Supporting Information for

Merging organocatalysis with transition metal catalysis and using O_2 as the oxidant for enantioselective C-H functionalization of aldehydes

Yong-Long Zhao, Yao Wang, Xiu-Qin Hu and Peng-Fei Xu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China Fax: 86-931-8915557 E-mail: xupf@lzu.edu.cn

Contents:

1. General Information	S2
2. Preparation of Substrates	S2
3. General Procedure and Spectral Data of Products	S2
3.1 General procedure for catalytic enantioselective Saegusa oxidation/Michael	cascade
reaction of malonates 2 to aldehydes 1	S2
3.2 General procedure for oxidation of aldehydes 3 to carboxylic esters 4	S3
3.3 Analytical data of chiral aldehydes 3 .	
3.4 Analytical data of derivative products 4 .	S9
References	S14
NMR Spectra	S15
HPLC Spectra	S47

1. General Information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). Analytical thin-layer chromatography (TLC) was performed on silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid in ethanol followed by heating or KMnO₄ stain. Flash chromatography was carried out utilizing silica gel (200-300 mesh). ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz 1H, 100 MHz ¹³C). The spectra were recorded in CDCl₃ as the solvent at room temperature, ¹H and ¹³CNMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) ($\delta =$ 77.00 ppm) or TMS (¹H) ($\delta = 0$ ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ${}^{13}C$ NMR are reported as chemical shift. IR spectra were recorded using a Nicolet NEXUS 670 FT-IR instrument and are reported in wavenumbers (cm⁻¹). HRMS were performed on a Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC using a Daicel Chirapak AD-H columb on Water 600/2996 and eluting with *i*-PrOH and *n*-hexane. Optical rotation was measured on the Perkin Elmer 341 polarimeter with $[\alpha]_D$ values reported in degrees; concentration (c) is in g/100 mL.

Pd(OAc)₂ and Phenylpropionaldehyde were purchased from *Energy Chemical* (China).

2. Preparation of Substrates

Substrates 1 were prepared by following the procedures in references 1 and 2.

3. General Procedure and Spectral Data of Products^[3]

3.1 General procedure for catalytic enantioselective Saegusa oxidation/Michael cascade reaction of malonates 2 to aldehydes 1

 $Pd(OAc)_2$ (4.5mg, 0.04 mmol, 10 mol%), catalyst C (6.5 mg, 0.04 mmol, 10 mol%) and dry DMSO (0.5 ml) were added to a dry reaction tube. The tube was then charged with O₂ (using a balloon), and the reaction mixture was stirred at room temperature for 10-20 minutes. Aldehydes **1** (0.4 mmol) and freshly distilled malonates **2** (0.2 mmol) were added subsequently to the above reaction mixture under stirring. After 28-32 h, the reaction was complete (as judged by TLC analysis). The reaction mixture was directly purified by flash column chromatography (eluted with EtOAc/petroleum ether: 1/20 to 1/8) to afford the products **3**.

3.2 General procedure for oxidation of aldehydes 3 to carboxylic esters 4

Aldehydes **3** (0.10 mmol) were diluted with 3.0 mL *t*-BuOH and 3.0 mL 1 M NaH₂PO₄ (aq.). 3.0 mL 1 M KMnO₄ was added subsequently. After 5 min of vigorous stirring, 5.0 mL saturated NaHSO₃ was added and the pH was adjusted to approximately 3 with 1 M HCl. The resulting mixture was extracted 3 times with 10 mL EtOAc, and the combined organic layers were washed with 10 mL of water and 10 mL of brine, and then dried over MgSO₄. The organic layer was concentrated in vacuum and the residual acid was dissolved in 2 ml EtOH or MeOH. SOCl₂ (2.0 mmol) was added dropwise at 0 °C. The solution was stirred overnight at room temperature and then quenched with saturated Na₂CO₃. The resulting mixture was extracted 3 times with 10 mL EtOAc, and the combined organic layers were washed with water and brine, and then dried over Na₂SO₄. The organic layer was concentrated in vacuum. The crude product was subjected to FC on silica gel (EtOAc/ petroleum ether: 1/15 to 1/10) to give corresponding carboxylic esters **4**.

3.3 Analytical data of chiral aldehydes 3

(R)-2-(3-Oxo-1-phenylpropyl)malonic acid diethyl ester (3a).

Colourless liquid; Yield: 64%; IR (KBr): 3435, 2983, 2938, 1749, 1728, 1450, 1452, 1370, 1310, 1250, 1175, 1030, 863, 766, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (t, *J* = 1.6 Hz, 1H), 7.32-7.15 (m, 5H), 4.21 (q, *J* = 7.2 Hz, 2H), 4.02 (td, *J* = 9.6 Hz, *J* = 5.2 Hz, 1H), 3.95 (q, *J* = 7.2 Hz, 2H), 3.71 (d, *J* = 10.0 Hz, 1H), 3.00-2.81 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.00 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.0, 168.0, 167.4, 139.8, 128.7, 128.5, 128.4, 128.1, 127.5, 61.8, 61.4, 57.5, 47.4, 39.6, 14.0, 13.7; The product was converted to corresponding ester **4a**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*–hexane/*i*–PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 9.03 min (major), t_R = 14.03 min (minor), 95% ee; [α]_D²⁰ = -33 (*c* 0.66, CHCl₃); HRMS (ESI): calculated [M+H]⁺ for C₁₆H₂₁O₅: 293.1384, found [M+H]⁺: 293.1379.

(R)-2-(3-Oxo-1-phenylpropyl)malonic acid dimethyl ester (3b).

Colourless liquid; Yield: 59%; IR (KBr): 3431, 2955, 1734, 1496, 1452, 1319, 1283, 1253, 1157, 1022, 754, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (t, *J* = 1.6 Hz, 1H), 7.32-7.20 (m, 5H), 4.03 (td, *J* = 9.2 Hz, *J* = 5.2 Hz, 1H), 3.75 (d, *J* = 9.6 Hz, 1H), 3.74 (s, 3H), 3.50 (s, 3H), 2.99-2.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.9, 168.4, 167.8, 139.7, 128.8, 128.0, 127.6, 57.3, 52.7, 52.5, 47.2, 39.5; The product was converted to corresponding ester **4b**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*–hexane/*i*–PrOH = 90: 10, flow rate 1 mL/min, λ = 211.0 nm), t_R = 11.38 min (major), t_R = 13.80 min (minor), 94% ee; $[\alpha]_{D}^{20}$ = -29 (*c* 0.63, CHCl₃); HRMS (ESI): calculated [M+H]⁺ for C₁₄H₁₇O₅: 265.1071, found [M+H]⁺: 265.1065.

(R)-2-(3-Oxo-1-phenylpropyl)malonic acid dibenzyl ester (3c).

White solid; Yield: 57%; IR (KBr): 3483, 3063, 3033, 1746, 1727, 1496, 1454, 1382, 1315, 1251, 1171, 1153, 1089, 1025, 998, 905, 747, 700, 587 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.55 (t, *J* = 1.6Hz, 1H), 7.36-7.04 (m, 15H), 5.16 (s, 2H), 4.91 (s, 2H), 4.08-4.03 (m, 1H), 3.85 (d, *J* = 10.0 Hz, 1H), 2.88 (dd, *J* = 1.6 Hz, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 167.7, 167.2, 139.6, 135.0, 134.9, 128.8, 128.6, 128.5, 128.4, 128.3 (128.30), 128.3 (128.28), 128.2, 128.1, 127.5, 67.5, 67.2, 57.5, 47.2, 39.5; The product was converted to corresponding ester **4c**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 25.59 min (major), t_R = 35.21 min (minor), 89% ee; [α]_D²⁰ = -12 (*c* 0.49, CHCl₃); HRMS (ESI): calculated [M+NH₄]⁺ for C₂₆H₂₈NO₅: 434.1962, found [M+NH₄]⁺: 434.1955.

(R)-2-(3-Oxo-1-phenylpropyl)malonic acid diisopropyl ester (3d).

Colourless liquid; Yield: 66%; IR (KBr): 3434, 2983, 2936, 1745, 1727, 1456, 1374, 1311, 1283, 1254, 1175, 1104, 908, 760, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (t, *J* = 1.6 Hz, 1H), 7.31-7.18 (m, 5H), 5.10-5.03 (m, 1H), 4.82-4.73 (m, 1H), 3.99 (td, *J* = 9.6 Hz, *J* = 4.8 Hz, 1H), 3.65 (d, *J* = 10.4 Hz, 1H), 2.96-2.80 (m, 2H), 1.25 (d, *J* = 6.4 Hz, 3H), 1.24 (d, *J* = 6.4 Hz, 3H), 1.05 (d, *J* = 6.4 Hz, 3H), 0.95 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.2, 167.6, 167.0, 139.9, 128.6, 128.2, 127.4, 69.5, 69.0, 57.8, 47.7, 39.4, 21.7, 21.5, 21.3 (21.32), 21.3 (21.25); The product was converted to corresponding ester **4d**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 6.90 min (major), t_R = 10.18 min (minor), 94% ee; $[\alpha]_{p}^{20}$ = -39 (*c* 0.74, CHCl₃); HRMS (ESI): calculated [M+H]⁺ for C₁₈H₂₅O₅: 321.1697, found [M+H]⁺: 321.1694.

(R)-2-(3-Oxo-1-(4-methoxyphenyl)propyl)malonic acid diethyl

ester (3e). Colourless liquid; Yield: 72%; IR (KBr): 3311, 2981, 2939, 1746, 1728, 1601, 1495, 1465, 1302, 1247, 1154, 1028, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.57 (t, *J* = 1.6 Hz, 1H), 7.20-7.12 (m, 2H), 6.85-6.75 (m, 2H), 4.19 (q, *J* = 7.2 Hz, 2H), 4.01-3.90 (m, 3H), 3.75 (s, 3H), 3.66 (d, *J* = 10.0 Hz, 1H), 2.93-2.75 (m, 2H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.03 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 168.0, 167.5, 158.8, 131.7, 129.3, 129.2, 114.0, 113.8, 61.7, 61.4, 57.7, 55.2, 47.5, 38.8, 14.0, 13.8; The product was converted to corresponding ester **4e**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 13.57 min (major), t_R = 26.15 min (minor), 94% ee; [α]_D²⁰ = -29 (*c* 1.19, CHCl₃); HRMS (ESI): calculated [M+Na]⁺ for C₁₇H₂₂NaO₆: 345.1309, found [M+Na]⁺: 345.1304.

(R)-2-(3-Oxo-1-(2-methoxyphenyl)propyl)malonic acid diethyl ester (3f).

Colourless liquid; Yield: 51%; IR (KBr): 3334, 2981, 2940, 1747, 1728, 1601, 1495, 1465, 1369, 1302, 1247, 1176, 1154, 1028, 861, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (t, *J* = 1.6 Hz, 1H), 7.24-7.15 (m, 2H), 6.89-6.83 (m, 2H), 4.24-4.15 (m, 3H), 4.06 (d, *J* = 10.0 Hz, 1H), 3.92 (q, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 3.02-2.94 (m, 2H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.1, 168.4, 167.8, 157.4, 130.2, 128.7, 127.3, 120.6, 110.9, 61.6, 61.2, 55.3, 55.0, 45.8, 36.3, 14.0, 13.7; The product was converted to corresponding ester **4f**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 97:3, flow rate 1 mL/min, λ = 210.5 nm), t_R = 21.10 min (major), t_R = 24.34 min (minor), 95% ee; [α]₂₀²⁰ = -34 (*c* 0.99, CHCl₃); HRMS (ESI): calculated [M+Na]⁺ for C₁₇H₂₂NaO₆: 345.1309, found [M+Na]⁺: 345.1305.

(*R*)-2-(3-Oxo-1-(2, 4-dimethoxyphenyl)propyl)malonic acid diethyl ester (3g). Yellow liquid; Yield: 53%; IR (KBr): 3021, 2984, 2933, 1726, 1613, 1588, 1507, 1464, 1296, 1215, 1159, 1134, 1034, 928, 836, 757, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.58 (t, *J*

= 1.6 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 6.42-6.35 (m, 2H), 4.22-4.08 (m, 3H), 4.02 (d, J = 10.4 Hz, 1H), 3.94 (q, J = 7.2 Hz, 2H), 3.82 (s, 3H), 3.76 (s, 3H), 2.99-2.75 (m, 2H), 1.25 (t, J = 7.2 Hz, 3H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.3, 168.5, 167.9, 160.3, 158.4, 130.8, 119.6, 104.1, 98.9, 61.5, 61.2, 55.3 (55.29), 55.3 (55.27), 55.2, 45.9, 35.9, 14.0, 13.8; The product was converted to corresponding ester **4g**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 13.92 min (major), t_R = 17.70 min (minor), 87% ee; $[\alpha]_D^{20} = -32$ (*c* 1.56, CHCl₃); HRMS (ESI): calculated [M+NH₄]⁺ for C₁₈H₂₈NO₇: 370.1860, found [M+NH₄]⁺: 370.1865.

3h (*R*)-2-(3-Oxo-1-(4-methylphenyl)propyl)malonic acid diethyl ester (3h). Yellow oil; Yield: 64%; IR (KBr): 3428, 2982, 2924, 1728, 1514, 1449, 1369, 1308, 1247, 1171, 1153, 1028, 816 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.59 (t, *J* = 1.6 Hz, 1H), 7.12 (q, *J* = 8.0 Hz, 4H), 4.21 (q, *J* = 7.2 Hz, 2H), 4.02-3.90 (m, 3H), 3.69 (d, *J* = 10.4 Hz, 1H), 2.95-2.80 (m, 2H), 2.30 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.04 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 168.1, 167.5, 137.1, 136.7, 129.4, 127.9, 61.7, 61.4, 57.6, 47.5, 39.2, 21.0, 14.0, 13.8; The product was converted to corresponding ester **4h**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 9.50 min (major), t_R = 14.68 min (minor), >99% ee; $[\alpha]_D^{20} = -24$ (*c* 0.72, CHCl₃); HRMS (ESI): calculated [M+Na]⁺ for C₁₇H₂₂NaO₅: 329.1359, found [M+Na]⁺: 329.1355.

3i (*R*)-2-(3-Oxo-1-(2-methylphenyl)propyl)malonic acid diethyl ester (3i). Yellow oil; Yield: 61%; IR (KBr): 3365, 2981, 2937, 1748, 1728, 1494, 1465, 1447, 1369, 1305, 1252, 1177, 1153, 1150, 1031, 760, 729 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.57 (s, 1H), 7.15-7.07 (m, 4H), 4.29 (td, J = 9.6 Hz, J = 4.8 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.96-3.88 (m, 2H), 3.73 (d, J = 10.4 Hz, 1H), 2.97-2.83 (m, 2H), 2.47 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.0, 168.2, 167.5, 138.3, 136.5, 130.8, 127.1, 126.4, 126.3, 61.8, 61.4, 57.1, 48.1, 34.3, 19.8, 14.0, 13.6; The product was converted to corresponding ester **4i**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 6.43 min (major), t_R = 9.42 min (minor), 94% ee; $[\alpha]_{D}^{20} = -16$ (*c* 1.05, CHCl₃); HRMS (ESI): calculated [M+Na]⁺ for C₁₇H₂₂NaO₅: 329.1359, found [M+Na]⁺: 329.1356.

(R)-2-(1-(Biphenyl-4-yl)-3-oxopropyl)malonic acid diethyl ester

(**3j**). Yellow oil; Yield: 65%; IR (KBr): 3514, 3442, 3029, 2982, 2938, 1747, 1728, 1487, 1447, 1369, 1314, 1300, 1250, 1176, 1156, 1096, 1030, 1009, 859, 842, 764, 735, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.65 (t, J = 1.6 Hz, 1H), 7.59-7.25 (m, 9H), 4.23 (q, J = 7.2 Hz, 2H), 4.16-4.05 (m, 1H), 3.99 (q, J = 7.2 Hz, 2H), 3.77 (d, J = 10.0 Hz, 1H), 3.03-2.89 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.0, 167.9, 167.4, 140.5, 140.3, 138.8, 128.7, 128.5, 127.3, 126.9, 61.7, 61.4, 57.4, 47.4, 39.1, 14.0, 13.7; The product was converted to corresponding ester **4j**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254.0$ nm), t_R = 13.72 min (major), t_R = 30.09 min (minor), 95% ee; $[\alpha]_D^{20} = -21$ (*c* 1.91, CHCl₃); HRMS (ESI): calculated [M+NH₄]⁺ for C₂₂H₂₈NO₅: 386.1962, found [M+NH₄]⁺: 386.1957.

(*R*)-2-(1-(naphthalen-2-yl)-3-oxopropyl)malonic acid diethyl ester (3k). Colourless liquid; Yield: 47%; IR (KBr): 3356, 2982, 2937, 1747,1750, 1446, 1369, 1300, 1249, 1177, 1154, 1029, 859, 820, 750, 650 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.63 (t, *J* = 1.6 Hz, 1H), 7.82-7.38 (m, 7H), 4.27-4.18 (m, 3H), 3.96-3.87 (m, 2H), 3.85 (d, *J* = 10.0 Hz, 1H), 3.04-3.00 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.0, 168.0, 167.4, 137.3, 133.3, 132.7, 128.5, 127.8, 127.6, 127.2, 126.3, 126.0, 125.9, 61.8, 61.5, 57.5, 47.4, 39.6, 14.0, 13.7; The product was converted to corresponding ester **4k**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*–hexane/*i*–PrOH = 90:10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 14.72 min (major), t_R = 24.56 min (minor), 94% ee; $[\alpha]_{p}^{20}$ = -23 (*c* 1.33, CHCl₃); HRMS (ESI): calculated [M+Na]⁺ for C₂₀H₂₂NaO₅: 365.1359, found [M+Na]⁺: 365.1355.

(*R*)-2-(3-Oxo-1-(4-fluorophenyl)propyl)malonic acid diethyl ester (3l). White solid; Yield: 63%; IR (KBr): 3429, 2984, 2938, 2908, 1748, 1728, 1605, 1511, 1466, 1370, 1306, 1279, 1250, 1226, 1177, 1161, 1100, 1031, 840 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (s, 1H), 7.23 (dd, *J* = 8.4 Hz, *J* = 5.2 Hz, 2H), 6.98 (t, *J* = 8.8 Hz, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 4.05-3.92 (m, 3H), 3.67 (d, *J* = 10.0 Hz, 1H), 2.98-2.82 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.04 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 167.8, 167.3, 163.1, 160.7, 135.6, 135.5, 129.8, 129.7, 115.6, 115.4, 61.8, 61.5, 57.4, 47.5, 38.6, 14.0, 13.7; The product was converted to corresponding ester **4**I. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 10.26 min (major), t_R = 19.45 min (minor), 94% ee; $[\alpha]_{D}^{20} = -33$ (*c* 1.13, CHCl₃); HRMS (ESI): calculated [M+NH₄]⁺ for C₁₆H₂₃NFO₅: 328.1555, found [M+NH₄]⁺: 328.1559.

3m (*R*)-2-(3-Oxo-1-(2-fluorophenyl)propyl)malonic acid diethyl ester (3l). Colourless liquid; Yield: 55%; IR (KBr): 3432, 2983, 2933, 1748, 1730, 1585, 1493, 1456, 1370, 1310, 1251, 1233, 1177, 1154, 1109, 1030, 860, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.63 (s, 1H), 7.29-7.18 (m, 2H), 7.09-6.98 (m, 2H), 4.24-4.16 (m, 3H), 3.95 (q, *J* = 7.2 Hz, 2H), 3.89 (d, *J* = 10.4, 1H), 2.98-2.95 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.01 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 167.9, 167.4, 162.2, 159.7, 130.6, 130.5, 129.3, 129.2, 126.7, 126.6, 124.3, 124.2, 116.0, 115.8, 61.8, 61.5, 55.6, 46.3, 34.7, 14.0, 13.7; The product was converted to corresponding ester **4m**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 9.75 min (major), t_R = 14.08 min (minor), 96% ee; [α]²⁰_D = -29 (*c* 1.32, CHCl₃); HRMS (ESI): calculated [M+NH₄]⁺ for C₁₆H₂₃NFO₅: 328.1555, found [M+NH₄]⁺: 328.1552.

(*R*)-2-(3-Oxo-1-(4-chlorophenyl)propyl)malonic acid diethyl ester (3n). Colourless liquid; Yield: 53%; IR (KBr): 3435, 2983, 2939, 1749, 1730, 1493, 1466, 1414, 1391, 1370, 1308, 1250, 1176, 1157, 1111, 1094, 1031, 1015, 862, 832, 733, 539 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.60 (s, 1H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.8 Hz, 2H), 4.20 (q, *J* = 7.2 Hz, 2H), 4.04-3.94 (m, 3H), 3.68 (d, *J* = 9.6 Hz, 1H), 2.99-2.83 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 167.7, 167.2, 138.4, 133.2, 129.5, 128.8, 61.8, 61.5, 57.2, 47.3, 38.7, 14.0, 13.7; The product was converted to corresponding ester **4n**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 11.02 min (major), t_R = 19.59 min (minor), 95% ee; $[\alpha]_{p}^{20} = -29$ (*c* 1.44, CHCl₃); HRMS (ESI): calculated [M+Na]⁺ for C₁₆H₁₉NaClO₅: 349.0813, found [M+Na]⁺: 349.0817.

(R)-2-(3-Oxo-1-(4-ethoxycarbonylphenyl)propyl)malonic acid

diethyl ester (30). Colourless liquid; Yield: 45%; IR (KBr): 3425, 2983, 2938, 1750, 1723, 1611, 1576, 1466, 1447, 1278, 1252, 1178, 1157, 1107, 1021, 858, 775, 708 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.61 (s, 1H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 4.35 (q, *J* = 7.2 Hz, 2H), 4.22 (q, *J* = 7.2 Hz, 2H), 4.19-4.05 (m, 1H), 3.99-3.92 (m, 2H), 3.74 (d, *J* = 10.0 Hz, 1H), 3.03-2.88 (m, 2H), 1.38 (t, *J* = 7.2 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.03 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.3, 167.7, 167.2, 166.2, 145.2, 129.9, 129.7, 128.2, 61.9, 61.6, 61.0, 57.0, 47.3, 39.2, 14.3, 14.0, 13.8; The product was converted to corresponding ester **40**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 230.0 nm), t_R = 22.04 min (major), t_R = 40.82 min (minor), 94% ee; [α]₂₀² = -22 (*c* 1.07, CHCl₃); HRMS (ESI): calculated [M+NH₄]⁺ for C₁₉H₂₈NO₇: 382.1860, found [M+NH₄]⁺: 382.1864.

(*R*)-2-(3-Oxo-1-(4-trifluoromethylphenyl)propyl)malonic acid diethyl ester (3p). Colourless liquid; Yield: 47%; IR (KBr): 3503, 3023, 2985, 1747, 1729, 1620, 1422, 1371, 1327, 1252, 1217, 1167, 1128, 1069, 1031, 1019, 844, 758, 668, 608 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.62 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 4.10 (td, *J* = 9.6 Hz, *J* = 4.8 Hz, 1H), 3.97 (q, *J* = 7.2 Hz, 2H), 3.73 (d, *J* = 10.0 Hz, 1H), 3.05-2.90 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.02 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 167.7, 167.2, 144.2, 129.9, 129.5, 128.8, 128.6, 125.6 (125.61), 125.6 (125.57), 125.5 (125.53), 125.5 (125.50), 125.3, 122.6, 61.9, 61.6, 56.9, 47.2, 39.0, 14.0, 13.7; The product was converted to corresponding ester **4p**. The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 9.77 min (major), t_R = 16.30 min (minor), 94% ee; $[\alpha]_{p}^{20} = -17$ (*c* 2.06, CHCl₃); HRMS (ESI): calculated [M+NH₄]⁺ for C₁₇H₂₃NF₃O₅: 378.1523, found [M+NH₄]⁺: 378.1528.

3.4 Analytical data of derivatization products 4

(*R*)-2-Ethyloxycarbonyl-3-phenylpetanedioic acid 1,5-diethyl ester

¹H NMR (400 MHz, CDCl₃): δ 7.30-7.15 (m, 5H), 4.16 (q, J = 7.2 Hz, 2H), 4.10-3.85 (m, 5H), 3.73 (d, J = 10.4 Hz, 1H), 2.90-2.65 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 168.0, 167.5, 139.8, 128.3, 128.2, 127.3, 61.6, 61.3, 60.4, 57.4, 41.5, 38.8, 14.0, 14.0 (13.97), 13.7; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 9.03 min (major), t_R = 14.03 min (minor), 95% ee;

4b

(R)-2-Methyloxycarbonyl-3-phenylpetanedioic acid 1,5-dimethyl ester

(**4b**). ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.18 (m, 5H), 3.93 (td, J = 9.6 Hz, J = 4.8 Hz, 1H), 3.79 (d, J = 10.0 Hz, 1H), 3.75 (s, 3H), 3.54 (s, 3H), 3.48 (s, 3H), 2.89-2.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 168.4, 167.9, 139.8, 128.5, 127.9, 127.4, 57.0, 52.7, 52.4, 51.6, 41.4, 38.3; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 211.0$ nm), t_R = 11.38 min (major), t_R = 13.80 min (minor), 94% ee.

4C

(R)-2-Ethyloxycarbonyl-3-phenylpetanedioic acid 1,5-dibenzyl ester

(4c). ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.01 (m, 15H), 5.16 (s, 2H), 4.87 (s, 2H), 3.99-3.91 (m, 3H), 3.90 (d, *J* = 12.0 Hz, 1H), 2.84-2.64 (m, 2H), 1.06 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 167.7, 167.3, 139.6, 135.1, 135.0, 128.6, 128.5, 128.4 (128.42), 128.4 (128.40), 128.2, 128.1 (128.13), 128.1 (128.12), 127.4, 67.3, 67.1, 60.4, 57.3, 41.5, 38.6, 14.0; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 25.59 min (major), t_R = 35.207 min (minor), 89% ee.

4d

(R)-2-Ethyloxycarbonyl-3-phenylpetanedioic acid 1,5-diisopropyl ester

(4d). ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.15 (m, 5H), 5.14-5.01 (m,1H), 4.83-4.71 (m, 1H), 4.02-3.91 (m, 2H), 3.89 (td, *J* = 10.4 Hz, *J* = 4.4 Hz, 1H), 3.68 (d, *J* = 10.4 Hz, 1H), 2.89-2.65 (m, 2H), 1.28-1.23 (m, 6H), 1.08 (t, *J* = 7.2 Hz, 3H), 1.03 (d, *J* = 6.4 Hz, 3H), 0.94 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 167.6, 167.0, 139.9, 128.3 (128.32), 128.3 (128.27), 127.2, 69.3, 68.8, 60.3, 57.6, 41.4, 39.0, 21.7, 21.5, 21.3, 21.2, 14.0; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 6.90 min (major), t_R = 10.18 min (minor), 94% ee.

4e (*R*)-2-Ethyloxycarbonyl-3-(4-methoxyphenyl)petanedioic acid 5-ethyl ester 1-ethyl ester (4e). ¹H NMR (400 MHz, CDCl₃): δ 7.16 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 4.21 (q, J = 7.2 Hz, 2H), 4.24-3.91 (m, 4H), 3.87 (td, J = 10.4 Hz, J = 4.4 Hz, 1H), 3.76 (s, 3H), 3.68 (d, J = 10.0 Hz, 1H), 2.85-2.62 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 168.1, 167.6, 158.7, 131.8, 129.2, 113.7, 61.6, 61.3, 60.3, 57.6, 57.1, 40.8, 38.9, 14.0, 13.8; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 13.57 min (major), t_R = 26.15 min (minor), 94% ee.

(R)-2-Ethyloxycarbonyl-3-(2-methoxyphenyl)petanedioic acid 5-ethyl

ester 1-ethyl ester (4f). ¹H NMR (400 MHz, CDCl₃): δ 7.19 (t, J = 8.0 Hz, 2H), 6.84 (t, J = 6.8 Hz, 2H), 4.20 (qd, J = 7.2 Hz, J = 1.2 Hz, 2H), 4.12 (d, J = 10.4 Hz, 1H), 4.06 (td, J = 10.0 Hz, J = 4.0 Hz, 1H), 4.00-3.87 (m, 4H), 3.85 (s, 3H), 2.98 (dd, J = 15.6 Hz, J = 9.6 Hz, 1H), 2.79 (dd, J = 15.6 Hz, J = 4.4 Hz, 1H), 1.26 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 168.5, 168.0, 157.7, 130.9, 128.5, 127.3, 120.3, 110.8, 61.4, 61.0, 60.2, 55.3, 54.8, 38.9, 36.5, 14.0, 13.7; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 97:3, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 21.10 min (major), t_R = 24.34 min (minor), 95% ee.

4g (*R*)-2-Ethyloxycarbonyl-3-(2,4-dimethoxyphenyl)petanedioic acid 5-ethyl ester 1-ethyl ester (4g). ¹H NMR (400 MHz, CDCl₃): δ 7.06 (d, J = 8.4 Hz, 1H), 6.42-6.32 (m, 2H), 4.23-4.15 (m, 2H), 4.08 (d, J = 10.4 Hz, 1H), 4.02-3.88 (m, 5H), 3.82 (s, 3H), 3.76 (s, 3H), 2.94 (dd, J = 15.6 Hz, J = 10.4 Hz, 1H), 2.74 (dd, J = 15.2 Hz, J = 4.0 Hz, 1H), 1.26 (t, J = 7.2 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.8, 168.6, 168.1, 160.1, 158.6, 131.4, 119.6, 103.8, 98.8, 61.4, 61.0, 60.1, 55.3, 55.2, 55.0, 38.4, 36.7, 14.1, 13.8; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 13.92 min (major), t_R = 17.70 min (minor), 87% ee.

(*R*)-2-Ethyloxycarbonyl-3-(4-methylphenyl)petanedioic acid 5-ethyl ester 1-ethyl ester (4h). ¹H NMR (400 MHz, CDCl₃): δ 7.10 (dd, J = 8.0 Hz, J = 24.0 Hz, 4H), 4.21 (q, J = 7.2 Hz, 2H), 4.01-3.83 (m, 5H), 3.71 (d, J = 10.4 Hz, 1H), 2.82 (dd, J = 15.6 Hz, J = 4.8 Hz, 1H), 2.70 (dd, J = 15.6 Hz, J = 10.0 Hz, 1H), 2.28 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 168.1, 167.5,

136.7, 129.0, 128.0, 61.6, 61.2, 60.3, 57.4, 41.1, 38.8, 21.0, 14.0 (13.98), 14.0 (13.96), 13.7; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 9.50 min (major), t_R = 14.68 min (minor), >99% ee.

4i (*R*)-2-Ethyloxycarbonyl-3-(2-methylphenyl)petanedioic acid 5-ethyl ester 1-ethyl ester (4i). ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.05 (m, 4H), 4.27-4.20 (m, 3H), 3.99-3.87 (m, 4H), 3.74 (d, J = 10.4 Hz, 1H), 2.85 (dd, J = 15.6 Hz, J = 4.8 Hz, 1H), 2.73 (dd, J = 15.6 Hz, J = 10.0 Hz, 1H), 2.47 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 168.2, 167.6, 138.3, 137.0, 130.6, 126.9, 126.4, 126.0, 61.7, 61.3, 60.4, 57.3, 39.0, 36.1, 19.7, 14.1, 13.9, 13.6; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 6.43 min (major), t_R = 9.42 min (minor), 94% ee.

(*R*)-1,1-diethyl 3-ethyl 2-(biphenyl-4-yl)propane-1,1,3-

tricarboxylate (4j). ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.25 (m, 9H), 4.23 (q, J = 7.2 Hz, 2H), 4.04-3.92 (m, 5H), 3.77 (d, J = 10.4 Hz, 1H), 2.88 (dd, J = 15.6 Hz, J = 4.4 Hz, 1H), 2.77 (dd, J = 15.6 Hz, J = 10.4 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 168.0, 167.5, 140.7, 140.0, 138.9, 128.7, 128.6, 127.2, 127.0, 126.9, 61.7, 61.4, 60.4, 57.3, 41.2, 38.7, 14.0 (14.03), 14.0 (14.00), 13.7; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, $\lambda = 254.0$ nm), t_R = 13.72 min (major), t_R = 30.09 min (minor), 95% ee.

4k (*R*)-1,1-diethyl **3-ethyl 2-(naphthalen-2-yl)propane-1,1,3 tricarboxylate (4k).** ¹H NMR (400 MHz, CDCl₃): δ 7.79-7.70 (m, 4H), 7.45-7.35 (m, 3H), 4.23 (q, *J* = 7.2 Hz, 2H), 4.12 (td, *J* = 10.0 Hz, *J* = 4.8 Hz, 1H), 3.99-3.82 (m, 5H), 2.96-2.80 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.04 (t, *J* = 7.2 Hz, 3H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 168.0, 167.5, 137.4, 133.2, 132.6, 128.1, 127.8, 127.5, 127.2, 126.2, 126.0, 125.8, 61.7, 61.3, 60.4, 57.3, 41.5, 38.7, 14.0 (14.03), 14.0 (13.97), 13.7; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90:10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 14.72 min (major), t_R = 24.56 min (minor), 94% ee.

(R)-2-Ethyloxycarbonyl-3-(4-fluorophenyl)petanedioic acid 5-ethyl

ester 1-ethyl ester (31). ¹H NMR (400 MHz, CDCl₃): δ 7.23 (dd, J = 8.8 Hz, J = 5.2 Hz, 2H) ,6.96

(t, J = 8.8 Hz, 2H), 4.21 (q, J = 7.2 Hz, 2H), 4.20-3.87 (m, 5H), 3.69 (d, J = 10.4 Hz, 1H), 2.84 (dd, J = 15.6 Hz, J = 4.8 Hz, 1H), 2.69 (dd, J = 15.6 Hz, J = 10.4 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.2 Hz, 3H), 1.02 (t, J = 7.2 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 167.8, 167.4, 163.1, 160.7, 135.6, 135.5, 129.9, 129.8, 115.3, 115.1, 61.7, 61.4, 60.4, 57.3, 40.8, 38.8, 14.0 (13.99), 14.0 (13.98), 13.7; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 10.26 min (major), t_R = 19.95 min (minor), 94% ee.

(R)-2-Ethyloxycarbonyl-3-(2-fluorophenyl)petanedioic acid 5-ethyl ester

1-ethyl ester (4m). ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.15 (m, 3H), 6.96 (dd, J = 10.0 Hz, J = 8.8 Hz, 1H), 4.23 (q, J = 7.2 Hz, 2H), 4.12-3.96 (m, 5H), 3.85 (d, J = 10.4 Hz, 1H), 2.88-2.75 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 167.6, 167.2, 160.9, 158.4, 130.6, 130.5, 129.0 (129.00), 129.0 (128.96), 128.9, 128.7, 128.6, 117.2, 116.9, 61.9, 61.6, 60.6, 55.3, 37.0, 36.5, 14.0 (14.01), 14.0 (13.98), 13.7; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, $\lambda = 210.5$ nm), t_R = 9.75 min (major), t_R = 14.08 min (minor), 96% ee.

(*R*)-2-Ethyloxycarbonyl-3-(4-chlorophenyl)petanedioic acid 5-ethyl ester 1-ethyl ester (4n). ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.16 (m, 4H), 4.21 (q, *J* = 7.2 Hz, 2H), 4.03-3.87 (m, 5H), 3.69 (d, *J* = 10.0 Hz, 1H), 2.83 (dd, *J* = 15.6 Hz, *J* = 4.8 Hz, 1H), 2.69 (dd, *J* = 15.6 Hz, *J* = 10.4 Hz, 1H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.11 (t, *J* = 7.2 Hz, 3H), 1.03 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 167.8, 167.3, 138.4, 133.1, 129.6, 128.5, 61.8, 61.5, 60.5, 57.1, 40.8, 38.5, 14.0, 13.8; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, λ = 210.5 nm), t_R = 11.02 min (major), t_R = 19.59 min (minor), 95% ee.

(R)-2-Ethyloxycarbonyl-3-(4-ethoxycarbonylphenyl)pentanedioic

acid 1-ethyl ester 5-ethyl ester (4o). ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.36 (q, J = 7.2 Hz, 2H), 4.23 (q, J = 7.2 Hz, 2H), 4.03-3.92 (m, 5H), 3.75 (d, J = 10.4 Hz, 1H), 2.88 (dd, J = 15.6 Hz, J = 4.4 Hz, 1H), 2.75 (dd, J = 15.6 Hz, J = 10.0 Hz, 1H), 1.39 (t, J = 7.2 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 167.7, 167.2, 166.3, 145.1, 129.7, 129.6, 128.3, 61.8, 61.5, 60.9, 60.6, 57.0, 41.3, 38.4, 14.3, 14.0, 13.8; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, $\lambda = 230.0$ nm), t_R = 22.04 min (major), t_R = 40.82 min (minor), 94% ee.

4p (*R*)-2-Ethyloxycarbonyl-3-(4-trifluoromethylphenyl)petanedioic acid 5-ethyl ester 1-ethyl ester (4n). ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 4.23 (q, J = 7.2 Hz, 2H), 4.03-3.91 (m, 5H), 3.75 (d, J = 10.0 Hz, 1H), 2.88 (dd, J = 16.0 Hz, J = 4.4 Hz, 1H), 2.75 (dd, J = 16.0 Hz, J = 10.0 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.2 Hz, 3H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 167.7, 167.2, 144.1 (144.12), 144.1 (144.11), 129.7, 129.4, 128.7, 125.4, 125.3 (125.32), 125.3 (125.29), 12.3 (125.25), 122.7, 61.9, 61.5, 60.6, 56.9, 41.4, 38.3, 14.0, 13.9, 13.7; The enantiomeric excess was determined by HPLC with an AD-H column (*n*-hexane/*i*-PrOH = 90: 10, flow rate 1 mL/min, $\lambda =$ 210.5 nm), t_R = 9.77 min (major), t_R = 16.30 min (minor), 94% ee.

References

- 1). E. A. Krasnokutskaya, N. I. Semenischeva, V. D. Filimonov and P. Knochel, Synthesis., 2007, 1, 81-84.
- 2). K. E. Torraca, S. I. Kuwabe and S. L. Buchwald, J. Am. Chem. Soc., 2000, 122, 12907-12908.
- 3). The absolute configuration of the products **3** were confirmed by comparing the $[\alpha]_D$ values with those of the reported known compounds **3a-c**.^[4]
- S. Brandau, A. Landa, J. Franzén, M. Marigo and K. A. Jøgensen, *Angew. Chem. Int. Ed.*, 2006, 45, 4305 -4309.

NMR spectrogram

ppm

80 70 60 50 40 30 20 10 0

210 200 190 180 170 160 150 140 130 120 110 100 90

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

220 210 200 190

180 170 160

150 140 130 120 110 100

70

60

90 80

50

40 30 20 10 0 –10 ppm

1.40-9.123 CO₂Et 14.085 1.20 CO2Et CO2Et 1.00-4a 0.80 AU 0.60 0.40 0.20 0.00 2.00 6.00 8.00 10.00 16.00 20.00 4.00 12.00 14.00 18.00 22.00 分钟

HPLC using an AD-H column (hexane: *i*-PrOH =90:10, 1.0 mL/min)

HPLC Spectra

	处理通道: PDA 210.5 纳米								
	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 210.5 纳米	9.123	26964895	49.42	1472840				
2	PDA 210.5 纳米	14.085	27594402	50.58	981586				

	处理通道: PDA 210.5 纳米								
	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 210.5 纳米	9.025	42603423	97.42	1927044				
2	PDA 210.5 纳米	14.025	1129778	2.58	53512				

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	9.025	42603423	1927044	97.42
2	PDA 210.5 nm	14.025	1129778	53512	2.58

HPLC using an AD-H column (hexane: *i*-PrOH = 90:10, 1.0 mL/min)

处理通道: PDA 211.0 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高	
1	PDA 211.0 纳米	11.246	16814994	50.66	836394	
2	PDA 211.0 纳米	13.621	16377680	49.34	657042	

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 211.0 nm	11.246	16814994	836394	50.66
2	PDA 211.0 nm	13.621	16377680	657042	49.34

	处理通道: PDA 211.0 纳米									
		处理通道	保留时间 (分钟)	面积	% 面积	峰高				
1	1	PDA 211.0 纳米	11.384	51425184	97.09	2137580				
1	2	PDA 211.0 纳米	13.796	1541059	2.91	72643				

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 211.0 nm	11.384	51425184	2137580	97.09
2	PDA 211.0 nm	13.796	1541059	72643	2.91

处理通	ĺ道:PĽ	A 210.5	纳米	

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 210.5 纳米	25.507	95618471	50.24	1695952
2	PDA 210.5 纳米	34.644	94722765	49.76	1292743

ampier varne pri	002011-002011	ould, viai	r, ngcouori		vv2000,	Dute Auguited	2010-0-22	12.10
		おして田	活法, DD	A 040 E	4th 14			

	处理通道: PDA 210.5 纳木										
	处理通道	保留时间 (分钟)	面积	% 面积	峰高						
1	PDA 210.5 纳米	25.592	166312635	94.25	2238503						
2	PDA 210.5 纳米	35.207	10143838	5.75	171027						

Peak	k Processed Retention		Peak Area	Peak Area Peak Height	
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	25.592	166312635	2238503	94.25
2	PDA 210.5 nm	35.207	10143838	171027	5.75

HPLC using an AD-H column (hexane: *i*-PrOH = 90:10, 1.0 mL/min)

SampleName ph-CO2Pr-CO2Pr-Rac; Vial 1; Injection 8; Channel W2996 ; Date Acquired 2013-5-22 12:56:03

处理通道: PDA 210.5 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 210.5 纳米	6.938	27905817	49.04	1888307				
2	PDA 210.5 纳米	10.158	28994819	50.96	1363908				

处理通道: PDA 210.5 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 210.5 纳米	6.903	51296766	97.08	2386092				
2	PDA 210.5 纳米	10.182	1545549	2.92	85530				

Peak	Processed	Processed Retention		Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	6.903	51296766	2386092	97.08
2	PDA 210.5 nm	10.182	1545549	85530	2.92

	处理通道: PDA 210.5 纳米								
	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 210.5 纳米	13.914	4160799	50.70	166814				
2	PDA 210.5 纳米	27.089	4045664	49.30	76893				

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	13.914	4160799	166814	50.70
2	PDA 210.5 nm	27.089	4045664	76893	49.30

处理通道: PDA 210.5 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 210.5 纳米	13.574	54643677	97.22	1950563				
2	PDA 210.5 纳米	26.151	1561214	2.78	37462				

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	13.574	54643677	1950563	97.22
2	PDA 210.5 nm	26.151	1561214	37462	2.78

HPLC using an AD-H column (hexane: *i*-PrOH = 97:3, 1.0 mL/min)

	处理通道: PDA 210.5 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高					
1	PDA 210.5 纳米	21.245	7124519	50.60	179355					
2	PDA 210.5 纳米	24.327	6955588	49.40	150882					

	处理通道: PDA 210.5 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高					
1	PDA 210.5 纳米	21.095	61210091	97.56	1379348					
2	PDA 210.5 纳米	24.344	1529250	2.44	37835					

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	21.095	61210091	1379348	97.56
2	PDA 210.5 nm	24.344	1529250	37835	2.44

HPLC using an AD-H column (hexane: *i*-PrOH = 90:10, 1.0 mL/min)

	处理通道: PDA 210.5 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高					
1	PDA 210.5 纳米	13.978	4663945	49.39	171086					
2	PDA 210.5 纳米	17.686	4779541	50.61	135257					

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	13.978	4663945	171086	49.39
2	PDA 210.5 nm	17.686	4779541	135257	50.61

	处理通道: PDA 210.5 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高					
1	PDA 210.5 纳米	13.917	80641639	93.25	2444156					
2	PDA 210.5 纳米	17.701	5838511	6.75	175843					

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	13.917	80641639	2444156	93.25
2	PDA 210.5 nm	17.701	5838511	175843	6.75

HPLC using an AD-H column (hexane: *i*-PrOH = 90:10, 1.0 mL/min)

	处理通道: PDA 210.4 纳术									
	处理通道	保留时间 (分钟)	面积	% 面积	峰高					
1	PDA 210.4 纳米	9.312	7316951	50.88	422955					
2	PDA 210.4 纳米	14.108	7064737	49.12	260798					

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.4 nm	9.500	13045534	724603	99.86
2	PDA 210.4 nm	14.679	18849	1539	0.14

	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 210.5 纳米	6.368	1506581	50.21	115162				
2	PDA 210.5 纳米	9.276	1493741	49.79	74419				

	处理通道: PDA 210.5 纳米									
	处理通道	保留时间 (分钟)	面积	% 面积	峰高					
1	PDA 210.5 纳米	6.425	24073411	97.00	1891622					
2	PDA 210.5 纳米	9.422	744490	3.00	43938					

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA210.5 nm	6.425	24073411	1891622	97.00
2	PDA 210.5 nm	9.422	744490	43938	3.00

HPLC using an AD-H column (hexane: *i*-PrOH = 90:10, 1.0 mL/min)

处理通道: PDA 254.0 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 254.0 纳米	13.824	42890068	50.10	1559151				
2	PDA 254.0 纳米	30.353	42724800	49.90	671554				

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA254.0 nm	13.824	42890068	1559151	50.10
2	PDA 254.0 nm	30.353	42724800	671554	49.90

	处理通道: PDA 254.0 纳米									
	处理通道	保留时间 (分钟)	面积	%面积	峰高					
1	PDA 254.0 纳米	13.718	53233937	97.63	1916284					
2	PDA 254.0 纳米	30.092	1294026	2.37	27110					

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA254.0 nm	13.718	53233937	1916284	97.63
2	PDA 254.0 nm	30.092	1294026	27110	2.37

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA210.5 nm	14.678	93771637	2671836	49.84
2	PDA 210.5 nm	24.101	94364232	1925042	50.16

14.678 93771637

24.101 94364232

49.84 2671836

50.16 1925042

PDA 210.5 纳米

PDA 210.5 纳米

2

处理通道: PDA 210.5 纳米 保留时间 (分钟) 峰高 处理通道 面积 %面积 PDA 210.5 纳米 14.723 77666418 96.95 2401254 1 PDA 210.5 纳米 2 24.564 2440013 3.05 56372

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA210.5 nm	14.723	77666418	2401254	96.95
2	PDA 210.5 nm	24.564	2440013	56372	56372

HPLC using an AD-H column	(hexane: <i>i</i> -PrOH =	: 90:10, 1.0 mL/min)
---------------------------	---------------------------	----------------------

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA210.5 nm	10.309	22575063	1132160	49.96
2	PDA 210.5 nm	19.913	22612107	574265	50.04

19.913 22612107

50.04 574265

PDA 210.5 纳米

2

处理通道: PDA 210.5 纳米								
	处理通道	保留时间 (分钟)	面积	% 面积	峰高			
1	PDA 210.5 纳米	10.264	64395875	96.86	2352451			
2	PDA 210.5 纳米	19.949	2090804	3.14	64542			

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA210.5 nm	10.264	64395875	2352451	96.86
2	PDA 210.5 nm	19.949	2090804	64542	3.14

	处理通道: PDA 210.5 纳木									
	处理通道	保留时间 (分钟)	面积	% 面积	峰高					
1	PDA 210.5 纳米	9.834	3322587	49.98	179548					
2	PDA 210.5 纳米	14.222	3325065	50.02	123290					

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA210.5 nm	9.834	3322587	179548	49.98
2	PDA 210.5 nm	14.222	3325065	123290	50.02

处理通道: PDA 210.5 纳米								
	处理通道	保留时间 (分钟)	面积	%面积	峰高			
1	PDA 210.5 纳米	9.754	19388730	97.81	999563			
2	PDA 210.5 纳米	14.075	434585	2.19	17599			

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA210.5 nm	9.754	19388730	999563	97.81
2	PDA 210.5 nm	14.075	434585	17599	2.19

19.622 4470699

49.31 121169

1

2

PDA 210.5 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高				
1	PDA 210.5 纳米	11.017	39250010	97.39	1758523				
2	PDA 210.5 纳米	19.592	1051600	2.61	32510				

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA210.5 nm	11.017	39250010	1758523	97.39
2	PDA 210.5 nm	19.592	1051600	32510	2.61

	处理通道	(分钟)	山尔	70 田 松	昭和 (四)
1	PDA 230.0 纳米	21.904	36030983	50.38	746918
2	PDA 230.0 纳米	39.976	35491256	49.62	397188

处	理	通	道	: P	DA	230	0.0	纳)	¢
---	---	---	---	-----	----	-----	-----	---	---	---

	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 230.0 纳米	22.043	37895837	97.11	767337
2	PDA 230.0 纳米	40.815	1128918	2.89	15804

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 230.0 nm	22.043	37895837	767337	97.11
2	PDA 230.0 nm	40.815	1128918	15804	2.89

处理通	通道:PD	A 210.5	纳米	
处理通道	保留时间 (分钟)	面积	%面积	峰高

1	PDA 210.5 纳米	9.786	28375290	49.48	1459942
2	PDA 210 5 纳米	16 251	28975178	50.52	855306

处理通道: PDA 210.5 纳米							
	处理通道	保留时间 (分钟)	面积	%面积	峰高		
1	PDA 210.5 纳米	9.771	47118270	96.85	2135910		
2	PDA 210.5 纳米	16.301	1533094	3.15	48042		

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 210.5 nm	9.771	47118270	2135910	96.85
2	PDA 210.5 nm	16.301	1533094	48042	3.15