C(CH₃)₃), 4.46 (d, ${}^{2}J$ = 10.7 Hz, 1 H OC<u>H</u>_aH_bCCl₃), 4.49 (d, ${}^{2}J$ = 10.7 Hz, 1 H, OCH_a<u>H</u>_bCl₃), 5.69 (d, ${}^{3}J$ = 9.4 Hz, 1 H, C<u>H</u>NHTces), 6.92-6.96 (m, 2 H, 3'-H), 7.17 (d, ${}^{3}J$ = 8.2 Hz, 1 H, 8-H), 7.25-7.30 (m, 1 H, 6-H), 7.36-7.40 (m, 2 H, 2'-H), 7.51-7.55 (m, 1 H, 7-H), 7.59-7.62 (m, 1 H, 5-H), 7.67 (d, ${}^{3}J$ = 9.4 Hz, 1 H, CHN<u>H</u>Tces), 7.89 (s, 1 H, 4-H), 10.52 (s, 1 H, NH).

¹³C-NMR (125.8 MHz, CDCl₃): δ [ppm] = 29.0 (q, C(<u>C</u>H₃)₃), 60.9 (d, <u>C</u>HNHTces), 78.1 (t, O<u>C</u>H₂CCl₃), 78.9 (s, <u>C</u>(CH₃)₃), 93.4 (s, OCH₂<u>C</u>Cl₃), 115.5 (d, C-8), 119.8 (s, C-4a), 123.7 (d, C-6), 124.2 (d, C-3'), 127.4 (d, C-2'), 128.4 (d, C-5), 130.0 (s, C-3), 131.4 (d, C-7), 133.4 (s, C-1'), 137.5 (s, C-8a), 139.4 (d, C-4), 155.5 (s, C-4'), 162.6 (s, C-2).

HRMS (ESI): $C_{22}H_{24}Cl_3N_2O_5S$ [(M+H)⁺]:calcd.: 533.0466; found: 533.0469 $C_{22}H_{23}Cl_3N_2NaO_5S$ [(M+Na)⁺]:calcd.: 555.0285; found: 555.0288 $C_{44}H_{47}Cl_6N_4O_{10}S_2$ [(2M+H)⁺]:calcd.: 1065.0859; found: 1065.0868.

(*R*)-2,2,2-Trichloroethyl ((2-oxo-1,2-dihydroquinolin-3-yl)(4-((triisopropyl-silyl)oxy)phenyl)methyl)sulfamate (12)

Following *GP4*, quinolone **S5b** (81.5 mg, 0.2 mmol, 2.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 µmol, 0.02 eq) to afford a mixture of the title compound (24.9 mg^{*}, 39%^{*}, 72% *ee*) and H₂NTces (**12**/H₂NTces = 74/26) as a colorless solid after purification by flash column chromatography (SiO₂, 16 × 1 cm, CH₂Cl₂/EtOAc 99/1 \rightarrow 98/2 \rightarrow 95/5, UV/CAM). An analytically pure sample of **12** was obtained by repeated flash column chromatography and all analytical data refer to this sample.

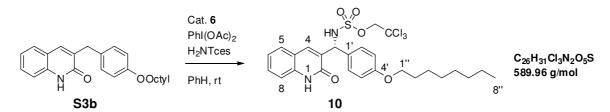
* corrected yield based on NMR-integration

m.p.: 163-165 °C (decompsition)

TLC: $R_f = 0.68$ (CH₂Cl₂/MeOH = 95/5) [UV, CAM].

Specific Rotation: [72% ee, determined by chiral HPLC]

 $[\alpha]_D^{20} = -10.3 \ (c = 0.68, \text{CHCl}_3).$


HPLC (AS-RH, 150 × 4.6 mm, CH₃CN/H₂O = 20/80 \rightarrow 100/0, 1 mL/min, λ = 254 nm): $t_{\rm R}$ [racemate] = 23.5 min ((-)-(*R*)-12), 25.9 ((+)-(*S*)-12).

IR (ATR): \tilde{v} [cm⁻¹] = 3301 (w, NH), 3158 (w), 3060 (CH), 2943 (m, CH), 2925 (m, CH), 2867 (m), 1651 (s, C=O), 1607 (m, C=C), 1570 (w, C=C), 1509 (m, C=C), 1267 (m), 1182 (m), 853 (w), 755 (w).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.06 (d, ${}^{3}J$ = 7.4 Hz, 18 H, Si(CH(C<u>H</u>₃)₂)₃), 1.16-1.26 (m, 3 H, Si(C<u>H</u>(CH₃)₂)₃), 4.45 (d, ${}^{2}J$ = 10.8 Hz, 1 H, OC<u>H</u>_aH_bCCl₃), 4.50 (d, ${}^{2}J$ = 10.8 Hz, 1 H, OCH_a<u>H</u>_bCCl₃), 5.67 (d, ${}^{3}J$ = 9.3 Hz, 1 H, C<u>H</u>NHTces), 6.79-6.83 (m, 2 H, 3'-H), 7.14 (d, ${}^{3}J$ = 8.2 Hz, 1 H, 8-H), 7.24-7.29 (m, 1 H, 6-H), 7.30-7.34 (m, 2 H, 2'-H), 7.50-7.55 (m, 1 H, 7-H), 7.57-7.61 (m, 2 H, 5-H, CHN<u>H</u>Tces), 7.87 (s, 1 H, 4-H), 10.74 (s, 1 H, NH).

¹³C-NMR (125.8 MHz, CDCl₃): δ [ppm] = 12.8 (d, Si(<u>C</u>H(CH₃)₂)₃), 18.0 (q, Si(CH(<u>C</u>H₃)₂)₃), 60.8 (d, <u>C</u>HNHTces), 78.1 (t, O<u>C</u>H₂CCl₃), 93.4 (s, OCH₂<u>C</u>Cl₃), 115.5 (d, C-8), 119.8 (s, C-4a), 120.1 (d, C-3'), 123.6 (d, C-6), 127.9 (d, C-2'), 128.3 (d, C-5), 130.1 (s, C-3), 131.1 (s, C-1'), 131.3 (d, C-7), 137.5 (s, C-8a), 139.3 (d, C-4), 156.1 (s, C-4'), 162.7 (s, C-2). HRMS (ESI): $C_{27}H_{36}Cl_3N_2O_5Ssi [(M+H)^+]$: calcd.: 633.1174; found: 633.1178 $C_{54}H_{71}Cl_6N_4O_{10}S_2Si_2 [(2M+H)^+]$: calcd.: 1265.2276; found: 1265.2288.

(*R*)-2,2,2-Trichloroethyl ((4-(octyloxy)phenyl)(2-oxo-1,2-dihydroquinolin-3-yl)methyl)sulfamate (10)

Following *GP4*, quinolone **S3b** (72.7 mg, 0.2 mmol, 2.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 μ mol, 0.02 eq) to afford the title compound as a colorless solid (9.0 mg, 15%, 75% *ee*) after purification by flash column chromatography (SiO₂, 15 × 1.5 cm, CH₂Cl₂/EtOAc 99/1 \rightarrow 98/2 \rightarrow 9/1 \rightarrow 4/1, UV/CAM).

m.p.: 156-158 °C (decomposition)

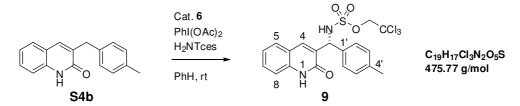
TLC: $R_{\rm f} = 0.64$ (CH₂Cl₂/MeOH = 95/5) [UV, CAM].

Specific Rotation: [75% ee, determined by chiral HPLC]

 $[\alpha]_D^{20} = -3.5 \ (c = 0.31, \text{CHCl}_3).$

HPLC (AD-H, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 70/30, 1 mL/min, λ = 210 nm): $t_{\rm R}$ [racemate] = 12.3 min ((-)-(*R*)-10), 17.6 min ((+)-(*S*)-10).

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3283 (w, NH), 3021 (w, CH), 2923 (w, CH), 2855 (w), 1658 (s, C=O), 1611 (m, C=C), 1574 (m, C=C), 1510 (m, C=C), 1435 (m), 1248 (s), 1174 (vs), 958 (s), 851 (s).


¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 0.88 (t, ³*J* = 6.8 Hz, 3 H, 8''-H), 1.22-1.36 (m, 8 H, 4''-H, 5''-H, 6''-H, 7''-H), 1.37-1.45 (m, 2 H, 3''-H), 1.70-1.77 (m, 2 H, 2''-H), 3.87-3.91 (m, 2 H, 1''-H), 4.46 (d, ²*J* = 10.8 Hz, 1 H, OCH_aH_bCCl₃), 4.51 (d, ²*J* = 10.8 Hz, 1 H, OCH_aH_bCCl₃), 5.70 (d, ³*J* = 9.3 Hz, 1 H, CHNHTces), 6.81-6.85 (m, 2 H, 3'-H), 7.13 (d, ³*J* =

8.4 Hz, 1 H, 8-H), 7.24-7.29 (m, 1 H, 6-H), 7.36-7.41 (m, 2 H, 2'-H), 7.51 (ddd, ${}^{3}J = 8.4$ Hz, ${}^{3}J = 7.2$ Hz, ${}^{4}J = 1.3$ Hz, 1 H, 7-H), 7.58-7.61 (m, 1 H, 5-H), 7.63 (d, ${}^{3}J = 9.3$ Hz, 1 H, CHN<u>H</u>Tces), 7.89 (s, 1 H, 4-H), 11.15 (s, 1 H, NH).

¹³**C-NMR** (125.8 MHz, CDCl₃): δ [ppm] = 14.3 (q, C-8''), 22.8 (t, CH₂), 26.2 (t, C-3''), 29.3, 29.4, 29.5 (3 t, C-2'', 2 CH₂), 32.0 (t, CH₂), 60.7 (d, <u>C</u>HNHTces), 68.2 (t, C-1''), 78.1 (t, O<u>C</u>H₂CCl₃), 93.4 (s, OCH₂<u>C</u>Cl₃), 114.7 (d, C-3'), 115.7 (d, C-8), 119.8 (s, C-4a), 123.6 (d, C-6), 127.9 (d, C-2'), 128.3 (d, C-5), 130.0 (s, C-3), 130.6 (s, C-1'), 131.3 (d, C-7), 137.6 (s, C-8a), 139.4 (d, C-4), 159.1 (s, C-4'), 163.0 (s, C-2).

HRMS (ESI): $C_{26}H_{32}Cl_3N_2O_5S$ [(M+H)⁺]:calcd.: 589.1092; found: 589.1096 $C_{26}H_{31}Cl_3N_2NaO_5S$ [(M+Na)⁺]:calcd.: 611.0911; found: 611.0916.

(*R*)-2,2,2-Trichloroethyl ((2-oxo-1,2-dihydroquinolin-3-yl)(*p*-tolyl)methyl)sulfamate (9)

Following *GP4*, quinolone **S4b** (49.9 mg, 0.2 mmol, 2.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 µmol, 0.02 eq) to afford a mixture of the title compound (12.5 mg^{*}, 26%^{*}, 48% *ee*) and H₂NTces (**12**/H₂NTces = 79/21) as a colorless solid after purification by flash column chromatography (SiO₂, 15 × 1.5 cm, CH₂Cl₂/EtOAc 98/2 \rightarrow 95/5 \rightarrow 9/1 \rightarrow 4/1, UV/CAM). An analytically pure sample of **9** was obtained by repeated flash column chromatography and all analytical data refer to this sample.

* corrected yield based on NMR integration

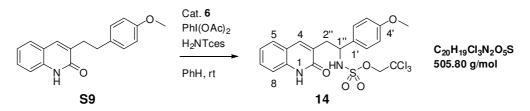
m.p.: 168-169 °C (decomposition)

TLC: $R_f = 0.54$ (CH₂Cl₂/MeOH 95/5) [UV, CAM].

Specific Rotation: [48% ee, determined by chiral HPLC]

 $[\alpha]_D^{20} = -2.1 \ (c = 0.38, \text{CHCl}_3).$

HPLC (AD-H, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 70/30, 1 mL/min, λ = 210 nm): $t_{\rm R}$ [racemate] = 15.5 min ((-)-(*R*)-9), 17.6 min ((+)-(*S*)-9).


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3292 (w, NH), 3018 (w, CH), 2848 (w), 1652 (vs, C=O), 1619 (w, C=C), 1571 (m, C=C), 1434 (s), 1365 (s), 1178 (vs), 958 (s), 815 (s).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 2.30 (s, 3 H, CH₃), 4.46 (d, ²*J* = 10.8 Hz, OC<u>H_a</u>H_bCCl₃), 4.51 (d, ²*J* = 10.8 Hz, 1 H, OCH_a<u>H_b</u>CCl₃), 5.72 (d, ³*J* = 9.3 Hz, 1 H, <u>C</u>HNHTces), 7.10-7.15 (m, 3 H, 3'-H, 8-H), 7.25-7.29 (m, 1 H, 6-H), 7.35-7.39 (m, 2 H, 2'-H), 7.48-7.53 (m, 1 H, 7-H), 7.59-7.62 (m, 1 H, 5-H), 7.70 (d, ³*J* = 9.3 Hz, 1 H, CHN<u>H</u>Tces), 7.92 (s, 1 H, 4-H), 11.46 (s, 1 H, NH).

¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 21.2 (q, CH₃), 60.9 (d, <u>C</u>HNHTces), 78.1 (t, O<u>C</u>H₂CCl₃), 93.4 (s, OCH₂<u>C</u>Cl₃), 115.8 (d, C-8), 119.8 (s, C-4a), 123.6 (d, C-6), 126.6 (d, C-2'), 128.3 (d, C-5), 129.5 (d, C-3'), 129.9 (s, C-3), 131.3 (d, C-7), 135.8 (s, C-1'), 137.6 (s, C-8a), 138.0 (s, C-4'), 139.5 (d, C-4), 163.1 (s, C-2).

HRMS (ESI): $C_{19}H_{18}Cl_3N_2O_4S$ [(M+H)⁺]: calcd.: 475.0047; found: 475.0044.

2,2,2-Trichloroethyl (1-(4-methoxyphenyl)-2-(2-oxo-1,2-dihydroquinolin-3yl)ethyl)sulfamate (14)

Following *GP4*, quinolone **S9** (55.9 mg, 0.2 mmol, 2.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 μ mol, 0.02 eq) to afford the title compound as a colorless solid (32.7 mg, 65%, 30% *ee*) after purification by flash column chromatography (SiO₂, 17 × 1 cm, CH₂Cl₂/EtOAc 9/1, UV/CAM).

m.p.: 184-186 °C (decomposition)

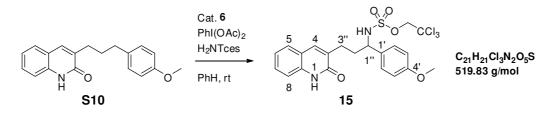
TLC: $R_f = 0.70$ (CH₂Cl₂/MeOH 9/1) [UV, CAM].

Specific Rotation: [30% ee, determined by chiral HPLC]

 $[\alpha]_{D}^{20} = +10.0 \ (c = 0.24, \text{MeOH}).$

HPLC (OD, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 80/20, 1 mL/min, λ = 210 nm): $t_{\rm R}$ [enantioenriched] = 11.3 min ((-)-14), 14.5 min ((+)-14).

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3319 (m, NH), 3154 (w), 3103 (w, CH), 3064 (w, CH), 3005 (w, CH), 2948 (w, CH), 2898 (m, CH), 1654 (s, C=O), 1612 (m, C=C), 1574 (m, C=C), 1512 (m, C=C), 1247 (m), 1174 (s), 851 (m), 754 (m).


¹**H-NMR** (500 MHz, DMSO-d₆): δ [ppm] = 2.87-2.98 (m, 2 H, 2''-H), 3.71 (s, 3 H, OCH₃),

4.15 (d, ${}^{2}J$ = 11.1 Hz, 1 H, OC<u>H</u>_aH_bCCl₃), 4.20 (d, ${}^{2}J$ = 11.1 Hz, 1 H, OCH_a<u>H</u>_bCCl₃), 4.79-4.86 (m, 1 H, 1''-H), 6.88-6.93 (m, 2 H, 3'-H), 7.14 (*virt.* t, ${}^{3}J \approx 7.5$ Hz, 1 H, 6-H), 7.26-7.29 (m, 1 H, 8-H), 7.29-7.33 (m, 2 H, 2'-H), 7.44 (*virt.* t, ${}^{3}J \approx 7.7$ Hz, 1 H, 7-H), 7.56 (d, ${}^{3}J$ = 7.8 Hz, 1 H, 5-H), 7.70 (s, 1 H, 4-H), 9.05 (d, ${}^{3}J$ = 8.5 Hz, 1 H, N<u>H</u>Tces), 11.86 (s, 1 H, NH).

¹³C-NMR (125.8 MHz, DMSO-d₆): δ [ppm] = 38.6 (t, C-2''), 55.1 (q, OCH₃), 56.3 (d, C-1''), 77.0 (t, O<u>C</u>H₂CCl₃), 93.5 (s, OCH₂<u>C</u>Cl₃), 113.9 (d, C-3'), 114.9 (d, C-8), 119.2 (s, C-4a), 121.9 (d, C-6), 127.4 (d, C-5), 127.7 (d, C-2'), 129.3 (s, C-3), 129.7 (d, C-7), 134.0 (s, C-1'), 138.2 (s, C-8a), 138.6 (d, C-4), 158.6 (s, C-4'), 162.1 (s, C-2).

HRMS (ESI): $C_{20}H_{20}Cl_3N_2O_5S$ [(M+H)⁺]: calcd.: 505.0153; found: 505.0152.

2,2,2-Trichloroethyl (1-(4-methoxyphenyl)-3-(2-oxo-1,2-dihydroquinolin-3yl)propyl)sulfamate (15)

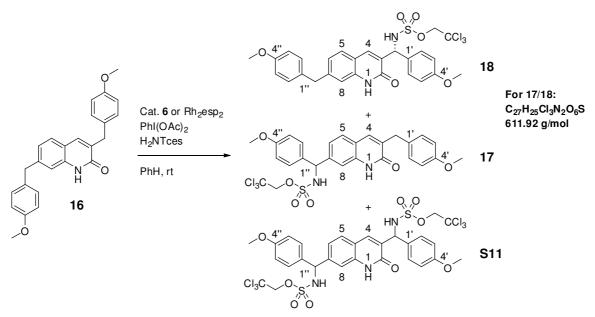
Following *GP4*, quinolone **S10** (58.7 mg, 0.2 mmol, 2.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 μ mol, 0.02 eq) to afford the title compound as a colorless solid (13.0 mg, 25%, 5% *ee*). The compound **15** was obtained after purification by flash column chromatography (SiO₂, 16 × 1 cm, CH₂Cl₂/EtOAc 98/2 \rightarrow 9/1 \rightarrow 4/1, UV/CAM) yielding a compound mixture which was purified by further flash column chromatography (SiO₂, 18 × 1 cm CH₂Cl₂/MeOH 99/1, UV/CAM).

m.p.: 153-155 °C (decomposition)

TLC: $R_f = 0.58$ (CH₂Cl₂/MeOH = 9/1) [UV, CAM].

HPLC (AD-H, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 210 nm): $t_{\rm R}$ [racemate] = 13.3 min, 15.2 min.

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3305 (w, NH), 3277 (w), 3161 (w), 3108 (w), 3065 (w, CH), 2952 (w, CH), 2918 (w, CH), 2850 (w, CH), 1648 (vs, C=O), 1611 (m, C=C), 1574 (m, C=C), 1514 (m, C=C), 1426 (m), 1250 (m), 1174 (s), 753 (m).


¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 2.24-2.40 (m, 2 H, 2"-H), 2.61-2.71 (m, 1 H, 3"-H_a), 2.71-2.80 (m, 1 H, 3"-H_b), 3.77 (s, 3 H, OCH₃), 4.21 (d, ²*J* = 10.8 Hz, 1 H, OC<u>H</u>_aH_bCCl₃), 4.33 (d, ³*J* = 10.8 Hz, 1 H, OCH_a<u>H</u>_bCCl₃), 4.55-4.62 (m, 1 H, 1"-H), 6.86-6.90 (m, 2 H, 3'-H), 7.19-7.23 (m, 1 H, 6-H), 7.29 (d, ³*J* = 8.3 Hz, 1 H, 8-H), 7.38-7.42 (m, 2 H, 2'-H), 7.46 (ddd, ³*J* = 8.3 Hz, ³*J* = 7.3 Hz, ⁴*J* = 1.2 Hz, 1 H, 7-H), 7.49-7.52 (m, 1 H, 5-H), 7.64 (s, 1 H, 4-H), 8.51 (d, ³*J* = 6.1 Hz, 1 H, N<u>H</u>Tces), 10.91 (s, 1 H, NH).

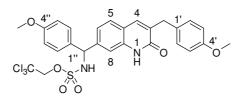
¹³**C-NMR** (125.8 MHz, CDCl₃): δ [ppm] = 29.0 (t, C-3''), 35.8 (t, C-2''), 55.5 (q, OCH₃), 59.1 (d, C-1''), 78.0 (t, O<u>C</u>H₂CCl₃), 93.6 (s, OCH₂<u>C</u>Cl₃), 114.4 (d, C-3'), 115.7 (d, C-8), 120.4 (s, C-4a), 123.2 (d, C-6), 127.4 (d, C-5), 128.2 (d, C-2'), 130.1 (d, C-7), 132.7 (s, C-3), 133.3 (s, C-1'), 137.1 (s, C-8a), 138.4 (d, C-4), 159.4 (s, C-4'), 163.7 (s, C-2).

HRMS (ESI): $C_{21}H_{22}Cl_3N_2O_5S$ [(M+H)⁺]:calcd.: 519.0310; found: 519.0312 $C_{21}H_{21}Cl_3N_2NaO_5S$ [(M+Na)⁺]:calcd.: 541.0129; found: 541.0133 $C_{42}H_{43}Cl_6N_4O_{10}S_2$ [(2M+H)⁺]:calcd.: 1037.0546; found: 1037.0546.

Competition experiment

(*R*)-2,2,2-Trichloroethyl ((7-(4-methoxybenzyl)-2-oxo-1,2-dihydroquinolin-3-yl)(4-methoxybenzyl)methyl)sulfamate (18) and 2,2,2-Trichloroethyl ((3-(4-methoxybenzyl)-2-oxo-1,2-dihydroquinolin-7-yl)(4-methoxybenzyl)methyl)sulfamate (17)

Racemic reaction with $Rh_2esp_2^{[1]}$ *as catalyst*


Following *GP4*, quinolone **16** (38.8 mg, 0.1 mmol, 1.0 eq) was reacted using Rh₂esp₂ (1.52 mg, 2.0 µmol, 0.02 eq) as catalyst. After the given reaction time, the solvent was removed under reduced pressure and the crude product directly subject to ¹H NMR analysis. The crude product was then purified by flash column chromatography (SiO₂, 18 × 1 cm, CH₂Cl₂/EtOAc 95/5 \rightarrow 9/1 \rightarrow 4/1, UV/CAM) to afford an analytically pure fraction of compound **18** as a colorless solid. Two further fractions were obtained consisting of a mixture of starting material **16** and minor amounts of **S11**^{*} and a mixture of **16** and **17**. The latter was purified by further flash column chromatography (SiO₂, 14 × 1 cm CH₂Cl₂/MeOH 75/1, UV/CAM) to afford an analytically pure fraction of **17**. No improvement of purification was achieved by using preparative HPLC. The provided analytical data refer to the corresponding pure fractions obtained. The ratio of regioisomers **17** and **18** (**17/18** = 61/39) was calculated from the crude ¹H NMR by integration of the corresponding CH-signal of **18** and one CH-signal of **S11** was determined (overlapping signals) and the integral of the second CH-proton of **S11** was subtracted.

* Structure **S11** was assigned to the byproduct (mixture of diastereoisomers). However, full analytical data were not available.

Enantio- and regioselective amination using catalyst 6

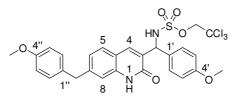
Following *GP4* and the procedure for the racemic reaction (as described above), quinolone **16** (38.8 mg, 0.1 mmol, 1.0 eq) was reacted using catalyst **6** (2.21 mg, 2.0 μ mol, 0.02 eq) to afford analytically pure fractions of **18** (69% *ee*) and **17** (6.7% *ee*). The ratio of the regioisomers (**17**/**18** = 37/63) was determined by ¹H NMR analysis of the crude product.

Analytical data for compound 17

m.p.: 158-160 °C (decomposition)

TLC: *R*_f = 0.26 (CH₂Cl₂/MeOH 95/5) [UV, CAM].

HPLC (AD-H, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 210 nm): $t_{\rm R}$ [racemate] = 23.4 min, 27.3 min.


IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3295 (br, NH), 3160 (br), 3068 (br), 2924 (m, CH), 2850 (m, CH), 1646 (vs, C=O), 1609 (s, C=C), 1568 (m, C=C), 1510 (vs, C=C), 1457 (m), 1246 (s), 1176 (s), 849 (m), 724 (m).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 3.75 (s, 3 H, C⁴"-OCH₃), 3.77 (s, 1 H, C⁴"-OCH₃), 3.81 (d, ${}^{2}J$ = 15.5 Hz, 1 H, C³-C<u>H</u>_aH_b), 3.85(d, ${}^{3}J$ = 15.5 Hz, 1 H, C³-CH_a<u>H</u>_b), 4.42 (d, ${}^{2}J$ = 10.8 Hz, 1 H, OC<u>H</u>_aH_bCCl₃), 4.48 (d, ${}^{2}J$ = 10.5 Hz, 1 H, OCH_a<u>H</u>_bCCl₃), 5.85 (d, ${}^{3}J$ = 7.6 Hz, 1 H, C<u>H</u>NHTces), 6.51-6.60 (m, 1 H, CHN<u>H</u>Tces), 6.80-6.86 (m, 4 H, 3'-H, 3''-H), 7.11 (d, ${}^{3}J$ = 8.2 Hz, 1 H, 6-H), 7.16 (d, ${}^{3}J$ = 8.2 Hz, 2 H, 2'-H), 7.19 (d, ${}^{3}J$ = 8.3 Hz, 2 H, 2''-H), 7.30-7.32 (m, 2 H, 4-H, 8-H), 7.38 (d, ${}^{3}J$ = 8.2 Hz, 1 H, 5-H), 10.89 (s, 1 H, NH).

¹³C-NMR (125.8 MHz, CDCl₃): δ [ppm] = 35.3 (t, C³-<u>C</u>H₂), 55.4 (q, C^{4'}-OCH3), 55.5 (q, C^{4''}-OCH₃), 61.5 (d, <u>C</u>HNHTces), 78.1 (t, O<u>C</u>H₂CCl₃), 93.4 (s, OCH₂<u>C</u>Cl₃), 113.9 (d, C-8), 114.2 (d, C-3'), 114.5 (d, C-3''), 119.8 (s, C-4a), 122.5 (d, C-6), 128.0 (d, C-5), 129.0 (d, C-2''), 130.5 (d, C-2'), 130.5 (s, C-1'), 131.8 (s, C-1''), 134.3 (s, C-3), 137.2 (s, C-8a), 137.2 (d, C-4), 142.5 (s, C-7), 158.4 (s, C-4'), 159.7 (s, C-4''), 163.6 (s, C-2).

HRMS (ESI):	$C_{27}H_{26}Cl_{3}N_{2}O_{6}S\ [(M+H)^{+}]:$	calcd.: 611.0572; found: 611.0577
	C ₂₇ H ₂₅ Cl ₃ N ₂ NaO ₆ S [(M+Na) ⁺]:	calcd.: 633.0391; found: 633.0399.

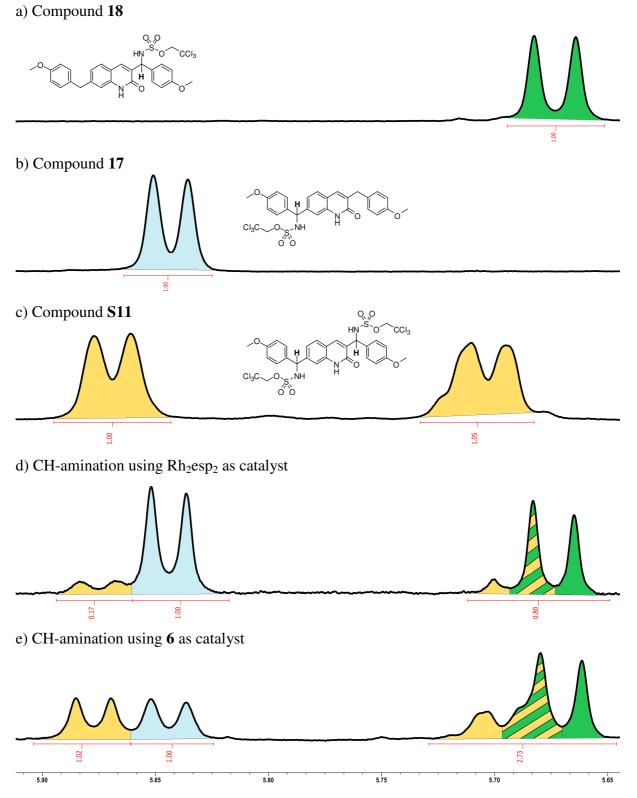
Analytical data for compound 18

m.p.: 152-154 °C (decomposition)

TLC: $R_{\rm f} = 0.55$ (CH₂Cl₂/MeOH 95/5) [UV, CAM].

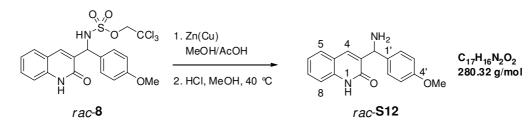
Specific Rotation: [69% ee, determined by chiral HPLC]

 $[\alpha]_{D}^{20} = -1.9 \ (c = 0.69, \text{CHCl}_3).$


HPLC (AD-H, 250 × 4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 254 nm): $t_{\rm R}$ [racemate] = 15.9 min ((-)-(*R*)-18), 23.9 min ((+)-(*S*)-18).

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3299 (br, NH), 3143 (br, NH), 3065 (w), 3002 (w, CH), 2954 (m, CH), 2923 (s, CH), 2850 (m, CH), 1648 (vs, C=O), 1610 (m, C=C), 1568 (w, C=C), 1509 (vs, C=C), 1439 (m), 1247 (s), 1175 (s), 847 (m), 753 (m).

¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 3.75 (s, 3 H, C⁴'-OCH₃), 3.78 (s, 3 H, C⁴''-OCH₃), 4.00 (s, 2 H, C⁷-CH₂), 4.45 (d, ²*J* = 10.8 Hz, 1 H, OC<u>H</u>_aH_bCCl₃), 4.50 (d, ²*J* = 10.8 Hz, 1 H, OCH_a<u>H</u>_bCCl₃), 5.65 (d, ³*J* = 9.2 Hz, 1 H, C<u>H</u>NHTces), 6.81-6.84 (m, 2 H, 3'-H), 6.84-6.87 (m, 2 H, 3''-H), 6.96 (s, 1 H, 8-H), 7.07-7.11 (m, 3 H, 2''-H, 6-H), 7.37 (d, ³*J* = 8.4 Hz, 2 H, 2'-H), 7.50 (d, ³*J* = 8.1 Hz, 2 H, 5-H), 7.63 (d, ³*J* = 9.2 Hz, 1 H, CHN<u>H</u>Tces), 7.83 (s, 1 H, 4-H), 10.48 (s, 1 H, NH).


¹³**C-NMR** (125.8 MHz, CDCl₃): δ [ppm] = 41.2 (t, C⁷-<u>C</u>H₂), 55.4, 55.4 (2 q, C^{4'}-OCH₃, C^{4''}-OCH₃), 60.8 (d, <u>C</u>HNHTces), 78.1 (t, O<u>C</u>H₂CCl₃), 93.4 (s, OCH₂<u>C</u>Cl₃), 114.2, 114.3 (2 d, C-3', C-3''), 115.2 (d, C-8), 118.0 (s, C-4a), 124.8 (d, C-6), 128.0 (d, C-2'), 128.4 (d, C-5), 129.2 (s, C-3), 130.1 (d, C-2''), 131.0 (s, C-1'), 131.8 (s, C-1''), 137.8 (s, C-8a), 139.1 (d, C-4), 146.0 (s, C-7), 158.4 (s, C-4''), 159.4 (s, C-4'), 162.7 (s, C-2).

HRMS (ESI):	$C_{27}H_{26}Cl_3N_2O_6S$ [(M+H) ⁺]:	calcd.: 611.0572; found: 611.0575
	$C_{27}H_{25}Cl_3N_2NaO_6S$ [(M+Na) ⁺]:	calcd.: 633.0391; found: 633.0340.

Figure F1: Determination of the ratio of regioisomers **18** and **17**. ¹H NMR spectra (500 MHz, CDCl₃): a) compound **18**; b) compound **17**; c) isolated compound **S11** for comparison; d) crude product using Rh₂esp₂ as amination-catalyst; d) crude product using **6** as amination-catalyst.

Deprotection of CH-amination product *rac*-8^[11]

3-(Amino(4-methoxyphenyl)methyl)quinolin-2(1*H*)-one (*rac*-S12)

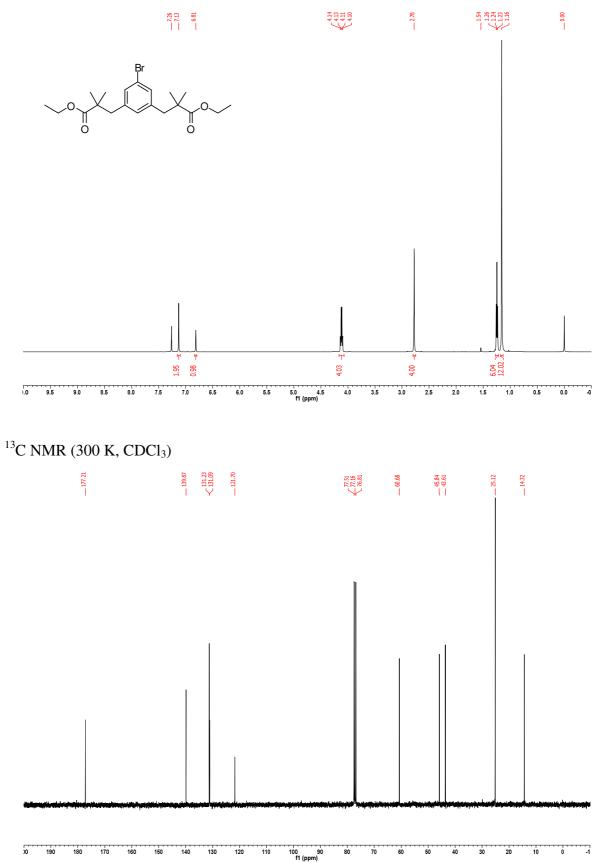
To a solution of **8** (24.6 mg, 0.05 mmol, 1.0 eq) in methanol (0.7 mL) was successively added zinc-copper couple (32.7 mg, 0.5 mmol, 10 eq) and acetic acid (0.7 mL). The reaction mixture was stirred for 20 hours at room temperature and then was filtered through a pad of Celite. The Celite was rinsed with methanol and the filtrate was concentrated under reduced pressure. The remaining acetic acid was removed by repeated evaporation with toluene under reduce pressure. The residue was dissolved in a solution of HCl in methanol (2 mL, prepared by adding 160 μ L acetyl chloride to 2 mL of dry methanol) and the reaction mixture was stirred at 40 °C for 18 hours. The reaction was quenched by the addition of saturated K₂CO₃ solution followed by extraction with dichloromethane (3 × 8 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was subjected to flash column chromatography (SiO₂, 10 × 1 cm, CH₂Cl₂/MeOH 98/2 \rightarrow 95/5 \rightarrow 9/1, UV) to afford the amine *rac*-S12 as a colorless solid (9.4 mg, 67%).

m.p.: 159-162 °C

TLC: $R_{\rm f} = 0.24$ (CH₂Cl₂/MeOH = 4/1) [UV].

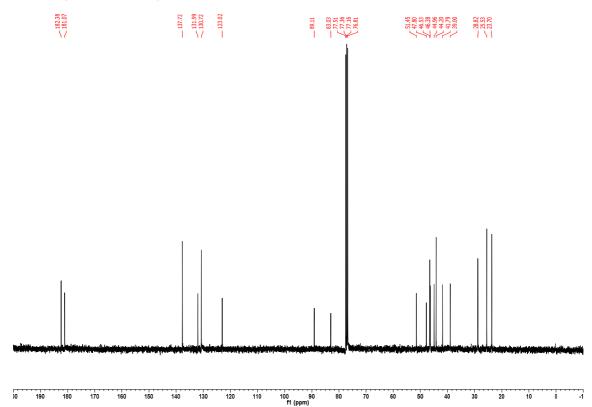
IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3351 (w, NH), 3275 (w), 2994 (m, CH), 2923 (m, CH), 2849 (m, CH), 1649 (s, C=O), 1609 (m, C=C), 1567 (m, C=C), 1510 (m, C=C), 1432 (m), 1248 (s), 1179 (w), 917 (w), 754 (m).

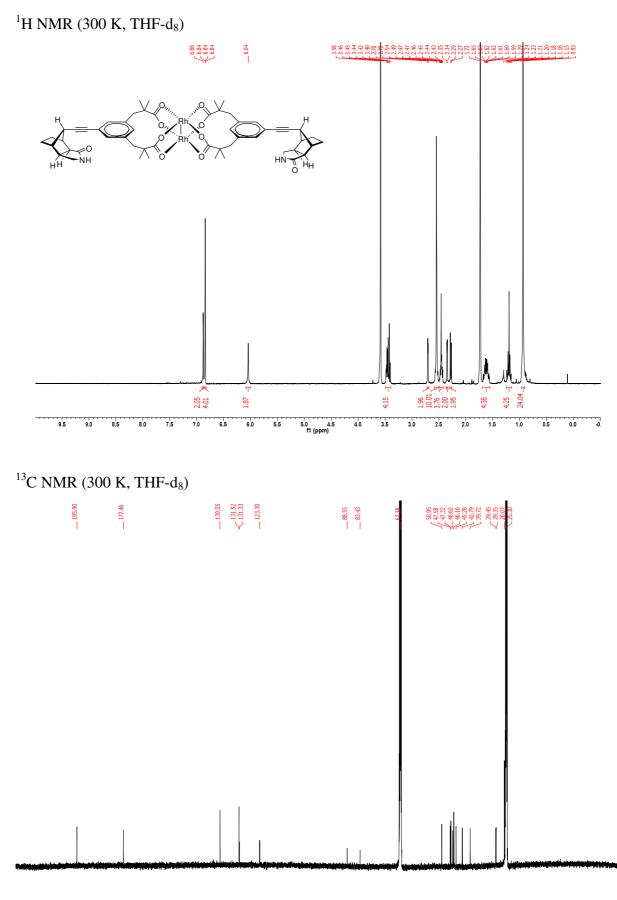
¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 2.08 (bs, 2 H, NH₂), 3.79 (s, 3 H, OCH₃), 5.44 (s, 1 H, C<u>H</u>NH₂), 6.88 (d, ${}^{3}J$ = 8.2 Hz, 2 H, 3'-H), 7.15-7.23 (m, 2 H, 6-H, 8-H), 7.40-7.46 (m, 3 H, 7-H, 2'-H), 7.50 (d, ${}^{3}J$ = 7.8 Hz, 1 H, 5-H), 7.74 (s, 1 H, 4-H), 11.81 (bs, 1 H, NH).

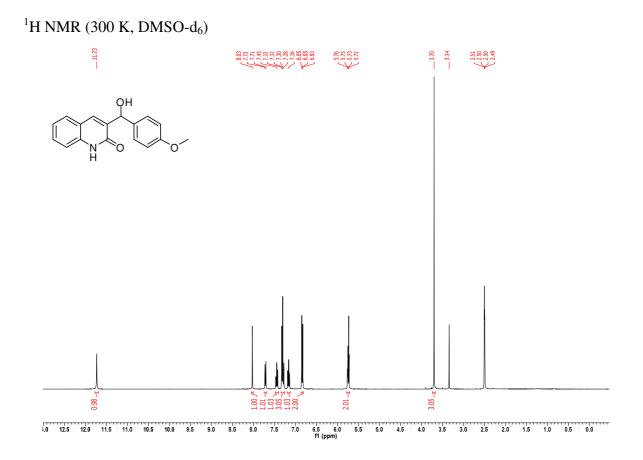

¹³**C-NMR** (125.8 MHz, CDCl₃): δ [ppm] = 54.3 (d, C<u>H</u>NH₂), 55.4 (q, OCH₃), 114.0 (d, C-3'), 115.4 (d, C-8), 120.1 (s, C-4a), 122.7 (d, C-6), 128.1 (d, C-5), 128.6 (d, C-2'), 130.1 (d, C-7), 134.9 (s, C-1'), 136.3 (d, C-4), 137.4 (s, C-8a), 158.9 (s, C-4'), 163.0 (s, C-2).

Due to signal overlap and broadening C-3 cannot be assigned.

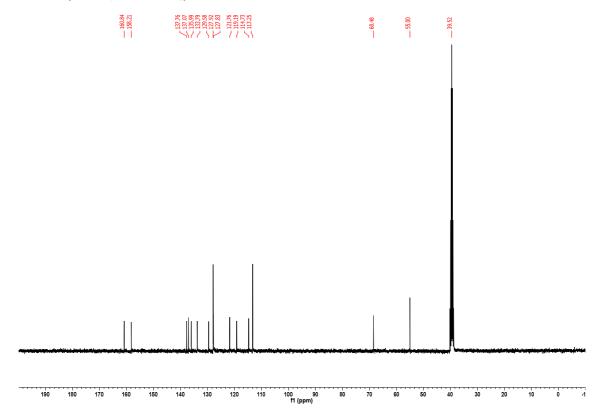
HRMS (ESI):	$C_{17}H_{14}NO_2 [(M-NH_2)^+]:$	calcd.: 264.1019; found: 264.1022
	$C_{17}H_{17}N_2O_2 [(M+H)^+]:$	calcd.: 281.1285; found: 281.1287.

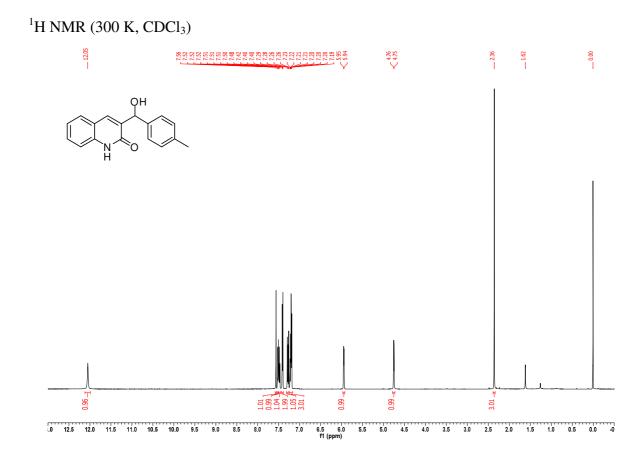

2. NMR spectra of new compounds


¹H NMR (300 K, CDCl₃)

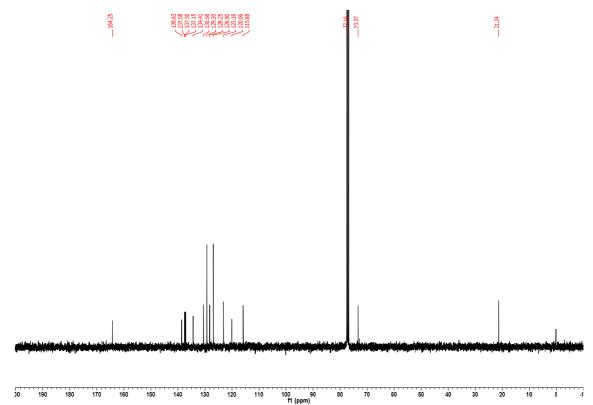

_COOH -СООН 562 682 682 682 28525 Н н 6 8 11 10 f1 (ppm) 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 ft (ppm) 12 2.00 <u>-</u> 0.99 _ 68618 1.95 0.98 2.02 2.10 8.8 3.0 1.0 .0 11.5 10.0 8.5 8.0 7.5 7.0 3.5 2.5 1.5 0.0 -0 11.0 10.5 9.5 9.0 6.5 6.0 5.5 f1 (ppm) 5.0 4.5 4.0 2.0 0.5

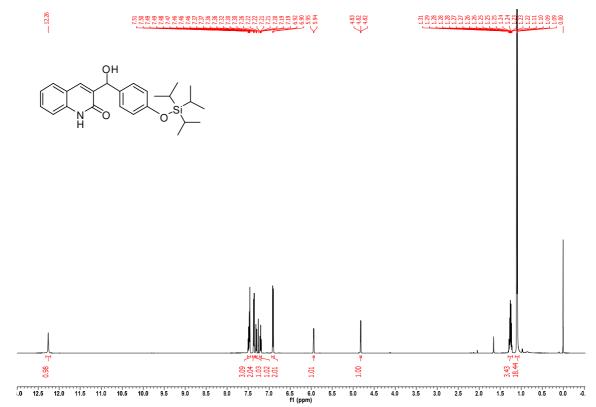
¹³C NMR (300 K, CDCl₃)

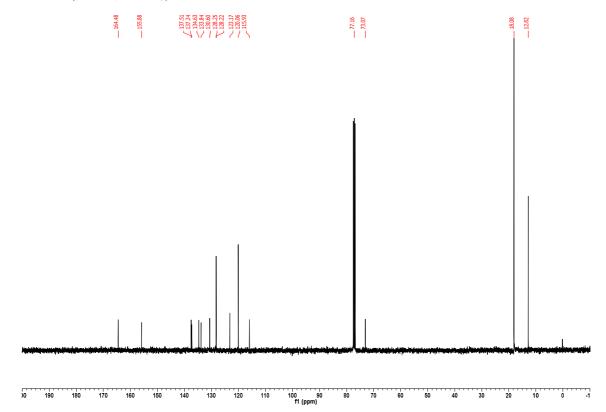


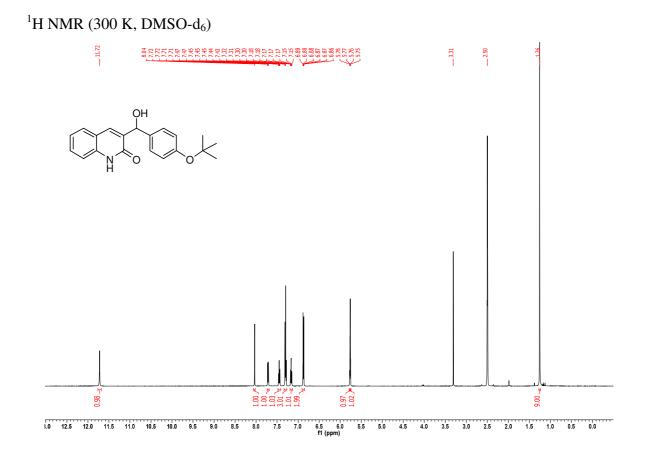


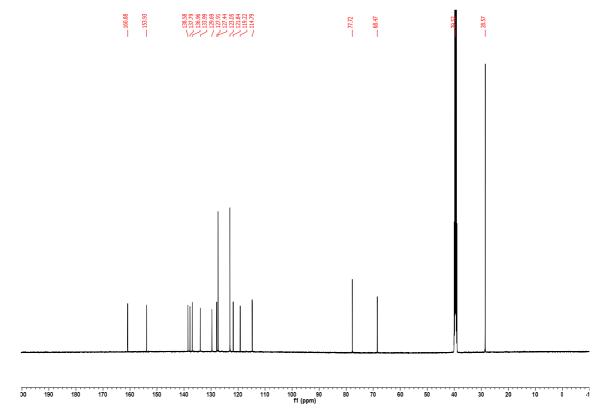
-10 f1 (ppm) Ó

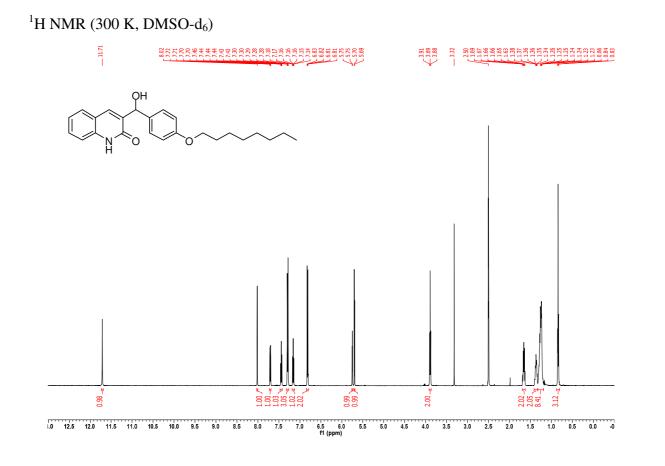


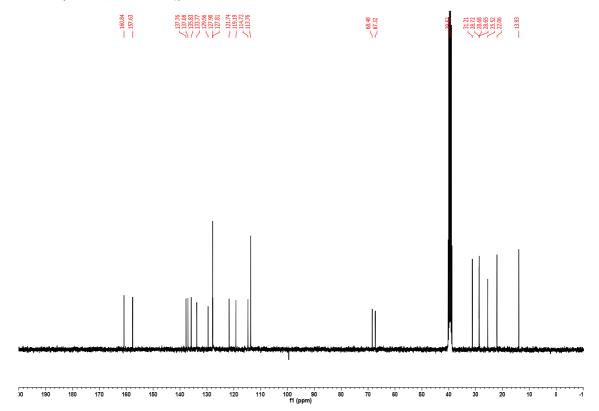

¹³C NMR (300 K, DMSO-d₆)

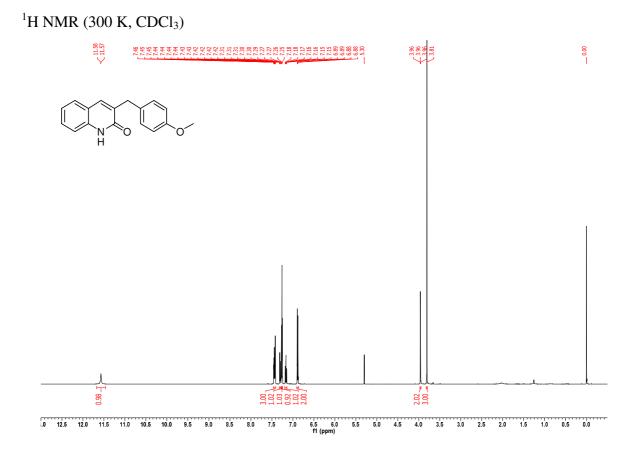


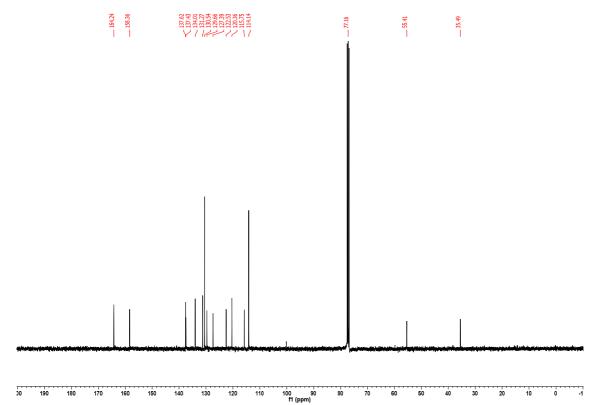

¹³C NMR (300 K, CDCl₃)

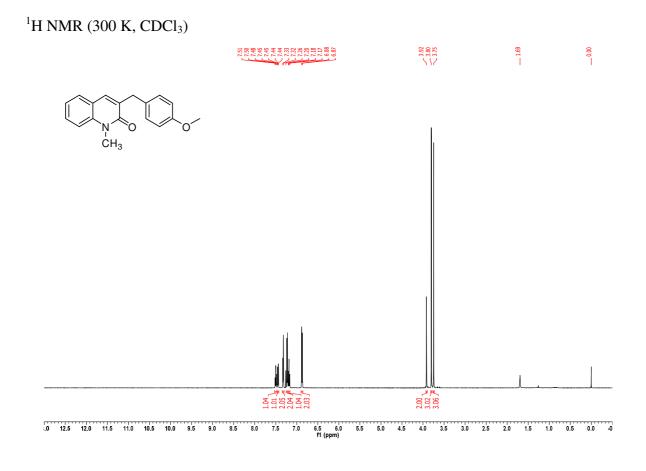


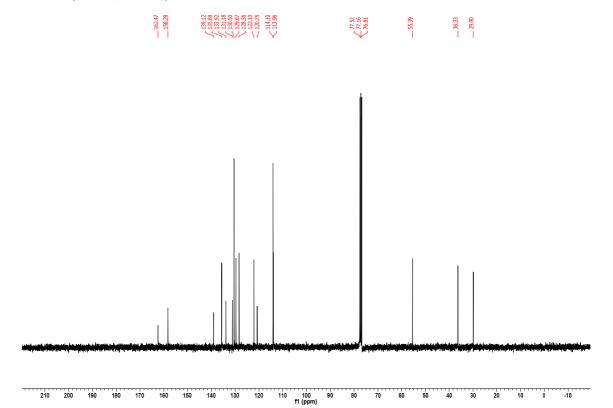

¹³C NMR (300 K, CDCl₃)

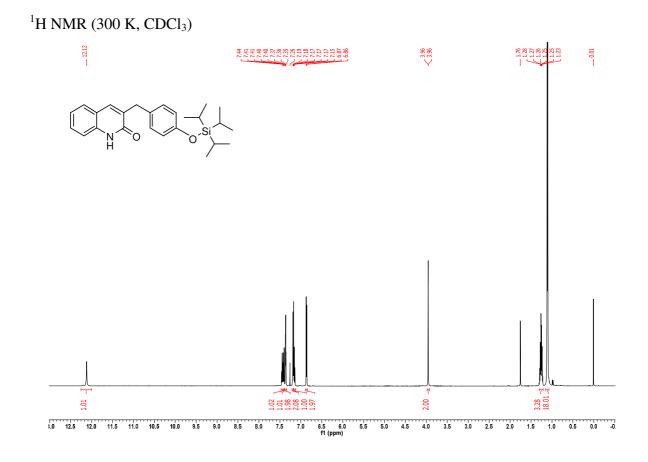


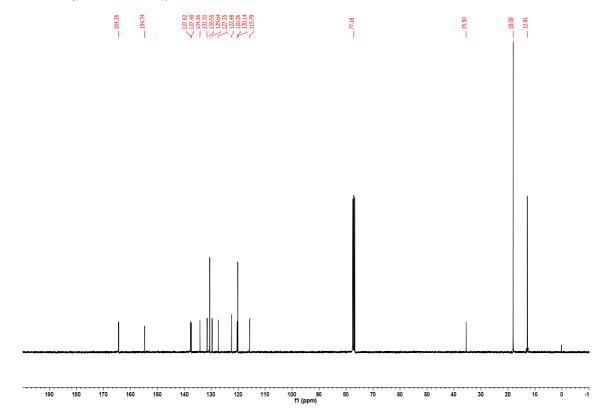

¹³C NMR (300 K, DMSO-d₆)

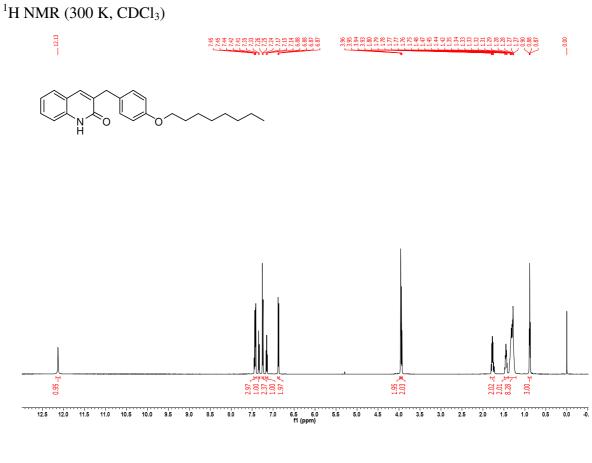


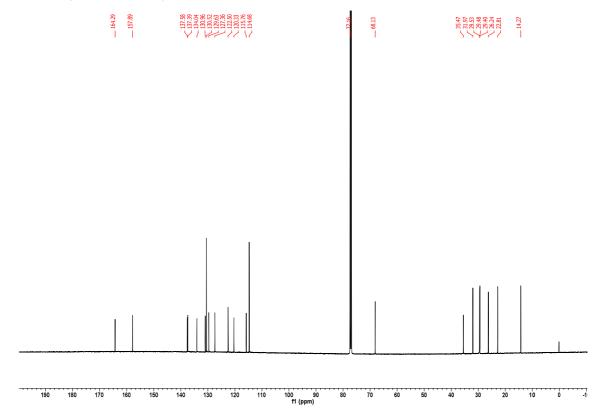

¹H NMR (300 K, DMSO-d₆)

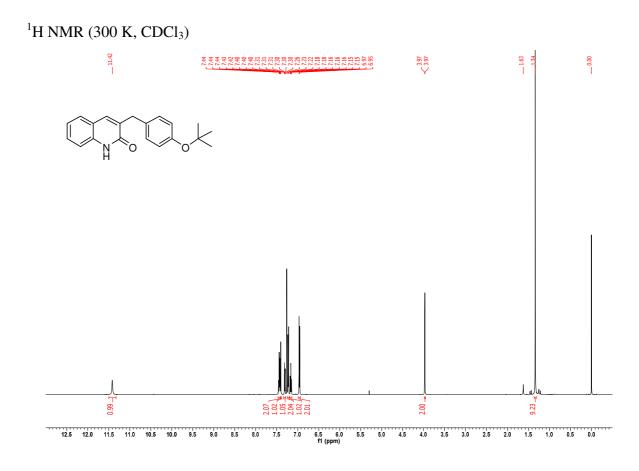


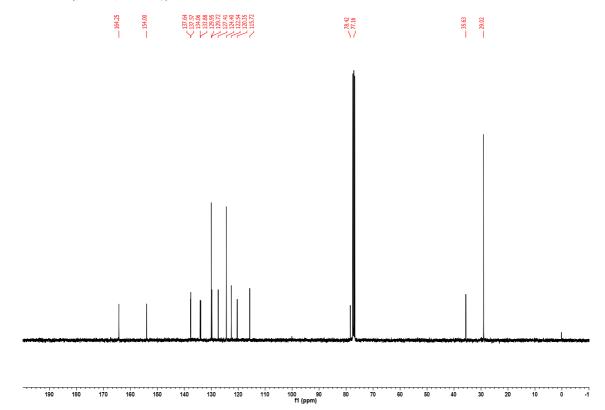

¹³C NMR (300 K, CDCl₃)

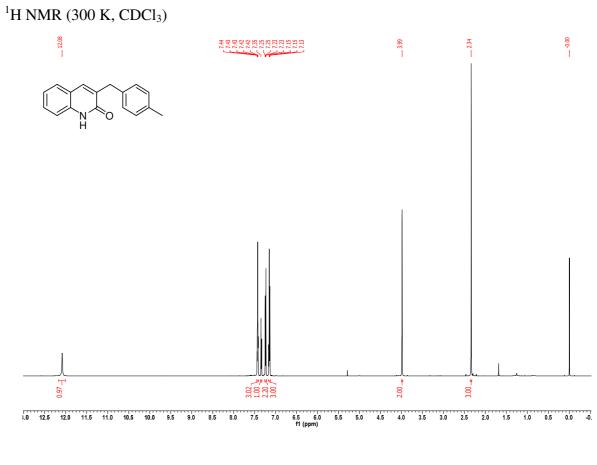


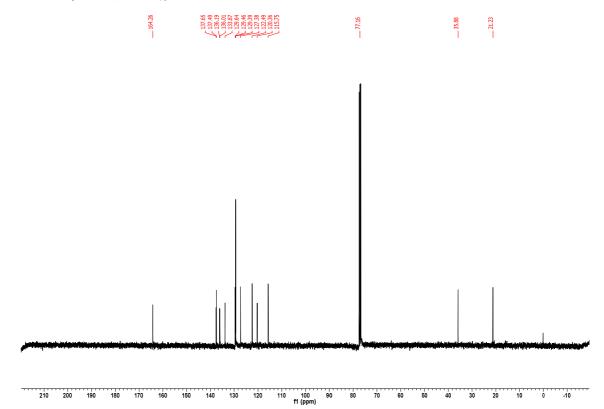

¹³C NMR (300 K, CDCl₃)

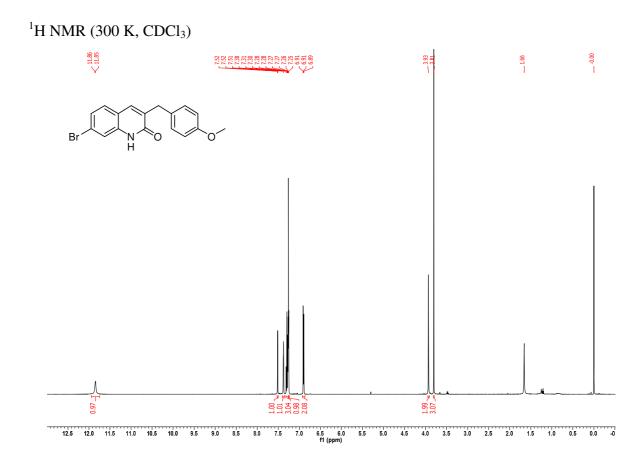


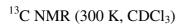

¹³C NMR (300 K, CDCl₃)

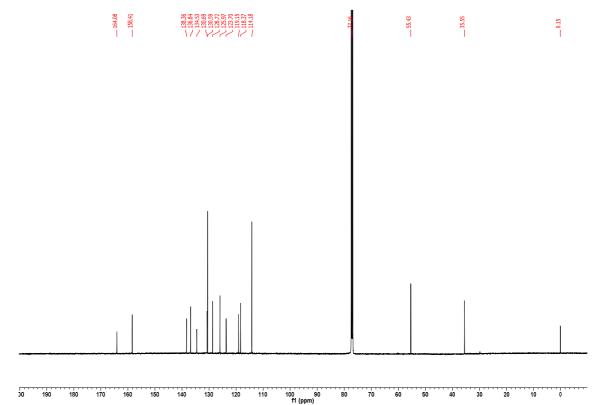


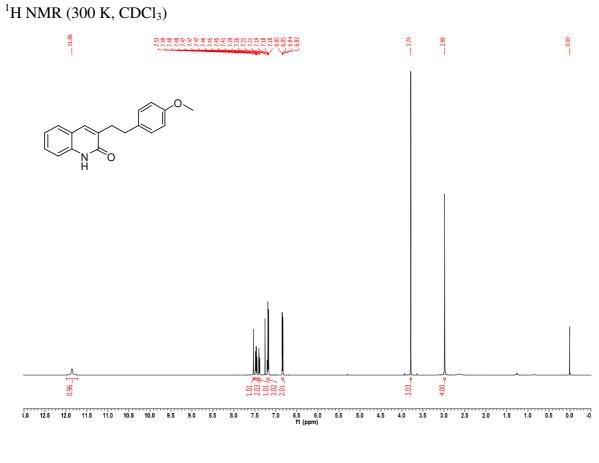

¹³C NMR (300 K, CDCl₃)

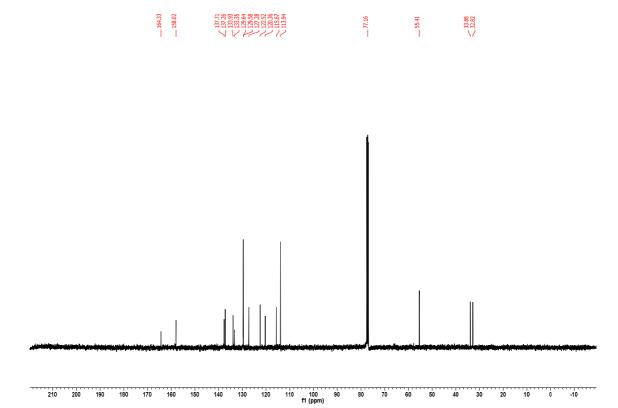


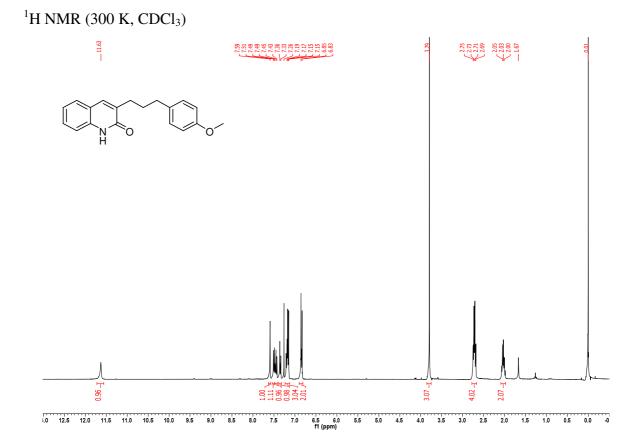

¹³C NMR (300 K, CDCl₃)

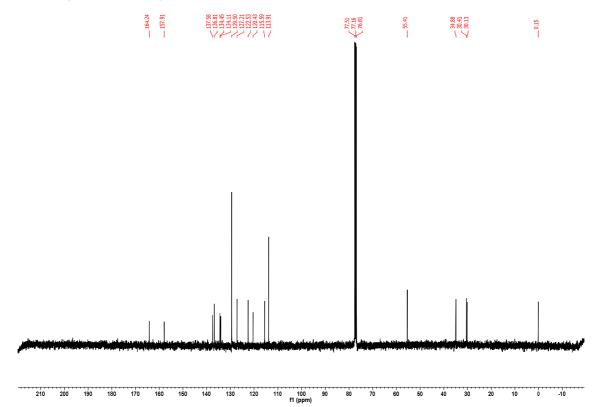


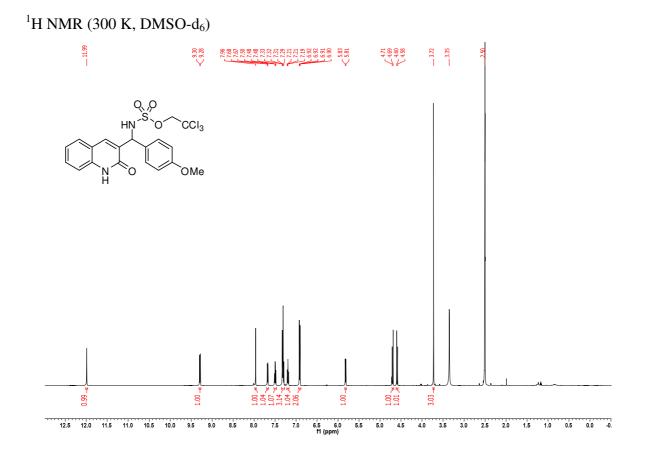


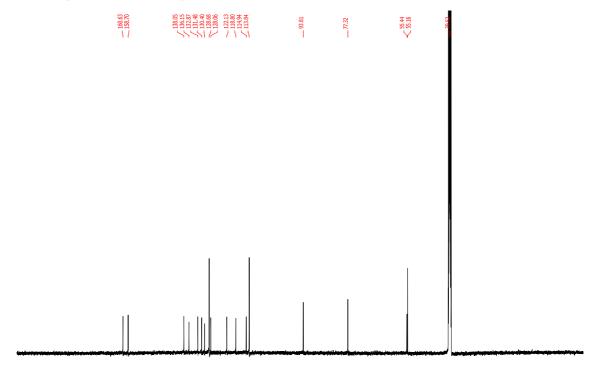

¹³C NMR (300 K, CDCl₃)



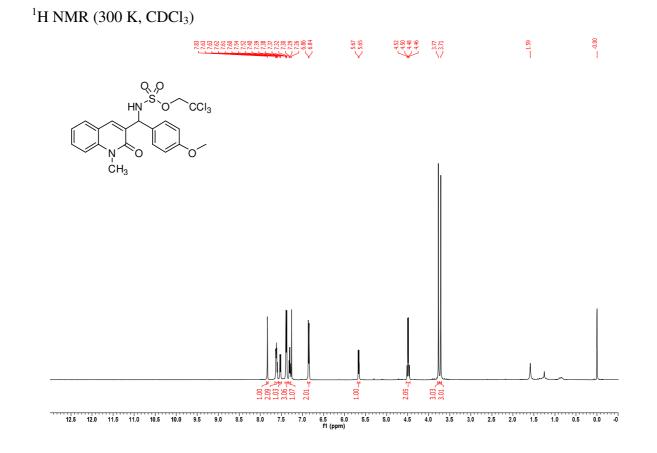


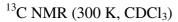


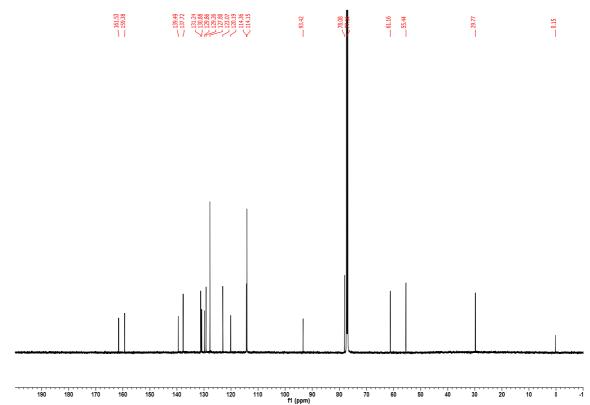


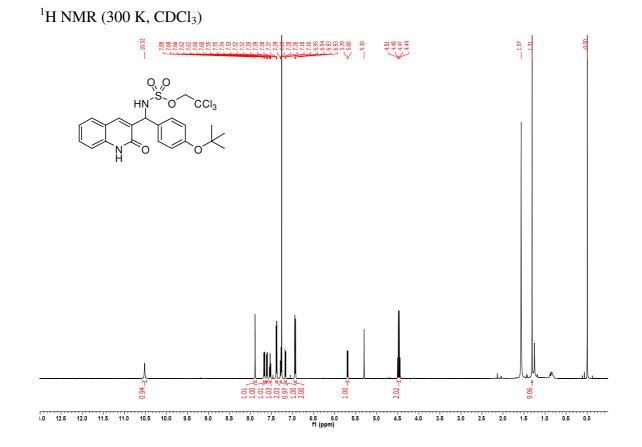


¹³C NMR (300 K, CDCl₃)

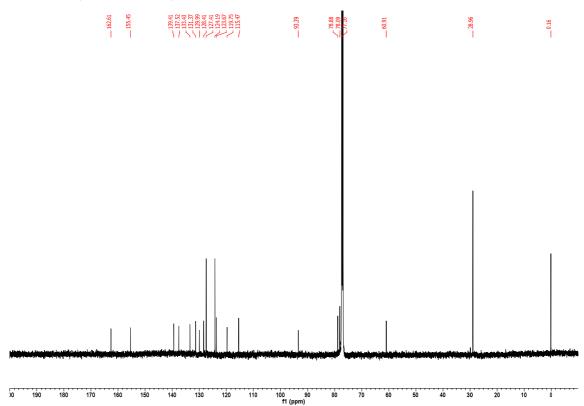


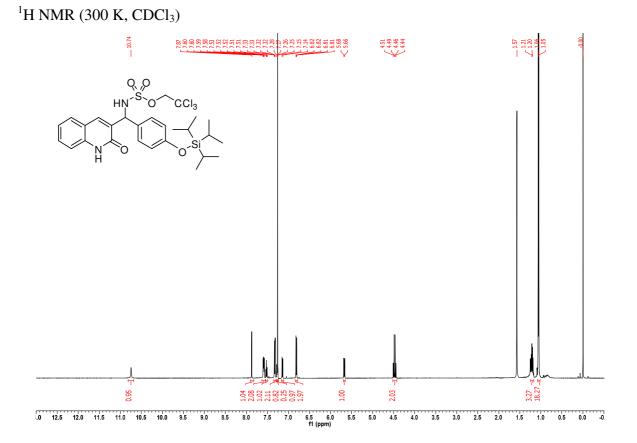


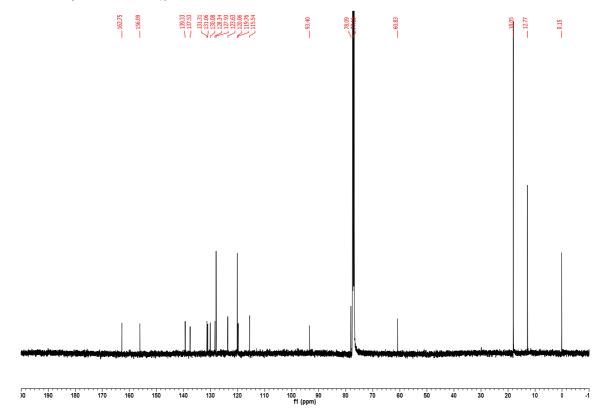

¹³C NMR (300 K, DMSO-d₆)

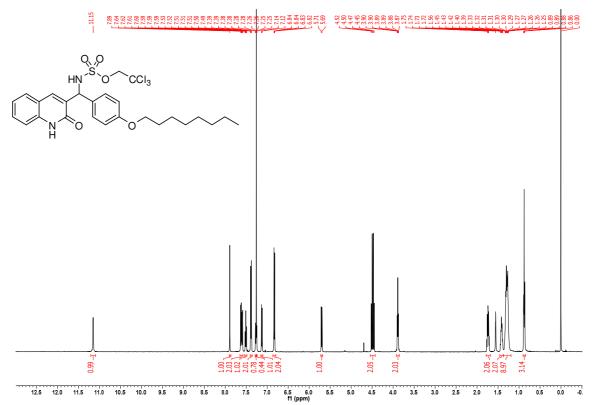


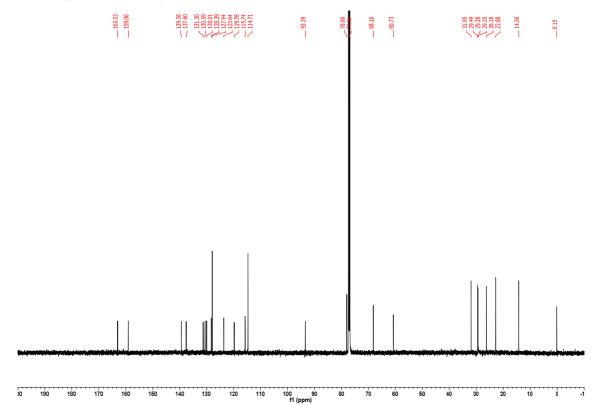
-1 100 90 f1 (ppm) ò

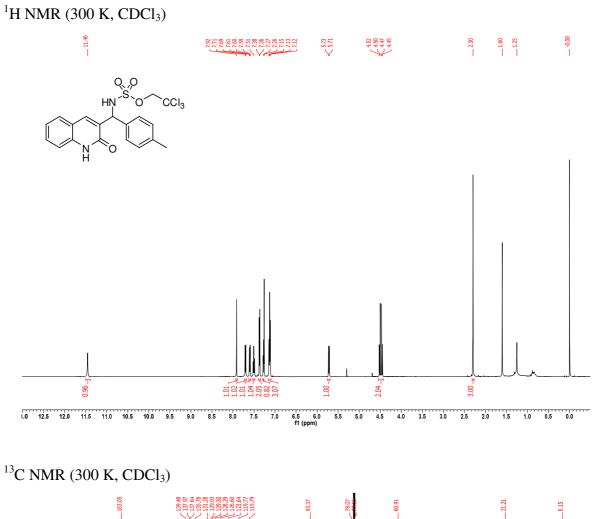


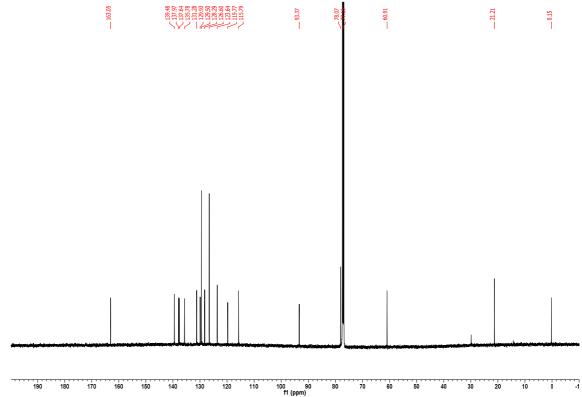


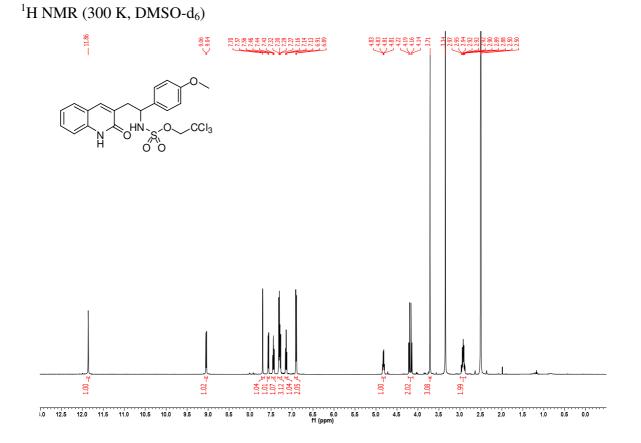


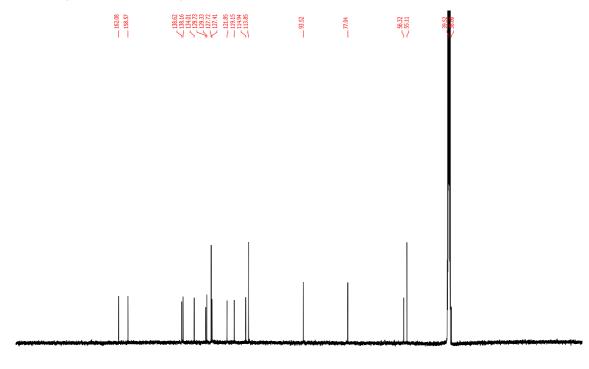

¹³C NMR (300 K, CDCl₃)

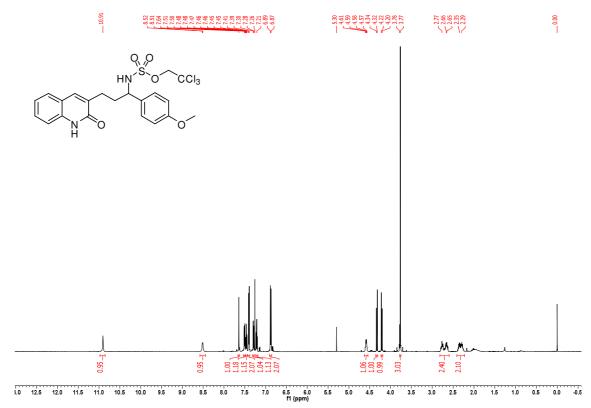


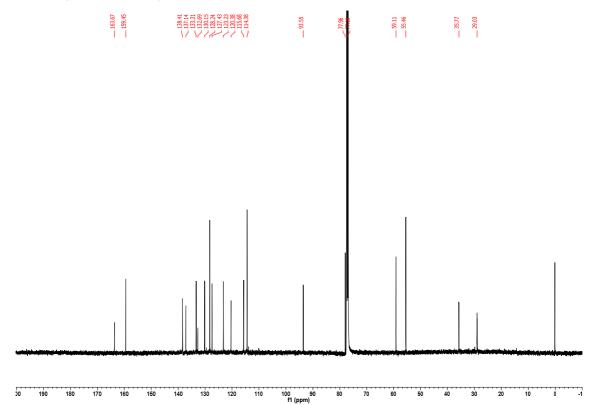

¹³C NMR (300 K, CDCl₃)

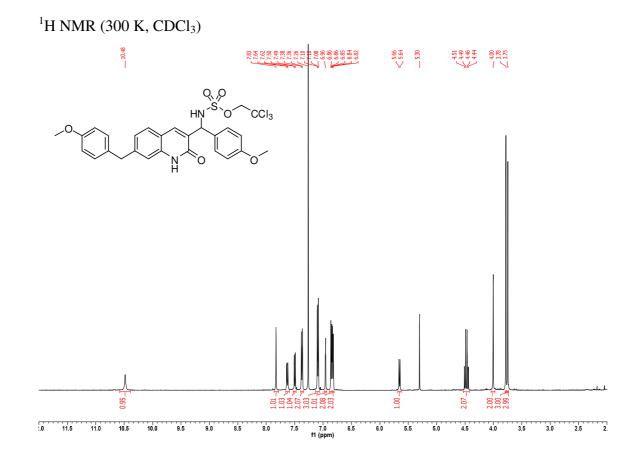


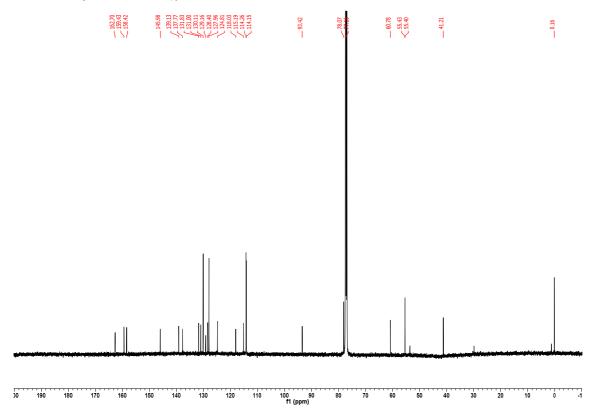


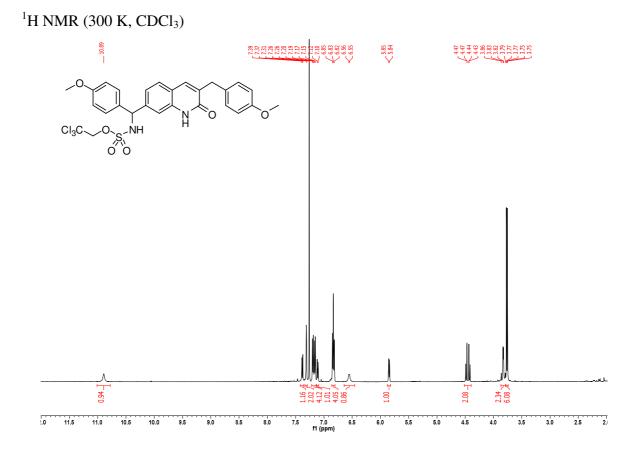




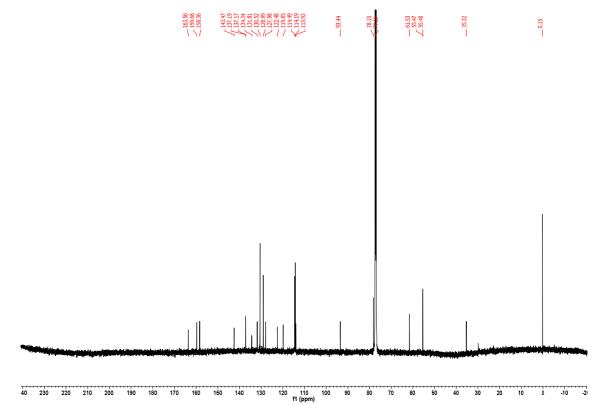

¹³C NMR (300 K, DMSO-d₆)


-1 100 90 f1 (ppm) ò

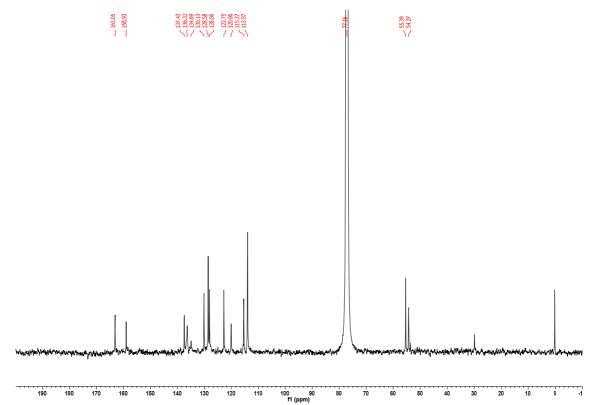

¹³C NMR (300 K, CDCl₃)

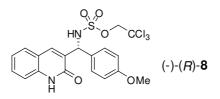


 ò

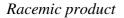


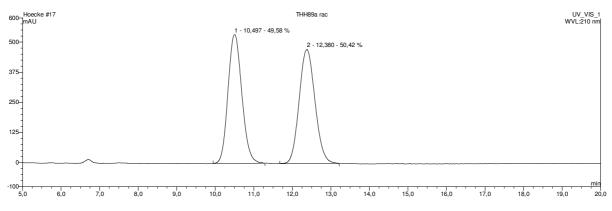
¹³C NMR (300 K, CDCl₃)



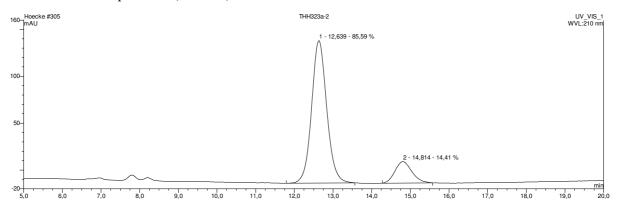


11.81 - 1.26 - 0.00 NH_2 ò OMe N 0.92 _ 2.05 8 4 8.04 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 5.5 5.0 4.0 3.5 3.0 2.0 6.5 6.0 f1 (ppm) 4.5 2.5 1.5 1.0 0.5 0.0

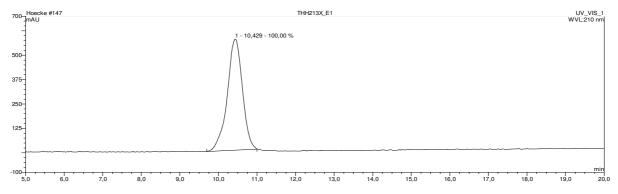

¹³C NMR (300 K, CDCl₃)

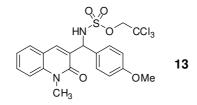


3. HPLC traces of chiral products



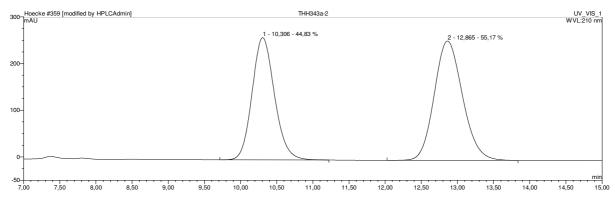
AD-H, 250×4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 210 nm

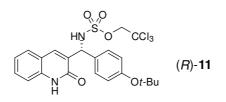




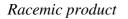
Enantioenriched product (71% ee)

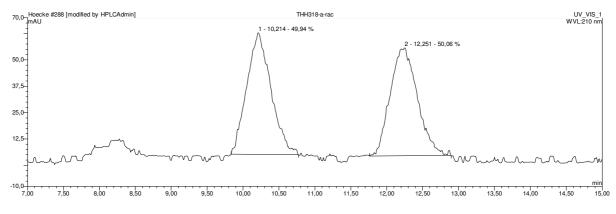
Enantiomerically pure (-)-(R)-8 (>99% *ee*; after separation of the enantiomers by semipreparative HPLC on a chiral stationary phase; see procedure)

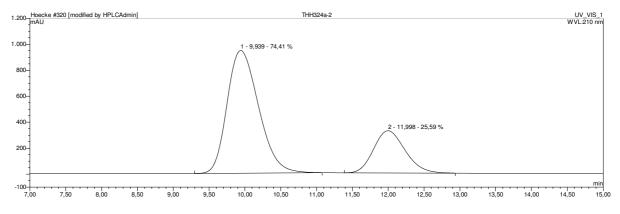


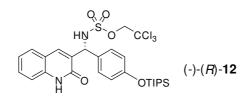

AD-H, 250×4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 210 nm

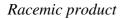
UV_VIS_1 WVL:210 nm #95 [modified by HPLCAdmin] THH164a 700-10,255 - 49,26 % 2 - 12,764 - 50,74 % 500 375 250 125 -100 min 7,50 8,00 8,50 9,00 9,50 10,00 10,50 11,00 11,50 12,00 12,50 13,00 13,50 14,00 14,50 15,00

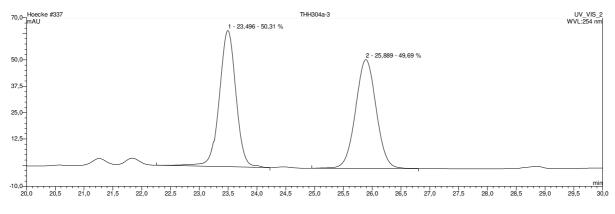

Racemic product

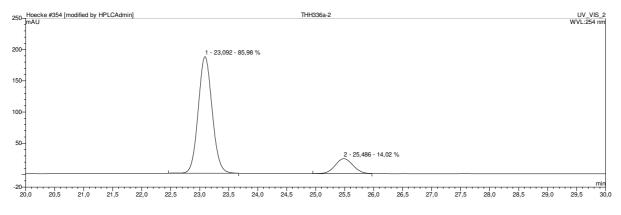

Enantioenriched product (10% ee)

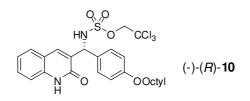


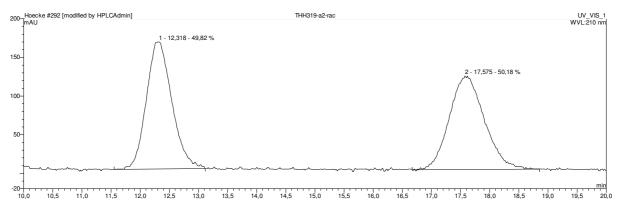

AD-H, 250×4.6 mm, *n*-hexane/*i*-PrOH = 70/30, 1 mL/min, λ = 210 nm

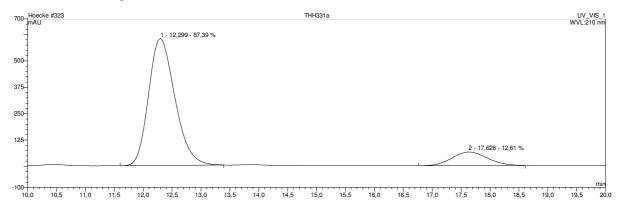


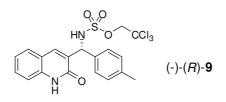

Enantioenriched product (49% ee)



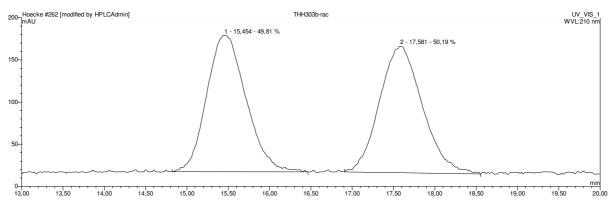

AS-RH, 150×4.6 mm, CH₃CN/H₂O = 20/80 \rightarrow 100/0, 1 mL/min, λ = 254 nm

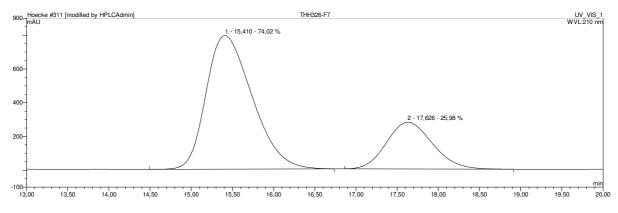

Enantioenriched product (72% ee)

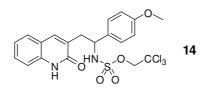



AD-H, 250×4.6 mm, *n*-hexane/*i*-PrOH = 70/30, 1 mL/min, λ = 210 nm

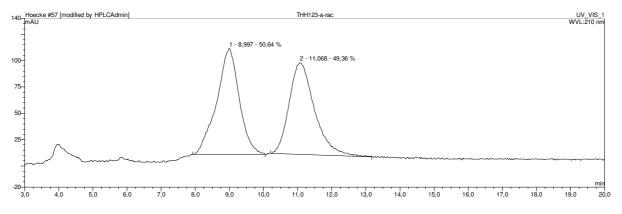
Racemic product

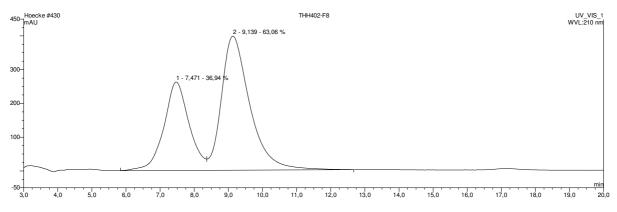

Enantioenriched product (75% ee)



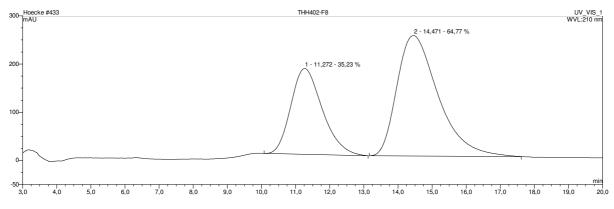

AD-H, 250×4.6 mm, *n*-hexane/*i*-PrOH = 70/30, 1 mL/min, λ = 210 nm

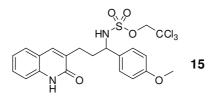
Racemic product


Enantioenriched product (48% ee)

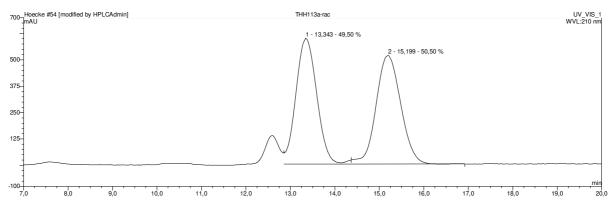

Racemic product

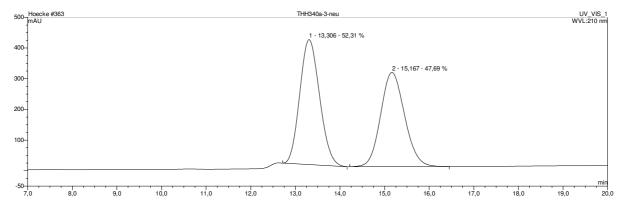
OD, 250×4.6 mm, hexane/*i*-PrOH = 70/30, 1 mL/min, $\lambda = 210$ nm

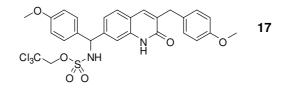



Enantioenriched product (30% ee, second figure)

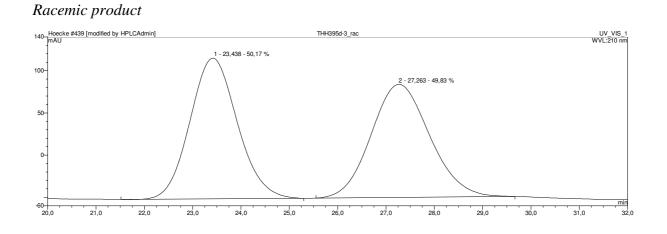
OD, 250×4.6 mm, hexane/*i*-PrOH = 70/30, 1 mL/min, $\lambda = 210$ nm


Due to changes in the separation performance of the column the conditions were slightly modified: OD, 250×4.6 mm, hexane/*i*-PrOH = 80/20, 1 mL/min, $\lambda = 210$ nm

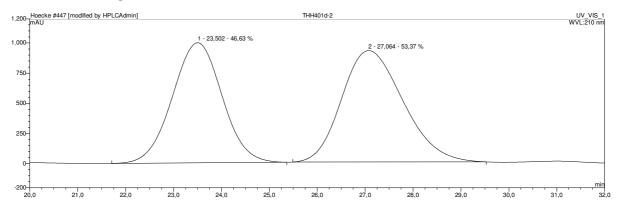



AD-H, 250×4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 210 nm

Racemic product

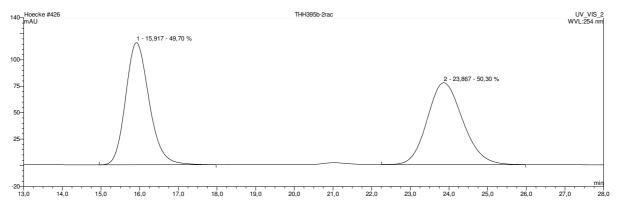


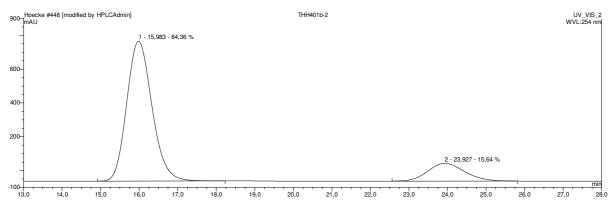
Enantioenriched product (5% ee)





AD-H, 250×4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, λ = 210 nm


Enantioenriched product (6.7% ee)



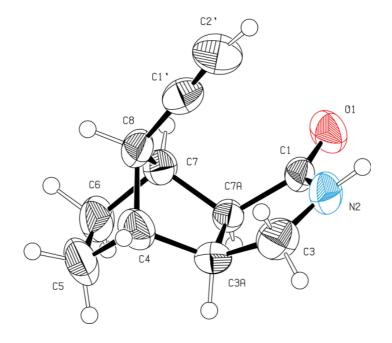
AD-H, 250×4.6 mm, *n*-hexane/*i*-PrOH = 50/50, 1 mL/min, $\lambda = 254$ nm

Racemic product

Enantioenriched product (69% ee)

4. Crystallographic data (Compound 4, Compound 6·2(DMSO)·(C₆H₁₄), Compound 8)

General information


Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (Bruker APEX II, κ -CCD), a rotating anode (Bruker AXS, FR591) with MoK_{α} radiation (λ = 0.71073 Å), and a graphite monochromator by using the SMART software package.^[12] The measurements were performed on a single crystal coated with perfluorinated ether. The crystal was fixed on the top of a glass fiber and transferred to the diffractometer. The crystal was frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT.^[13] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.^[13] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using WinGX^[14] 7 based on SIR-92.^[15] 3 If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Methyl hydrogen atoms were refined as part of rigid rotating groups, with C-H = 0.98 Å and $U_{iso(H)} = 1.5U_{eq(C)}$. Other H atoms were placed in calculated positions and refined using a riding model, with methyne, methylene and aromatic C-H distances of 1.00, 0.99 and 0.95 Å, respectively, and $U_{iso(H)} = 1.2 \cdot U_{eq(C)}$. N–H distances were fixed at 0.88 Å with $U_{iso(H)} =$ 1.2·U_{eq(N)}. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w (F_o^2 - F_c^2)^2$ with SHELXL-97^[16] 5 weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.^[17] Images of the crystal structures were generated by PLATON.^[18] CCDC 932341 (4), CCDC 932342 (6·2(DMSO) (C₆H₁₄)), and CCDC 932343 (8) contain the supplementary crystallographic data for this compound. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif or via https://www.ccdc.cam.ac.uk/services/structure deposit/

Special:

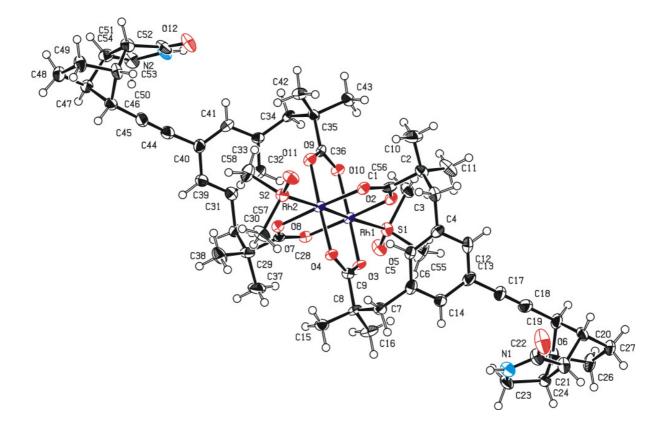
4:

The correct enantiomer is proved by analyses of Bijvoet-Pair Differences Parameter. Hydrogen atoms are refined freely. 6·2 DMSO·(C₆H₁₄): Unresolvable solvent molecules (104 electrons; a mixture of pentane/hexane) had to be removed with the SQUEEZE procedure.^[18] The correct enantiomer is proved by Flack's Parameter. Therefore, the possible centrosymmetric space group P2₁/c can be excluded.
8 The correct enantiomer is proved by Flack's Parameter.

Compound 4

Figure F2: Ortep drawing of compound 4 with 50% ellipsoids.^[18]

Operator:	*** Herdtweck ***		
Molecular Formula:	C ₁₁ H ₁₃ N O		
Crystal Color / Shape	Colorless fragment		
Crystal Size	Approximate size of crystal fragment used for data collection:		
	$0.30 \times 0.38 \times 0.64 \text{ mm}$		
Molecular Weight:	175.22 a.m.u.		
F ₀₀₀ :	752		
Systematic Absences:	001: l≠4n; h00: h≠2n		
Space Group:	Tetragonal $P 4_3 2_1 2$ (I.TNo.: 96)		
Cell Constants:	Least-squares refinement of 9918 reflections with the programs		
	"APEX suite" and "SAINT" ^[12,13] ; theta range $1.76^{\circ} < \theta < 25.38^{\circ}$;		


	$Mo(K\alpha); \lambda = 0.71073 \text{ Å}$		
	<i>a</i> =	6.4211(1) Å	
	<i>b</i> =	a	
	<i>c</i> =	46.2039(9) Å	
	V = 1905.01	(6) Å ³ ; $Z = 8$; $D_{\text{calc}} = 1.222 \text{ g cm}^{-3}$; Mos. = 0.53	
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); rotating		
	anode; graphite monochromator; 50 kV; 40 mA; $\lambda = 0.71073$ Å;		
	$Mo(K\alpha)$		
Temperature:	(20±1) °C;	(293±1) K	
Measurement Range:	1.76° < θ < 25.38°; h: -7/7, k: -7/7, l: -55/55		
Measurement Time:	2×10 s per film		
Measurement Mode:	measured: 12 runs; 6627 films / scaled: 12 runs; 6627 films		
	φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 100.0 mm		
LP - Correction:	Yes ^[13]		
Intensity Correction:	No/Yes; during scaling ^[13]		
Absorption Correction:	Multi-scan; during scaling; $\mu = 0.078 \text{ mm}^{-1}$ [13]		
	Correction Factors: $T_{min} = 0.6860$ $T_{max} = 0.7452$		
Reflection Data:	29023	reflections were integrated and scaled	
	111	reflections systematic absent and rejected	
	28912	reflections to be merged	
	1748	independent reflections	
	0.033	R_{int} : (basis F_o^2)	
	1748	independent reflections (all) were used in	
		refinements	
	1718	independent reflections with $I_o > 2\sigma(I_o)$	
	99.8%	completeness of the data set	
	170	parameter full-matrix refinement	
	10.3	reflections per parameter	
Solution:	Direct Methods ^[15] ; Difference Fourier syntheses		
Refinement Parameters:	: In the asymmetric unit:		
	13	Non-hydrogen atoms with anisotropic displacement	
	10	parameters	
	13	Hydrogen atoms with isotropic displacement	

parameters

	parameters			
Hydrogen Atoms:	All hydrogen atom positions were found in the difference map			
	calculated from the model containing all non-hydrogen atoms. The			
	hydrogen positions were refined with individ	ual isotropic		
	displacement parameters.			
Atomic Form Factors:	For neutral atoms and anomalous dispersion ^[17]			
Extinction Correction:	no			
Weighting Scheme:	$w^{-1} = \sigma^2 (F_o^2) + (a*P)^2 + b*P$			
	with a: 0.0423; b: 0.5042; P: [Maximum(0 or F_0^2)+2*	$F_{\rm c}^{2}]/3$		
Shift/Err:	Less than 0.001 in the last cycle of refinement:			
Resid. Electron Density:	+0.12 $e_0^-/Å^3$; -0.12 $e_0^-/Å^3$			
R1:	$\Sigma(F_{o} - F_{c})/\Sigma F_{o} $			
$[F_{o} > 4\sigma(F_{o}); N=1718]:$		= 0.0363		
[all reflctns; N=1748]:		= 0.0369		
wR2:	$[\Sigma w (F_{\rm o}^2 - F_{\rm c}^2)^2 / \Sigma w (F_{\rm o}^2)^2]^{1/2}$			
$[F_{o} > 4\sigma(F_{o}); N=1718]:$		= 0.1050		
[all reflctns; N=1748]:		= 0.1055		
Goodness of fit:	$[\Sigma w (F_o^2 - F_c^2)^2 / (\text{NO-NV})]^{1/2}$	= 1.155		
Flack's Parameter :	x = -1(2)			
Remarks:	Refinement expression $\sum (F_o^2 - F_c^2)^2$			
	The correct enantiomer is proved Analyses o	f Bijvoet-Pair		
	Differences:			
	Bayesian Statistics			
	Type Gaussian			
	Select Pairs 550			
	P2(true) 0.999			
	P3(true) 0.910 P3(rac-twin) 0.089			
	P3(false) 0.001			
	G 1.6685			
	G (su) 0.7081			
	Hooft y0.3			
	Hooft (su) . 0.4			

The correct enantiomer could **not** be proved by Flack's Parameter.

Compound 6·2(DMSO)·(C₆H₁₄)

Figure F3: Ortep drawing drawing of compound $6 \cdot 2(DMSO) \cdot (C_6H_{14})$ with 50% ellipsoids.^[18]

Operator:	*** Herdtweck ***			
Molecular Formula:	$C_{64} H_{88} N_2 O_{12} Rh_2 S_2$			
Crystal Color / Shape	Red plate			
Crystal Size	Approximate size of crystal fragment used for data collection:			
	$0.08 \times 0.20 \times 0.51 \text{ mm}$			
Molecular Weight:	1347.27 a.m.u.			
F ₀₀₀ :	1408			
Systematic Absences:	0k0: k≠2n			
Space Group:	Monoclinic $P 2_1$ (I.TNo.: 4)			
Cell Constants:	Least-squares refinement of 9864 reflections with the programs			
	"APEX suite" and "SAINT" ^[12,13] ; theta range $0.74^{\circ} < \theta < 25.43^{\circ}$;			
	$Mo(K\overline{\alpha}); \lambda = 0.71073 \text{ Å}$			
	a = 9.8534(2) Å			
	$b = 11.5276(3) \text{ Å} \qquad \beta = 98.7291(9)^{\circ}$			

	<i>c</i> = 2	7.9228(7) Å	
	$V = 3134.90(13)$ • Å ³ ; $Z = 2$; $D_{calc} = 1.427$ g cm ⁻³ ; Mos. = 0.61		
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); rotating		
	anode; graphite monochromator; 50 kV; 40 mA; $\lambda = 0.71073$ Å;		
	$Mo(K\overline{\alpha})$		
Temperature:	(-150±1) °C;	(123±1) K	
Measurement Range:	$0.74^{\circ} < \theta < 25.43^{\circ}$; h: -11/11, k: -13/13, l: -33/33		
Measurement Time:	2×5 s per film	n	
Measurement Mode:	measured: 14	runs; 5576 films / scaled: 14 runs; 5576 films	
	φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 55.0 mm		
LP - Correction:	Yes ^[13]		
Intensity Correction	No/Yes; durir	ng scaling ^[13]	
Absorption Correction:	Multi-scan; during scaling; $\mu = 0.700 \text{ mm}^{-1}$ ^[13]		
	Correction Factors: $T_{min} = 0.6785$ $T_{max} = 0.7452$		
Reflection Data:	83180	reflections were integrated and scaled	
	75	reflections systematic absent and rejected	
	83105	reflections to be merged	
	11542	independent reflections	
	0.025	R_{int} : (basis F_o^2)	
	11542	independent reflections (all) were used in	
		refinements	
	11246	independent reflections with $I_o > 2\sigma(I_o)$	
	99.6%	completeness of the data set	
	697	parameter full-matrix refinement	
	16.6	reflections per parameter	
Solution:	Direct Methods ^[15] ; Difference Fourier syntheses		
Refinement Parameters:	In the asymmetry	etric unit:	
	76	Non-hydrogen atoms with anisotropic displacement	
	I	parameters	
Hydrogen Atoms:	In the difference map(s) calculated from the model containing all		
	non-hydrogen	atoms, not all of the hydrogen positions could be	
	determined from the highest peaks. For this reason, the hydrogen		
	atoms were placed in calculated positions ($d_{C-H} = 0.95, 0.98, 0.99$		

	o 0	
	1.00 Å; $d_{N-H} = 0.88$ Å). Isotropic displacement p	parameters were
	calculated from the parent carbon atom ($U_{\rm H} = 1.2/1$	$1.5 U_{\rm C}; U_{\rm H} = 1.2$
	U_{N}). The hydrogen atoms were included in the	structure factor
	calculations but not refined.	
Removing solvent molec	ules Unresolvable solvent molecules (1	04 electrons; a
	mixture of pentane/hexane) had to be removed with	the SQUEEZE
	procedure. ^[18]	
Atomic Form Factors:	For neutral atoms and anomalous dispersion ^[17]	
Extinction Correction:	no	
Weighting Scheme:	$w^{-1} = \sigma^2 (F_o^2) + (a*P)^2 + b*P$	
	with a: 0.0239; b: 1.2657; P: [Maximum(0 or F_0^2)+2	$2*F_{\rm c}^{2}]/3$
Shift/Err:	Less than 0.002 in the last cycle of refinement:	
Resid. Electron Density:	+0.39 $e_0^-/Å^3$; -0.32 $e_0^-/Å^3$	
R1:	$\Sigma(F_{o} - F_{c})/\Sigma F_{o} $	
$[F_{o} > 4\sigma(F_{o}); N=11246]$:	= 0.0186
[all reflctns; N=11542]	:	= 0.0192
wR2:	$[\Sigma w (F_{\rm o}^{2} - F_{\rm c}^{2})^{2} / \Sigma w (F_{\rm o}^{2})^{2}]^{1/2}$	
$[F_{o} > 4\sigma(F_{o}); N=11246]$:	= 0.0492
[all reflctns; N=11542]	:	= 0.0497
Goodness of fit:	$[\mathcal{L}w(F_{o}^{2}-F_{c}^{2})^{2}/(\text{NO-NV})]^{1/2}$	= 1.055
Flack's Parameter :	x = 0.04(2)	
Remarks:	Refinement expression $\Sigma w (F_o^2 - F_c^2)^2$	
	The correct enantiomer is proved by Flack's Param	neter. Therefore
	the possible centrosymmetric space group $P2_1/c$ can	be excluded.

Compound 8

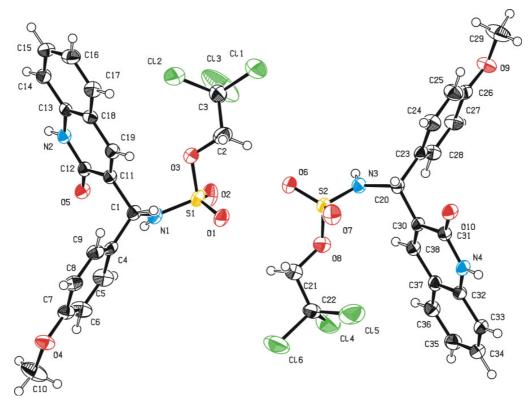


Figure F4: Ortep drawing drawing of compound 8 with 50% ellipsoids.^[18]

Operator:	*** Herdtw	ack ***			
•		*** Herdtweck ***			
Molecular Formula:	$C_{19} H_{17} Cl_3$	$C_{19} H_{17} Cl_3 N_2 O_5 S$			
Crystal Color / Shape	Colorless fragment				
Crystal Size	Approximat	Approximate size of crystal fragment used for data collection:			
	$0.20 \times 0.36 \times 0.46 \text{ mm}$				
Molecular Weight:	491.77 a.m.u.				
F ₀₀₀ :	504				
Systematic Absences:	none				
Space Group:	Triclinic	<i>P</i> 1	(I.TNo.: 1)		
Cell Constants:	Least-squares refinement of 9756 reflections with the programs				
	"APEX suite" and "SAINT" ^[12,13] ; theta range $1.50^{\circ} < \theta < 25.45^{\circ}$;				
	Mo($K\alpha$); $\lambda = 0.71073 \text{ Å}$				
	<i>a</i> =	6.4438(2) Å	α =	78.9069(15)°	
	<i>b</i> =	12.5194(4) Å	$\beta =$	86.3426(14)°	
	<i>c</i> =	13.8216(5) Å	$\gamma =$	75.5645(13)°	

Diffractometer:	$V = 1059.50(6) \cdot \text{\AA}^3$; $Z = 2$; $D_{\text{calc}} = 1.541 \text{ g cm}^{-3}$; Mos. = 0.74 Kappa APEX II (Area Diffraction System; BRUKER AXS); rotating anode; graphite monochromator; 50 kV; 40 mA; $\lambda = 0.71073 \text{\AA}$;			
	$Mo(K\alpha^{-})$			
Temperature:	(-100±1) °C;	(173±1) K		
Measurement Range:	$1.50^\circ < \theta < 25^\circ$	$1.50^{\circ} < \theta < 25.45^{\circ}$; h: -7/7, k: -15/15, l: -16/16		
Measurement Time:	2×7.50 s per film			
Measurement Mode:	measured: 8 r	uns; 4270 films / scaled: 8 runs; 4270 films		
	φ - and ω -mo	evenent; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 45.0 mm		
LP - Correction:	Yes ^[13]			
Intensity Correction	No/Yes; durir	ng scaling ^[13]		
Absorption Correction:	Multi-scan; du	uring scaling; $\mu = 0.566 \text{ mm}^{-1}$ [13]		
	Correction Fa	ctors: $T_{min} = 0.6772$ $T_{max} = 0.7452$		
Reflection Data:	29669	reflections were integrated and scaled		
	29669	reflections to be merged		
	7744	independent reflections		
	0.029	\mathbf{R}_{int} : (basis F_o^2)		
	7744	independent reflections (all) were used in		
		refinements		
	7683	independent reflections with $I_o > 2\sigma(I_o)$		
	98.5%	completeness of the data set		
	543	parameter full-matrix refinement		
	14.3	reflections per parameter		
Solution:	Direct Methods ^[15] ; Difference Fourier syntheses			
Refinement Parameters:	In the asymmetric unit:			
	60 I	Non-hydrogen atoms with anisotropic displacement		
	1	parameters		
Hydrogen Atoms:	In the difference map(s) calculated from the model containing all			
	non-hydrogen atoms, not all of the hydrogen positions could be determined from the highest peaks. For this reason, the hydrogen atoms were placed in calculated positions ($d_{C-H} = 0.95, 0.98, 0.99$,			
	1.00 Å, $d_{N-H} = 0.88$ Å). Isotropic displacement parameters were			
	calculated from the parent carbon atom ($U_H = 1.2/1.5 U_C$, $U_H = 1.2$			

	$U_{\rm N}$). The hydrogen atoms were included in the	structure factor	
	calculations but not refined.		
Atomic Form Factors:	For neutral atoms and anomalous dispersion ^[17]		
Extinction Correction:	no		
Weighting Scheme:	$w^{-1} = \sigma^2(F_o^2) + (a*P)^2 + b*P$		
	with a: 0.0680; b: 0.7404; P: [Maximum(0 or F_0^2)+2	$2*F_{\rm c}^{2}]/3$	
Shift/Err:	Less than 0.001 in the last cycle of refinement:		
Resid. Electron Density:	+0.84 $e_0^-/Å^3$; -0.73 $e_0^-/Å^3$		
R1:	$\Sigma(F_{o} - F_{c})/\Sigma F_{o} $		
$[F_{o} > 4\sigma(F_{o}); N=7683]:$		= 0.0418	
[all reflctns; N=7744]:		= 0.0420	
wR2:	$[\Sigma w (F_{\rm o}^{2} - F_{\rm c}^{2})^{2} / \Sigma w (F_{\rm o}^{2})^{2}]^{1/2}$		
$[F_{o} > 4\sigma(F_{o}); N=7683]:$		= 0.1121	
[all reflctns; N=7744]:		= 0.1124	
Goodness of fit:	$[\Sigma w(F_o^2 - F_c^2)^2 / (\text{NO-NV})]^{1/2}$	= 1.050	
Flack's Parameter :	x = 0.03(5)		
Remarks:	Refinement expression $\sum (F_o^2 - F_c^2)^2$		
	The correct enantiomer is proved by Flack's Parame	ter.	

5. References

- [1] a) C. G. Espino, K. W. Fiori, M. Kim, J. Du Bois, J. Am. Chem. Soc. 2004, 126, 15378-15379; b) K. W. Fiori, J. Du Bois, J. Am. Chem. Soc. 2007, 129, 562-568.
- [2] E. Díez-Barra, J. C. García-Martínez, S. Merino, R. del Rey, J. Rodríguez-López, P. Sánchez-Verdú, J. Tejeda, J. Org. Chem. 2001, 66, 5664-5670.
- [3] P. Fackler, C. Berthold, F. Voss, T. Bach, J. Am. Chem. Soc. 2010, 132, 15911-15913.
- [4] M. E. Hart, K. L. Suchland, M. Miyakawa, J. R. Bunzow, D. K. Grandy, T. S. Scanlan, *J. Med. Chem.* 2006, 49, 1101-1112.
- [5] a) O. A. El-Sayed, H. Y. Aboul-Enein, Arch. Pharm. Pharm. Med. Chem. 2001, 334, 117–120; b) I. Devi, B. Baruah, P. J. Bhuyan, Synlett 2006, 2593–2596; c) O. Meth-Cohn, B. Narine, B. Tarnowski, J. Chem. Soc., Perkin Trans. I 1981, 1520-1530.
- [6] K. K. Park, J. Y. Jung, *Heterocycles* **2005**, *65*, 2095-2105.

- [7] a) P. Shanmugan, *Monat. Chem.* 1976, 107, 259-269; b) For the preparation of the precursor 4-bromo-2-nitrobenzaldehyde see: J. H. Seo, G. D. Artman III, S. M. Weinreb, *J. Org. Chem.* 2006, 71, 8891-8900.
- [8] C. L. Diedrich, D. Haase, W. Saak, J. Christoffers, Eur. J. Org. Chem. 2008, 1811-1816.
- [9] F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, *Chem. Eur.* J. 2009, 15, 7192-7202.
- [10] D. Albrecht, F. Vogt, T. Bach, Chem. Eur. J. 2010, 16, 4284-4296.
- [11] K. W. Fiori, J. Du Bois, J. Am. Chem. Soc. 2007, 129, 562-568.
- [12] APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA, 2008.
- [13] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [14] L. J. Farrugia, "WinGX (Version 1.70.01 January 2005) ", J. Appl. Cryst. 1999, 32, 837-838.
- [15] A. Altomare, G.Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli "SIR92", J. Appl. Cryst. 1994, 27, 435-436.
- [16] G. M. Sheldrick, "SHELXL-97", University of Göttingen, Göttingen, Germany, 1998.
- [17] International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [18] Spek, A. L. "PLATON", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2010.