Supporting Information for:

Oxidation of 2-arylindoles for synthesis of 2-arylbenzoxazinones

with oxone as the sole oxidant

Xiao-Li Lian, Hao Lei, Xue-Jing Quan, Zhi-Hui Ren, Yao-Yu Wang, Zheng-Hui Guan*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China

E-mail: guanzhh@nwu.edu.cn

CONTENTS

1. General Information S	\$2
2. General Procedure for Preparation of 2-ArylindolesS	52
3. Typical Procedure for Direct Oxidation of 2-Phenylindoles S	3
4. Characterization Data of Products S3-S	\$8
5. Copies of ¹ H and ¹³ C NMR Spectra S9-S5	54
6. X-Ray Structure of 2a S5.	5

1. General Information

¹H and ¹³CNMR spectra were recorded on Varian instrument (400 MHz) and (100 MHz). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad. Coupling constants, J were reported in Hertz unit (Hz). Preparative TLC was performed on TLC plates, Analytical thin layer chromatography was performed on 10-25um silica gel GF254, visualization was carried out with UV light. Flash column chromatography was performed with SiO₂ (Silicycle Silica Gel 60 (200-300 mesh)). Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification.

2. General procedure for the preparation of 2-arylindoles

Acetophenone (10 mmol), phenylhydrazine (1.2 equiv), HOAc (20% mmol) and EtOH (6 mL) were charged in a 25 mL round bottom flask. Then, the reaction mixture was stirred at 100 °C. When the reaction was completed (detected by TLC), the mixture was cooled to room temperature. The EtOH was evaporated in vacuo, then recrystallized with EtOAc and hexane. Next, phenylhydrazone (10 mmol) were dissolved in toluene (6 mL). To this solution, 1.5 equiv PPA was added at one time and the solution was refluxed. After completion, the reaction mixture was cooled to room temperature, quenched with H₂O (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and then evaporated in vacuo. The residue was purified by column chromatography on silica gel to afford the corresponding 2-arylindoles with ethyl acetate/hexane as the eluent.

(1) E. Fischer, F. Jourdan, Ber. Dtsch. Chem. Ges, 1883, 16, 2241-2245.

(2) B. Robinson, *The Fischer Indole Synthesis*, John Wiley & Sons Inc, New York, 1982.

(3) Y. Wei, I. Deb and N. Yoshikai, J. Am. Chem. Soc, 2012, 134, 9098-9101.

3. Typical Procedure for Direct Oxidation of 2-arylindoles

2-Aryllindoles (0.2 mmol), oxone (0.6 mmol, 369 mg) and CH₃NO₂ (2 mL) were charged in a 10 mL round bottom flask. Then, the reaction mixture was stirred at 100 °C. When the reaction was completed (detected by TLC), the mixture was cooled to room temperature. The reaction was quenched with H₂O (10 mL) and extracted with EtOAc (3×10 mL) or CH₂Cl₂ (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and then evaporated in vacuo. The residue was purified by column chromatography on silica gel to afford the corresponding 2-arylbenzoxazinones with ethyl acetate/hexane as the eluent.

4. Characterization Data of products

2a: ¹H NMR (CDCl₃, 400 MHz): δ 8.31 (d, *J* = 8.0 Hz, 2 H), 8.24 (d, *J* = 8.0 Hz, 1 H), 7.85-7.81 (t, *J* = 7.6 Hz, 1 H), 7.69 (d, *J* = 8.0 Hz, 1 H), 7.60-7.50 (m, 4 H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.5, 157.0, 146.9, 136.5, 132.6, 130.2, 128.7, 128.5, 128.3, 128.2, 127.2, 117.0, 77.3, 77.0, 76.9. HRMS Calcd (ESI) m/z for C₁₄H₉NNaO₂: [M+Na]⁺ 246.0525, found: 246.0523.

2b: ¹H NMR (CDCl₃, 400 MHz): δ 8.17 (d, *J* = 7.2 Hz, 2 H), 7.90 (s, 1 H), 7.51-7.37 (m, 5 H), 2.36 (s, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.6, 144.6, 138.6, 137.7, 132.3, 130.2, 128.6, 128.0, 126.9, 116.6, 77.3, 77.0, 76.7, 21.2. HRMS Calcd (ESI) m/z for C₁₅H₁₁NNaO₂: [M+Na]⁺ 260.0682, found: 260.0686.

2c: ¹H NMR (CDCl₃, 400 MHz): δ 8.17 (d, *J* = 7.2 Hz, 2 H), 7.52 (d, *J* = 9.2 Hz, 2 H), 7.48-7.38 (m, 3 H), 7.30-7.27 (m, 1 H), 3.82 (s, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.8, 159.2, 155.1, 141.0, 132.1, 130.2, 128.7, 128.6, 127.9, 125.9, 117.6, 108.5, 77.3, 77.0, 76.7, 55.9. HRMS Calcd (ESI) m/z for C₁₅H₁₁NNaO₃: [M+Na]⁺ 276.0631, found: 276.0632.

2d: ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (d, *J* = 7.6 Hz, 2 H), 7.73-7.71 (m, 1 H), 7.57-7.54 (m, 1 H), 7.46-7.35 (m, 4 H). ¹³C NMR (CDCl₃, 100 MHz): δ 162.4, 157.4 (d, *J*_{CF} = 230.1 Hz), 143.4, 132.6, 129.7, 129.4 (d, *J*_{CF} = 8.0 Hz), 128.6, 128.1, 124.6 (d, *J*_{CF} = 23.5 Hz), 118.1 (d, *J*_{CF} = 8.8 Hz), 113.7 (d, *J*_{CF} = 24.0 Hz), 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₄H₈FNNaO₂: [M+Na]⁺ 264.0431, found: 264.0435.

2e: ¹H NMR (CDCl₃, 400 MHz): δ 8.27 (d, *J* = 7.2 Hz, 2 H), 8.17 (s, 1 H), 7.74 (d, *J* = 8.0 Hz, 1 H), 7.63-7.50 (m, 4 H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.4, 157.2, 145.4, 136.8, 133.8, 132.8, 129.7, 128.7, 128.7, 128.3, 127.9, 118.0, 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₀H₈N₂Na: [M+Na]⁺ 280.0136, found: 280.0126.

2f: ¹H NMR (CDCl₃, 400 MHz): δ 8.34 (s, 1 H), 8.28 (d, *J* = 7.2 Hz, 2 H), 7.90 (d, *J* = 8.4 Hz, 1 H), 7.59-7.49 (m, 4 H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.2, 157.4, 145.8, 139.6, 132.9, 131.0, 129.8, 128.9, 128.8, 128.3, 121.4, 118.3, 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₄H₈BrNNaO₂: [M+Na]⁺ 323.9631, found: 323.9617.

2g: ¹H NMR (CDCl₃, 400 MHz): δ 8.24 (d, *J* = 7.2 Hz, 2 H), 7.89 (s, 1 H), 7.55-7.37 (m, 3 H), 7.37 (s, 1 H), 2.35 (s, 3 H), 2.32 (s, 1 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.4, 156.2, 146.9, 144.9, 137.7, 132.1, 130.2, 128.5, 128.2, 127.9, 127.3, 114.3, 77.3, 77.0, 76.7, 20.4, 19.5. HRMS Calcd (ESI) m/z for C₁₆H₁₃NNaO₂: [M+Na]⁺ 274.0838, found: 274.0844.

2h: ¹H NMR (CDCl₃, 400 MHz): δ 8.25 (d, *J* = 7.6 Hz, 2 H), 7.55-7.48 (m, 4 H), 7.09 (s, 1 H), 4.02 (s, 3 H), 3.99 (s, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.4, 156.5, 156.3, 149.6, 143.2, 132.2, 130.3, 128.6, 127.9, 109.5, 108.0, 107.4, 77.3, 77.0, 76.7, 56.4, 56.4. HRMS Calcd (ESI) m/z for C₁₆H₁₃NNaO₄: [M+Na]⁺ 306.0737, found: 306.0735.

2i: ¹H NMR (CDCl₃, 400 MHz): δ 8.21 (d, *J* = 7.2 Hz, 2 H), 8.02 (d, *J* = 7.6 Hz, 1 H), 7.48-7.40 (m, 4 H), 7.23 (d, *J* = 7.6 Hz, 1 H), 2.42 (s, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.5, 157.1, 148.0, 146.9, 132.5, 130.3, 129.6, 128.6, 128.4, 128.2, 127.1, 114.3, 77.3, 77.0, 76.7, 22.1. HRMS Calcd (ESI) m/z for C₁₅H₁₁NNaO₂: [M+Na]⁺ 260.0682, found: 260.0691.

2j: ¹H NMR (CDCl₃, 400 MHz): δ 8.20 (d, *J* = 7.6 Hz, 2 H), 8.07 (d, *J* = 8.4 Hz, 1 H), 7.60 (s, 1 H), 7.51-7.37 (m, 4 H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.7, 158.2, 148.0, 142.9, 133.0, 129.8, 129.7, 128.8, 128.7, 128.4, 127.0, 115.3, 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₄H₈CINNaO₂: [M+Na]⁺ 280.0136, found: 280.0128.

2k: ¹H NMR (CDCl₃, 400 MHz): δ 8.17 (d, *J* = 7.2 Hz, 2 H), 7.72 (s, 1 H), 7.44-7.23 (m, 3 H), 2.48 (s, 3 H), 2.30(s, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 160.1, 154.9, 142.9, 138.5, 137.8, 135.8, 132.1, 130.5, 128.5, 128.0, 125.6, 116.5, 77.3, 77.0, 76.7, 21.2, 16.9. HRMS Calcd (ESI) m/z for C₁₆H₁₃NNaO₂: [M+Na]⁺ 274.0838, found: 274.0845.

21: ¹H NMR (CDCl₃, 400 MHz): δ 8.30 (d, *J* = 7.6 Hz, 2 H), 8.03 (d, *J* = 7.6 Hz, 1 H), 7.63 (d, *J* = 7.2 Hz, 1 H), 7.53-7.47 (m, 3 H), 7.37-7.34 (t, *J* = 7.6 Hz, 1 H), 2.63 (s, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 160.0, 155.7, 145.1, 137.2, 136.1, 132.3, 130.4, 128.6, 128.1, 127.6, 126.1, 116.8, 77.3, 77.0, 76.7, 17.0. HRMS Calcd (ESI) m/z for C₁₅H₁₁NNaO₂: [M+Na]⁺ 260.0682, found: 260.0678.

2m: ¹H NMR (CDCl3, 400 MHz): δ 8.26 (d, *J* = 7.6 Hz, 2 H), 8.05 (d, *J* = 8.0 Hz, 1 H), 7.78 (d, *J* = 7.6 Hz, 1 H), 7.52-7.49 (m, 1 H), 7.44-7.41 (m, 2 H), 7.35-7.31(m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.8, 157.5, 143.7, 136.8, 133.0, 131.9, 129.8, 128.7, 128.6, 128.2, 127.1, 118.4, 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₄H₈ClNNaO₂: [M+Na]⁺ 280.0136, found: 280.0147.

2n: ¹H NMR (CDCl₃, 400 MHz): δ 8.81 (d, *J* = 6.0 Hz, 1 H), 8.27 (d, *J* = 6.4 Hz, 2 H), 7.93 (d, *J* = 8.4 Hz, 1 H), 7.72-7.67 (m, 2 H), 7.57 (s, 2 H), 7.48-7.42 (m, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.7, 157.9, 145.8, 137.0, 132.7, 130.3, 130.0, 128.7, 128.2, 127.8, 127.3, 125.2, 122.3, 112.8, 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₈H₁₁NNaO₂: [M+Na]⁺296.0682, found: 296.0687.

20: ¹H NMR (CDCl₃, 400 MHz): δ 8.09 (d, *J* = 8.0 Hz, 1 H), 8.05 (d, *J* = 8.0 Hz, 2 H), 7.70-7.66 (m,1 H), 7.53(d, *J* = 8.0 Hz, 1 H), 7.38-7.35 (m, 1 H), 7.17 (d, *J* = 8.0 Hz, 2 H), 2.31 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.5, 157.1, 147.0, 143.2, 136.4, 129.4, 128.4, 128.2, 127.8, 127.3, 127.0, 116.8, 77.3, 77.0, 76.7, 21.6. HRMS Calcd (ESI) m/z for C₁₅H₁₁NNaO₂: [M+Na]⁺ 260.0682, found: 260.0693.

2p: ¹H NMR (CDCl₃, 400 MHz): δ 8.31-8.28 (m, 2 H), 8.21 (d, *J* = 8.0 Hz, 1 H), 7.83-7.79 (t, *J* = 8.0 Hz, 1 H), 7.65 (d, *J* = 8.0 Hz, 1 H), 7.52-7.48 (t, *J* = 7.6 Hz, 1 H), 7.19-7.15 (t, *J* = 8.0 Hz, 2 H). ¹³C NMR (CDCl₃, 100 MHz): δ 165.5 (d, *J_{CF}*= 252.8 Hz), 159.3, 156.1, 146.8, 136.6, 130.6 (d, *J_{CF}*= 9.1 Hz), 128.5, 128.2, 127.1, 126.3, 116.7, 115.9 (d, *J_{CF}*= 22.0 Hz), 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₄H₈FNNaO₂: [M+Na]⁺ 264.0431, found: 264.0442.

2q: ¹H NMR (CDCl₃, 400 MHz): δ 8.25-8.23 (m, 2 H), 7.86-7.81 (m, 1 H), 7.68 (d, *J* = 8.4 Hz, 1 H), 7.55-7.47 (m, 2 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.2, 156.2, 146.7, 139.0, 136.6, 129.6, 129.1,

128.6, 128.4, 127.2, 116.9, 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₄H₈ClNNaO₂: [M+Na]⁺ 280.0136, found: 280.0129.

2r: ¹H NMR (CDCl₃, 400 MHz): δ 8.12 (d, *J* = 7.6 Hz, 1 H), 8.04 (d, *J* = 8.0 Hz, 2 H), 7.75-7.71 (t, *J* = 7.6 Hz, 1 H), 7.57-7.52 (m, 3 H), 7.44-7.41 (m, 1 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.1, 156.2, 146.6, 136.6, 132.0, 129.6, 129.0, 128.6, 128.4, 127.6, 127.1, 116.8, 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₁₄H₈BrNNaO₂: [M+Na]⁺ 323.9631, found: 323.9637.

2s: ¹H NMR (CDCl₃, 400 MHz): δ 8.36 (d, *J* = 8.4 Hz, 2 H), 8.23 (d, *J* = 7.6 Hz, 1 H), 7.84-7.80 (m, 2 H), 7.73-7.64 (m, 5 H), 7.50-7.40 (m, 3 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.5, 156.9, 147.0, 145.2, 139.7, 136.5, 128.9, 128.7, 128.5, 128.1, 128.1, 127.2, 127.1, 116.9, 77.3, 77.0, 76.7. HRMS Calcd (ESI) m/z for C₂₀H₁₃NNaO₂: [M+Na]⁺ 322.0838, found: 322.0846.

2t: ¹H NMR (CDCl₃, 400 MHz): δ 8.18 (d, J = 8.0 Hz, 1 H), 8.00-7.96 (t, J = 10.8 Hz, 2 H), 7.79-7.75 (t, J = 7.6 Hz, 1 H), 7.62 (d, J = 7.6 Hz, 1 H), 7.47-7.43 (t, J = 7.6 Hz, 1 H), 7.20 (d, J = 8.0 Hz, 1 H), 2.30 (s, 3 H), 2.29 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.6, 157.3, 147.0, 142.0, 137.1, 136.4, 129.9, 129.1, 128.4, 127.8, 127.5, 126.9, 125.8, 116.8, 77.4, 77.0, 76.7, 20.0, 19.7. HRMS Calcd (ESI) m/z for C₁₆H₁₃NNaO₂: [M+Na]⁺ 274.0838, found: 274.0847.

2u: ¹H NMR (CDCl₃, 400 MHz): δ 8.20 (d, *J* = 8.0 Hz, 1 H), 7.87 (d, *J* = 7.2 Hz, 1 H), 7.82-7.78 (m, 2 H), 7.66 (d, *J* = 8.0 Hz, 1 H), 7.51-7.47 (t, *J*=14.4 Hz, 1 H), 7.40-7.36 (t, *J* = 8.0 Hz, 1 H), 7.10-7.08 (t, *J* = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.7, 159.4, 156.8, 146.8, 136.5, 131.4, 129.7, 128.5, 128.2, 127.1, 120.7, 119.2, 116.9, 112.4, 77.4, 77.0, 76.7, 55.5. HRMS Calcd (ESI) m/z for C₁₅H₁₁NNaO₃: [M+Na]⁺ 276.0631, found: 276.0637.

2v: ¹H NMR (CDCl₃, 400 MHz): δ 8.20 (d, *J* = 8.0 Hz, 1 H), 7.98 (d, *J* = 5.6 Hz, 2 H), 7.81-7.77

(t, J = 8.0 Hz, 1 H), 7.64 (d, J = 8.4 Hz, 1 H),7.49-7.45(t, J = 7.2 Hz, 1 H), 7.16 (d, J = 7.6 Hz, 1 H), 2.84-2.81 (m, 4 H), 1.82 (s, 4 H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.7, 157.4, 147.1, 142.7, 137.6, 136.4, 129.5, 128.9, 128.4, 127.8, 127.1, 127.0, 125.2, 116.8, 77.3, 77.0, 76.7, 29.6, 29.3, 22.9, 22.8. HRMS Calcd (ESI) m/z for C₁₈ H₁₅NNaO₂: [M+Na]⁺ 300.0995, found: 300.1001.

A: H NMR (CDCl₃, 400 MHz): δ 8.38 (d, J = 7.2 Hz, 2H), 7.57-7.47 (m, 5H), 7.42 (d, J = 7.2Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 193.4, 161.0, 159.7, 136.7, 132.1, 129.9, 129.2, 128.7, 128.3, 124.6, 123.0, 121.9. HRMS Calcd (ESI) m/z for C₁₄H₉NO: [M+H]⁺ 208.0757, found: 208.0764

5. Copies of ¹H and ¹³C NMR Spectra

-- S 9 --

-- S 45 --

6. X-Ray Structure of 2a

