Supporting Information

Unusual Formation of Thiaisoporphyrins from 21-Thiaporphyrins[†]

Avijit Ghosh,^a Way Zen Lee^b and Mangalampalli Ravikanth^{*,a}

^aDepartment of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India. E-mail: <u>ravikanth@chem.iitb.ac.in</u>, ^b Instrumentation Center: Department of Chemistry, National Taiwan Normal University, 88 Sec. 4 Ting-Chow Road, Taipei, 11677, Taiwan.

Contents

1. HR–MS spectrum of compound 2			83
2. HR–MS spectrum of compound 3			S4
3. ¹ H NMR spectrum of compound 4			
4. ¹ H NMR spectrum of compound 2			S6
5. ¹ H NMR spectrum of compound 5			S7
6. ¹ H NMR spectrum of compound 3			S8
7. Comparison of ¹ H NMR spectra of compounds 2 and 4			
8. Comparison of ¹ H NMR spectra of compounds 3 and 5			S10
9. ¹ H NMR spectrum (expanded region) of compound 2			S11
10. ¹ H NMR spectrum (expanded region) of compound 3			S12
11. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 2			S13
12. Partial ¹ H– ¹ H COSY spectrum (expanded region) of comp	pound 2	2	S14
13. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 3			
14. Partial ¹ H– ¹ H COSY spectrum (expanded region) of comp	pound 3	3	S16
15. 13 C NMR spectrum of compound 4			S17
16. ¹³ C NMR spectrum of compound $2 \dots \dots \dots$			S18

17. ¹³ C NMR spectrum of compound 5					 S19
18. ¹³ C NMR spectrum of compound 3					 S20
19. Comparison of absorption spectra o	of comp	ound 3	and 3 +7	ГFА	 S21
20. Redox waves of compound 3					 S22
21. Absorption and redox data					 S23
22. Single crystal X-ray structure of con	mpound	13			 S24
23. Crystallographic data for compound	ds 2 and	13			 S25
24. Experimental section					 S26
25. References					 S30

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Compound 2 Mol. Wt. = 763.98 Peak at [M+2H]⁺ = 766.3265

Figure S1. HR–MS spectrum of compound 2.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Mol. Wt. = 795.98Peak at [M]⁺ = 796.3003

Figure S2. HR–MS spectrum of compound 3.

Figure S3. ¹H NMR spectrum of compound 4 recorded in CDCl₃ at room temperature.

Figure S4. ¹H NMR spectrum of compound 2 recorded in CDCl₃ at room temperature.

Figure S5. ¹H NMR spectrum of compound 5 recorded in CDCl₃ at room temperature.

Figure S6. ¹H NMR spectrum of compound **3** recorded in CDCl₃ at room temperature.

Figure S7. Comparison of ¹H NMR spectra of compounds (a) 4 and (b) 2 recorded in $CDCl_3$ at room temperature.

Figure S8. Comparison of ¹H NMR spectra of compounds (a) **5** and (b) **3** recorded in $CDCl_3$ at room temperature.

Figure S9. Expanded region of ¹H NMR spectra for compound **2** recorded in $CDCl_3$ at room temperature.

Figure S10. Expanded region of ¹H NMR spectra for compound **3** recorded in $CDCl_3$ at room temperature.

Figure S11. Partial ¹H–¹H COSY spectrum of compound **2** recorded at room temperature in CDCl₃. **S13**

Figure S12. Expanded region of ${}^{1}H{-}^{1}H$ COSY spectrum of compound **2** recorded in CDCl₃ at room temperature.

Figure S13. Partial ${}^{1}H{-}^{1}H$ COSY spectrum of compound 3 recorded at room temperature in CDCl₃

Figure S14. Expanded region of ${}^{1}H{-}^{1}H$ COSY spectrum of compound **3** recorded in CDCl₃ at room temperature.

Figure S15. ¹³C NMR spectrum of compound 4 recorded in CDCl₃ at room temperature.

Figure S16. ¹³C NMR spectrum of compound 2 recorded in CDCl₃ at room temperature.

Figure S17. ¹³C NMR spectrum of compound 5 recorded in CDCl₃ at room temperature.

Figure S18. ¹³C NMR spectrum of compound 3 recorded in CDCl₃ at room temperature.

Figure S19. Comparison of absorption spectra of compound **3** (black) and **3**+**TFA** (red) recorded in CH_2Cl_2 at room temperature. Concentrations used were ~ 10^{-5} M for both the compounds.

Figure S20. Redox waves of cyclic voltammograms along with differential pulse voltammograms of compound **3** recorded in CH_2Cl_2 solvent using 0.1 M tetrabutylammonium perchlorate (TBAP) as supporting electrolyte and saturated calomel electrode (SCE) as reference electrode at scan rates of 50 mVs⁻¹.

		Absorption data	Redox	data
Compounds	Soret band	Q-bands	oxidation	reduction
	$(log \varepsilon)$	$(\log \varepsilon)$	(V)	(V)
4	427 (5.42)	483(sh), 513 (4.32), 547 (3.72),	1.08	-1.02
		616 (3.44), 676 (3.62)	1.48	-1.35
2	340 (sh), 421	625 (sh), 672 (4.19, br)	0.61	-1.14
	(4.61), 432 (sh)		0.34	-1.59
2+TFA	297 (sh), 395	539 (sh), 539 (sh), 783 (4.45, br)	_	_
	(4.64), 470 (4.67)			
5	431(5.43)	485 (sh), 517 (4.31), 553 (3.73),	1.06	-1.01
		619 (3.44), 672 (3.63)	1.43	-1.31
3	339 (sh), 425	636 (sh), 675 (4.20, br)	0.55	-1.13
	(4.57, br)		0.31	-1.60
3+TFA	296 (sh), 395	537 (sh), 645 (sh), 795 (4.42, br)	_	_
	(4.54), 474 (4.60)			

 a data were collected in CH₂Cl₂ at room temperature.

Figure S21. Single crystal X-ray structure of the compound **3**: (a) perspective view and (b) side view of compound **3** showing the distorted macrocyclic ring (*meso*-aryl rings and hydrogen atoms are omitted for clarity).

Parameters	2	3
mol formula	$C_{54}H_{41}N_3S$	$C_{54}H_{41}N_3O_2S$
fw	763.96	795.96
cryst sym	Monoclinic	Monoclinic
Space group	P 21/n	P 21/c
<i>a</i> (Å)	11.1143(15)	10.921(3)
<i>b</i> (Å)	27.608(4)	17.486(5)
<i>c</i> (Å)	14.148(2)	22.220(6)
α (deg)	90.00	90.00
β (deg)	109.189(11)	102.828(13)
$\gamma(\text{deg})$	90.00	90.00
$V(\text{\AA}^3)$	4100.0(10)	4137(2)
Z	4	4
$\mu \ (\mathrm{mm}^{-1})$	0.121	0.126
D_{calcd} (g cm ⁻³)	1.238	1.278
F(000)	1608	1672
2θ range (deg)	2.12 - 25.03	1.50 - 25.03
Independent refections	7105 [R(int) = 0.1310]	7239 [R(int) = 0.1248]
R1, wR2 $[I > 2\sigma(I)]$	0.1029, 0.2265	0.0981, 0.2424
R1, wR2 (all data)	0.2380, 0.2911	0.2264, 0.3327
GOF	1.024	0.985
Largest diff. peak/hole, (e $Å^{-3}$)	0.676, -0.601	0.420, -0.664

Table S2. Crystallographic data for compounds 2 and 3.

Figure S22. Change of absorption band during the anion binding study of the protonated form (in presence of TFA) of compound **2** ($2 \cdot 3H^{3+}$) with F⁻ anion (tetrabutylammonium fluoride as F⁻ ion source) recorded in CH₂Cl₂ at room temperature. The concentration of the $2 \cdot 3H^{3+}$ was 10^{-5} M.

Experimental Section

Chemical. All general chemicals and solvents were procured from S.D. Fine Chemicals, India. Column chromatography was performed using silica gel and basic alumina obtained from Sisco Research Laboratories, India. Tetrabutylammonium perchlorate was purchased from Fluka and used without further purifications. All NMR solvents were used as received. Solvents like dichloromethane, tetrahydrofuran (THF) and *n*-hexane were purified and distilled by standard procedures.

Instrumentation. The ¹H and ¹³C NMR (δ in ppm) spectra were recorded by using a Bruker AVANCE III 400 MHz spectrometer. Tetramethylsilane (TMS) was used as an internal reference for recording ¹H NMR spectra (residual proton; δ = 7.26 ppm) in CDCl₃. The HR–MS spectra were recorded with a 'Bruker Maxis Impact' spectrometer. Absorption spectra were obtained with 'Cary 100 Bio' UV-visible spectrophotometer. The experiments were done in dry dichloromethane with 0.1 M tetrabutylammonium perchlorate as the supporting electrolyte. Cyclicvoltammetry (CV) and differential pulse voltammetry (DPV) studies were carried out with a BAS electrochemical system by utilizing the three-electrode configuration consisting of glassy carbon (working electrode), platinum wire (auxiliary electrode), and saturated calomel (reference electrode) electrodes.

X-ray crystallography: Single crystal of suitable size for X-ray diffractometer were selected under a microscope and mounted on the tip of a glass fiber, which was positioned on a copper pin. The X-ray data for the compounds **2** and **3** were collected on a Bruker Kappa CCD diffractometer, employing graphite-monochromated Mo K α radiation at 200 (2) K and the θ -2 θ scan mode. The space group for the complex **2** was

determined on the basis of systematic absences and intensity statistics, and the structure of the compounds 2 and 3 were solved by direct methods using SIR92 or SIR97 and refined with SHELXL-97.¹ An empirical absorption correction by multi-scans was applied. All non-hydrogen atoms were refined with anisotropic displacement factors. Hydrogen atoms were placed in ideal positions and fixed with relative isotropic displacement parameters. CCDC 939918 and CCDC 939919 contain the supplementary crystallographic data of compounds 2 and 3 respectively for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General Synthesis. Free base porphyrin 5,10,15,20-tetra(*p*-tolyl)-21-thiaporphyrin **4** and 5,20-bis(*p*-methoxyphenyl)-10,15-bis(*p*-tolyl)porphyrin **5** were synthesized by following literature methods.²

General Synthesis of Compounds 2 and 3. 100 mg of the corresponding freebase porphyrin **4** or **5** in dry toluene (30 mL) was treated with 15 equivalent of PhBCl₂ under nitrogen atmosphere. The reaction mixture immediately turned into green colour and was slowly heated to reflux for 10 h. As the reaction progress, the colour of the reaction mixture turned into dark with greenish tint. The progress of the reaction was monitored by TLC analysis. After completion of the reaction, the excess PhBCl₂ was quenched by adding water to the reaction mixture. The reaction mixture was extracted with CH₂Cl₂ and the organic layers were collected, washed with water, dried over Na₂SO₄. The solvent was removed completely under reduced pressure. The crude solid was subjected to a basic-alumina column chromatography. The fast moving green band followed by

unreacted corresponding freebase porphyrin were collected separately with petrolimether/CH₂Cl₂ (7:3 and 3:2 respectively) solvent mixture. The dark green solid obtained from green fraction was subjected to a basic-alumina column chromatography for further purification. The fast green fraction afforded the corresponding compounds 1/2. The compounds were recrystallized from CH₂Cl₂/*n*-hexane solvent mixture afforded shiny crystalline pure solids in good yields. When the reaction was performed in dry benzene the compounds **2** and **3** were also obtained in similar yield.

Compound 2. Yield 49 % (54 mg, 0.071 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.52$ (d, J (H,H) = 8.04 Hz, 2H, Ar), 7.47 (d, J (H,H) = 7.96 Hz, 2H, Ar), 7.39 (d, J (H,2.56 Hz, 1H, β -thiophene H), 7.37 (s, 2H, Ar), 7.27–7.24 (m, 9H, Ar), 7.20 (d, J (H,H) = 5.84 Hz, 1H, β -thiophene H), 7.05–6.99 (m, 4H, Ar), 6.92 (d, J (H,H) = 4.52 Hz, 1H, β pyrrole H), 6.82 (d, J (H,H) = 8.20 Hz, 2H, Ar), 6.74 (d, J (H,H) = 4.16 Hz, 1H, β pyrrole H), 6.67 (d, J (H,H) = 4.52 Hz, 1H, β -pyrrole H), 6.55 (d, J (H,H) = 3.72 Hz, 1H, β -pyrrole H), 6.19 (d, J (H,H) = 3.72 Hz, 1H, β -pyrrole H), 6.13 (d, J (H,H) = 4.16 Hz, 1H, β -pyrrole H), 2.46–2.44 (m, 9H, –CH₃), 2.31 (s, 3H, –CH₃). ¹³C NMR (CDCl₃): $\delta = 144.93, 144.64, 141.47, 139.86, 138.45, 137.87, 137.39, 137.17, 137.15, 136.72,$ 136.55, 136.47, 135.57, 133.49, 132.58, 131.77, 131.72, 131.31, 129.85, 129.69, 129.30, 129.09, 129.01, 128.61, 127.95, 127.82, 127.48, 126.41, 125.53, 123.09, 120.42, 118.12, 114.68, 21.54, 21.48, 21.16 ppm. Uv-vis (λ_{max} nm (log ε), CH₂Cl₂): 340 (sh), 421 (4.61), 432 (sh), 625 (sh), 672 (4.19, br); **2+TFA**: 297 (sh), 395 (4.64), 470 (4.67), 539 (sh), 783 (4.45, br). HR–MS: m/z: 766.3265 $[M+2H]^+$. Anal. Calcd for C₅₄H₄₁N₃S: C, 84.89; H, 5.41; N, 5.50. Found: C, 84.24; H, 5.39; N, 5.48.

Compound 3. Yield 52% (57 mg, 0.072 mmol). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (d, J (H,H) = 8.72 Hz, 2H, Ar), 7.47 (d, J (H,H) = 7.96 Hz, 2H, Ar), 7.41 (d, J (H,8.64 Hz, 2H, Ar), 7.38 (d, J (H,H) = 5.84 Hz, 1H, β -thiophene H), 7.26–7.24 (m, 7H, Ar), 7.19 (d, J (H,H) = 5.84 Hz, 1H, β -thiophene H), 7.05–6.98 (m, 6H, Ar), 6.92 (d, J (H,H) = 4.52 Hz, 1H, β -pyrrole H), 6.83 (d, J (H,H) = 8.16 Hz, 2H, Ar), 6.73 (d, J (H,H) = 4.16 Hz, 1H, β -pyrrole H), 6.66 (d, J (H,H) = 4.52 Hz, 1H, β -pyrrole H), 6.55 (d, J (H,H) = 3.76 Hz, 1H, β -pyrrole H), 6.19 (d, J (H,H) = 3.72 Hz, 1H, β -pyrrole H), 6.13 (d, J (H,H) = 4.12 Hz, 1H, β -pyrrole H), 3.89 (s, 3H, -OCH₃), 3.88 (s, 3H, -OCH₃), 2.47 (s, 3H, -CH₃), 2.31 (s, 3H, $-CH_3$). ¹³C NMR (CDCl₃): $\delta = 159.96$, 159.01, 148.43, 144.99, 144.61, 141.44, 139.41, 137.82, 137.36, 137.11, 136.55, 135.98, 135.64, 135.02, 133.42, 133.05, 132.46, 132.42, 131.86, 131.76, 131.68, 129.80, 129.65, 128.96, 128.58, 127.93, 127.78, 127.46, 126.33, 125.49, 122.48, 120.45, 119.37, 118.13, 114.63, 113.77, 113.66, 55.49, 55.43, 21.50, 21.12 ppm. Uv-vis (λ_{max} nm (log ε), CH₂Cl₂): 339 (sh), 425 (4.57, br), 636 (sh), 675 (4.20, br); **3+TFA**: 296 (sh), 395 (4.54), 474 (4.60), 537 (sh), 645 (sh), 795 (4.42, br). HR–MS: m/z: 796.3003 $[M]^+$. Anal. Calcd for C₅₄H₄₁N₃O₂S: C, 81.48; H, 5.19; N, 5.28. Found: C, 81.02; H, 5.16; N, 5.23.

References

- Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, A64, 112; Program for Crystal Structure Solution and Refinement; University of Goettingen: Goettingen, Germany, 1997.
- (2) (a) Chmielewski, J. P.; Grzeszczuk, M.; Latos-Grazynski, L.; Lisowski, J. Inorg.
 Chem. 1989, 28, 3546. (b) Broadhurst, M. J.; Grigg, R.; Johnson, A. W. J. Chem.
 Soc. C 1971, 3681.