Supporting Information

First Total Synthesis of (-)-Sinularianin B

Koichiro Ota, and Hiroaki Miyaoka*

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences,

1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan

E-mail: miyaokah@toyaku.ac.jp

> Fax: +81-42-676-3073

1. Procedures and Spectroscopic Data of Relevant Compounds S2-S7
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds and sinularianin B (1). S8-S17
3. ${ }^{1} \mathrm{H}$ spectra for synthetic (-)-epoxyalcohol $\mathbf{3}$ and rac- $\mathbf{3}$ with Chirabite AR S18
4. NOESY spectra for cyclopentanes 5, 7 and 4-epi-7. S19-S21

Experimental Section

General: All reagents (Aldrich, Kanto, TCI and Wako) and solvents were of commercial quality and were used as received. Reactions were monitored by thin layer chromatography on glass plates coated with a fluorescent indicator with a 254 nm excitation wavelength (Merck Merck-5554-7). Flash column chromatography was performed using Kanto Chemical Silica Gel 60N (spherical, natural) $40-50 \mu \mathrm{~m}$. Melting points (mp) were measured using the Yanaco melting point apparatus MP-S3 and are uncorrected. Optical rotations were measured with a JASCO P-1030 polarimeter. IR spectra were recorded with a JASCO FT-IR/620 spectrometer. UV spectra were recorded using a SHIMADZU UV-1200 spectrophotometer. Single crystal X-ray diffraction was recorded using a MacScience Co., Ltd DIP 2020 Image Plate. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX-400 or Bruker Biospin AV-600 spectrometer. Chemical shifts are given on the $\delta(\mathrm{ppm})$ scale using tetramethylsilane (TMS) as the internal standard (s, singlet; d, doublet; t , triplet; q, quartet; quint., quintet; m, multiplet; br, broad). High resolution ESIMS (HRESIMS) spectra were obtained using a Micromass LCT spectrometer. Elemental analysis data were obtained using an Elementar Vario EL.
((2R,3R)-3-(2-(4-methoxybenzyloxy)ethyl)-3-methyloxiran-2-yl)methanol (3): To a cold $\left(-20^{\circ} \mathrm{C}\right)$ suspension of $4 \AA$ molecular sieves $(8.44 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38.0 \mathrm{~mL})$ were added D-(-)-DIPT $(1.50 \mathrm{~mL}, 7.13 \mathrm{mmol}), \mathrm{Ti}(\mathrm{OiPr})_{4}(1.10 \mathrm{~mL}, 3.73 \mathrm{mmol})$ and $\mathrm{TBHP}\left(5.55 \mathrm{M}\right.$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $38.6 \mathrm{~mL}, 214 \mathrm{mmol}$). After stirring for 30 min at the same temperature, a solution of allylic alcohol $2(16.9 \mathrm{~g}, 71.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added over 10 hr . After stirring at $-20{ }^{\circ} \mathrm{C}$ for $2 \mathrm{hr}, \mathrm{NaOH}$ (30% solution in brine, 3.25 mL) was added. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, warmed to room temperature, and stirred for 10 min . Magnesium sulfate (2.90 g) and Celite (0.35 g) were then added, and after stirring for 15 min the mixture was passed through a pad of Celite and then concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane/AcOEt = 1:1) to give epoxyalcohol $\mathbf{3}\left(17.5 \mathrm{~g}, 97 \%\right.$ yield) as a colorless oil. $R_{\mathrm{f}}=$ 0.20 (hexane/AcOEt 1:1); $[\alpha]_{\mathrm{D}}{ }^{25}=+0.29\left(c=1.06\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=4.4,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15$ (brs, 1 H), 1.94 (ddd, $J=5.9,6.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (ddd, $J=6.6,7.1,14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.1$ (s), 130.2 (s), 129.2 (d) $\times 2,113.8$ (d) $\times 2,72.6$ (t), $66.0(\mathrm{t}), 62.8(\mathrm{~d}), 61.2(\mathrm{t}), 59.6(\mathrm{~s}), 55.2(\mathrm{q}), 38.2(\mathrm{t}), 17.2(\mathrm{q}) ;$ IR (neat): $\mathrm{v}^{\sim}=3441,2932 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}+\mathrm{Na}^{+}: 275.1259\left[M+\mathrm{Na}^{+}\right]$; found: 275.1247; elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$: C 66.65, H 7.99; found: C 66.64, H 8.14.

Determination of optical purity of synthetic (-)-epoxyalcohol 3.

Before comparison between synthetic (-)-epoxyalcohol 3 and synthetic racemic epoxyalcohol rac- $\mathbf{3}$ with Chirabite-AR, we examined the effect of differing amounts of Chirabite-AR regarding rac-3, to determine sufficient signal separations between (+)- and (-)-3. Consequently, a mixture of rac-3 with $75 \mathrm{~mol} \%$ of Chirabite-AR was measured sequentially by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR at room
temperature in CDCl_{3}, the methine proton at $\mathrm{C}-9$ signal separations were observed between 3.32 to 3.14 ppm , and good enantiomeric discrimination was achieved for (+)- and (-)-3. NMR analysis of (-)-epoxyalcohol $\mathbf{3}$ under the same conditions as used to obtain the results indicated that separated signals exhibited $71 / 1$ ratio in numerical integration value. Therefore, the optical purity of synthetic (-)- $\mathbf{3}$ was determined as $>95 \%$ ee.
(2R,3R)-3-benzyloxymethyl-2-(2-iodoethyl)-2-methyloxirane (4): To a stirring solution of epoxyalcohol $3(16.5 \mathrm{~g}, 65.4 \mathrm{mmol})$ in THF (109 mL) were added $\mathrm{NaH}(55 \%, 5.70 \mathrm{~g}, 432 \mathrm{mmol})$, $\operatorname{BnBr}(11.7 \mathrm{~mL}, 98.5 \mathrm{mmol})$ and TBAI $(2.40 \mathrm{~g}, 6.50 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and then allowed to warm to room temperature. After stirring for $7 \mathrm{hr}, \mathrm{MeOH}(10.0 \mathrm{~mL})$ was slowly added at $0^{\circ} \mathrm{C}$. The mixture was then allowed to warm to room temperature. After stirring for 1 hr , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous NaHCO_{3} solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, and then concentrated in vacuo. The residue was passed through a pad of silica gel (hexane/AcOEt $=4: 1$) and then concentrated in vacuo to give a crude product.
To a stirring suspension of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /saturated aqueous NaHCO_{3} solution (10:1, $127 \mathrm{~mL})$ were added $\operatorname{DDQ}(22.3 \mathrm{~g}, 98.2 \mathrm{mmol})$ over 10 min at room temperature. After stirring for 30 min , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was passed through a pad of silica gel (hexane/AcOEt $=2: 1$) and then concentrated in vacuo to give a crude product.
To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(211 \mathrm{~mL})$ were added $\mathrm{Ph}_{3} \mathrm{P}(19.9 \mathrm{~g}, 75.9$ mmol), imidazole ($6.47 \mathrm{~g}, 95.0 \mathrm{mmol}$). After stirring for 5 min at same temperature, $\mathrm{I}_{2}(19.4 \mathrm{~g}$, 76.4 mmol) was slowly added. The mixture was then allowed to warm to room temperature. After stirring for 10 min , the solvent was removed in vacuo. The residue was passed through a pad of silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=6: 1$) and then concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane/AcOEt =9:1) to give epoxyiodide $4(19.8 \mathrm{~g}, 91 \%$ yield for 3 steps) as a colorless oil. $R_{\mathrm{f}}=0.60$ (hexane/AcOEt $2: 1$); $[\alpha]_{\mathrm{D}}{ }^{25}=+7.19(c=1.53$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J$ $=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=4.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=6.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{ddd}, J=5.3$, $8.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=1.9,7.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=4.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (ddd, $J=$ $5.3,8.6,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{ddd}, J=7.7,9.2,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=137.8$ (s), 128.4 (d) $\times 2,127.7$ (d), 127.7 (d) $\times 2,73.2$ (t$), 68.5$ (t), 61.1 (d), 60.1 (s$)$, 42.2 (t), 16.2 (q), -1.2 (t); IR (neat): $v^{\sim}=2925,2857 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{IO}_{2}+\mathrm{H}^{+}: 333.0352\left[M+\mathrm{H}^{+}\right]$; found: 333.0335 ; elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{IO}_{2}: \mathrm{C}$ 47.00, H 5.16; found: C 46.94, H 5.27.
(1R,2S,3R)-2-benzyloxymethyl-1-methyl-3-phenylperoxythio-3-prop-1-en-2-ylcyclopentanol
(5): To a solution of methallyl phenyl sulfone ($1.45 \mathrm{~g}, 7.39 \mathrm{mmol}$) in THF (24.0 mL) were added ${ }^{n} \mathrm{BuLi}\left(1.58 \mathrm{M}\right.$ solution in hexane, $4.50 \mathrm{~mL}, 7.11 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min at same temperature, a solution of epoxyiodide $4(1.89 \mathrm{~g}, 5.69 \mathrm{mmol})$ in THF $(90.0 \mathrm{~mL})$ was added
and then allowed to warm to $-45^{\circ} \mathrm{C}$ over 18 h . After cooling to $-78{ }^{\circ} \mathrm{C},{ }^{n} \mathrm{BuLi}(1.58 \mathrm{M}$ solution in hexane, $7.20 \mathrm{~mL}, 11.4 \mathrm{mmol})$. After stirring for 15 min at same temperature, $\mathrm{Me}_{3} \mathrm{Al}(1.07 \mathrm{M}$ solution in hexane, $8.00 \mathrm{~mL}, 8.56 \mathrm{mmol}$) was introduced and then allowed to warm to $-50{ }^{\circ} \mathrm{C}$. After stirring for 2.5 hr , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, 1.00 M aqueous HCl solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane/AcOEt $=2: 1$) to give cyclopentane $5(2.26 \mathrm{~g}, 99 \%$ yield) as a white needle-like crystalline solid. $R_{\mathrm{f}}=0.15$ (hexane/AcOEt 2:1); m.p. 108-109 ${ }^{\circ} \mathrm{C}$ (recrystallized from hexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{25}=-45.72\left(c=1.16\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.73-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H})$, $4.66(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=4.8,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.41 (dd, $J=9.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (brs, 1H), 2.75 (dd, $J=4.8,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dt, $J=6.4$, $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{dt}, J=6.4,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$; NOE correlations $(\mathrm{H} / \mathrm{H}): \mathrm{H}-3\left(\delta_{\mathrm{H}} 2.41\right) /$ ortho $-\mathrm{H}\left(\delta_{\mathrm{H}} 7.73\right)$, $\mathrm{H}-3\left(\delta_{\mathrm{H}} 2.41\right) / \mathrm{H}-10\left(\delta_{\mathrm{H}} 1.60\right)$, H-3 (δ_{H} $1.71) / \mathrm{H}-9\left(\delta_{\mathrm{H}} 2.75\right), \mathrm{H}-8\left(\delta_{\mathrm{H}} 4.46\right) / \mathrm{H}-10\left(\delta_{\mathrm{H}} 1.60\right), \mathrm{H}-8\left(\delta_{\mathrm{H}} 4.41\right) / \mathrm{H}-11\left(\delta_{\mathrm{H}} 1.98\right), \mathrm{H}-9\left(\delta_{\mathrm{H}}\right.$ $2.75) / \mathrm{H}-11\left(\delta_{\mathrm{H}} 1.98\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.2$ (s), 137.8 (s), 136.0 (s), 133.5 (d), 130.3 (d) $\times 2,128.4$ (d) $\times 2,128.0$ (d) $\times 2,127.7$ (d), 127.7 (d) $\times 2,118.1$ (t), 80.4 (s), 77.5 (s$), 73.6$ (t), 68.8 (t), 57.9 (d), 38.0 (t), 31.4 (t), 22.9 (q), 20.8 (q); IR (KBr): $v^{\sim}=3363,2975,2931,1291,1135$ cm^{-1}; HRMS (ESI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}+\mathrm{Na}^{+}$: $423.1606\left[M+\mathrm{Na}^{+}\right]$; found: 423.1591; elemental analysis calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~S}$: C 68.97, H 7.05; found: C 69.17, H 7.00.
(1R,2S,3S)-2-(benzyloxymethyl)-1-methyl-3-(prop-1-en-2-yl)cyclopentanol
and (1R,2S,3R)-2-(benzyloxymethyl)-1-methyl-3-(prop-1-en-2-yl)cyclopentanol (4-epi-7): ${ }^{n} \mathrm{Bu}_{3} \mathrm{P}$ $(0.82 \mathrm{~mL}, 3.28 \mathrm{mmol})$ was added to a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(1.36 \mathrm{~g}, 1.31 \mathrm{mmol})$ in 1,4-dioxane $(200 \mathrm{~mL})$ at room temperature and the mixture was stirred for $10 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(18.3 \mathrm{~mL}$, $131 \mathrm{mmol})$ and $\mathrm{HCO}_{2} \mathrm{H}(4.95 \mathrm{~mL}, 131 \mathrm{mmol})$ were added to the mixture at the same temperature. After stirring for 10 min , the mixture was refluxed. A solution of cyclopentane $5(6.56 \mathrm{~g}, 16.4$ mmol) in 1,4-dioxane (128 mL) was added to the mixture and the mixture was stirred for 15 min . The reaction mixture was concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane/AcOEt $=5: 1$) to give trans-cyclopentane $7(3.89 \mathrm{~g}, 91 \%$ yield) as a colorless oil and cis-cyclopentane 4 -epi-7 ($171 \mathrm{mg}, 4 \%$ yield) as a colorless oil. trans-cyclopentane 7: $R_{\mathrm{f}}=0.40$ (hexane/AcOEt 3:1); $[\alpha]_{\mathrm{D}}{ }^{25}=+31.86\left(c=1.23\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=4.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (brs, $1 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.55(\mathrm{dd}, J=4.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{brs}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=4.4,10.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.24 (dt, $J=10.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dt}, J=11.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.71$ (s, $3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$; NOE correlations $(\mathrm{H} / \mathrm{H}): \mathrm{H}-4\left(\delta_{\mathrm{H}} 2.24\right) / \mathrm{H}-10\left(\delta_{\mathrm{H}} 1.33\right), \mathrm{H}-8\left(\delta_{\mathrm{H}} 3.55\right.$ and $3.38) / \mathrm{H}-10\left(\delta_{\mathrm{H}} 1.33\right), \mathrm{H}-9\left(\delta_{\mathrm{H}} 2.40\right) / \mathrm{H}-11\left(\delta_{\mathrm{H}} 1.71\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.7(\mathrm{~s})$,
 (d), 39.4 (t), 27.2 (t), 23.5 (q), 18.7 (q); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=147.2$ (s), 138.6 (s$), 128.6$ (d) $\times 2,128.5$ (d), 127.8 (d) $\times 2,110.6$ (t), 80.0 (s$), 73.5$ (t), 70.9 (t), 52.5 (d), 48.4 (d), 40.4 (t), 27.8 (t), 24.1 (q), 18.8 (q); IR (neat): $v^{\sim}=3446,2962,2871,1645,1098 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{Na}^{+}$: $283.1674\left[M+\mathrm{Na}^{+}\right]$; found: 283.1677; elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}$: C 78.42, H 9.29; found: C 78.26, H 9.03. cis-cyclopentane 4-epi-7: $R_{\mathrm{f}}=0.35$ (hexane/AcOEt 3:1); $[\alpha]_{\mathrm{D}}{ }^{25}=-15.57\left(c=1.27\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J=3.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=7.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=8.2,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=3.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.73$ $(\mathrm{m}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$; NOE correlations $(\mathrm{H} / \mathrm{H}): \mathrm{H}-4\left(\delta_{\mathrm{H}} 3.08\right) / \mathrm{H}-9\left(\delta_{\mathrm{H}}\right.$ 2.15), $\mathrm{H}-8\left(\delta_{\mathrm{H}} 3.40\right.$ and 3.26$) / \mathrm{H}-10\left(\delta_{\mathrm{H}} 1.41\right), \mathrm{H}-8\left(\delta_{\mathrm{H}} 3.40\right.$ and 3.26$) / \mathrm{H}-11\left(\delta_{\mathrm{H}} 1.76\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.7$ (s), 138.5 (s$), 128.3$ (d) $\times 2,127.4$ (d) $\times 2$, 127.4 (d), 110.5 (t), 81.9 (s), 73.2 (t), 68.7 (t), 52.7 (d), 47.0 (d), 39.3 (t), 26.3 (t), $25.5(\mathrm{q}), 23.7$ (q); IR (neat): $v^{\sim}=3387,2963$, 2936, 2871, 1646, $1070 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{Na}^{+}: 283.1674\left[M+\mathrm{Na}^{+}\right]$; found: 283.1669; elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}$: C 78.42, H 9.29; found: C 78.18, H 9.29 .
(1R,2R,5S)-2-hydroxy-2-methyl-5-(prop-1-en-2-yl)cyclopentanecarbaldehyde (8): A solution of trans-cyclopentane $7(2.63 \mathrm{~g}, 10.1 \mathrm{mmol})$ in THF (50.5 mL) was added to a pre-prepared Na $(2.53 \mathrm{~g}, 110 \mathrm{mmol}) /$ liquid ammonia $(50.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for $20 \mathrm{~min}, \mathrm{NH}_{4} \mathrm{Cl}(10.1 \mathrm{~g}$, 189 mmol) was added to the mixture and excess NH_{3} was removed by warming. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was passed through a pad of silica gel (hexane/AcOEt $=$ 3:2) and then concentrated in vacuo to give a crude product.
To a solution of IBX ($5.66 \mathrm{~g}, 20.2 \mathrm{mmol})$ in DMSO $(50.5 \mathrm{~mL})$ was added a solution of the above crude product in THF (50.5 mL). After stirring for 2.5 hr at room temperature, $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture. After diluting with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was filtered through celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane/AcOEt $=2: 1$) to give aldehyde $\mathbf{8}(1.64 \mathrm{~g}$, 96% yield for 2 steps) as a colorless oil. $R_{\mathrm{f}}=0.30$ (hexane/AcOEt 2:1); $[\alpha]_{\mathrm{D}}{ }^{25}=-29.48(c=1.27$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.72(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H})$, $2.99(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=2.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{brs}, 1 \mathrm{H}), 1.95-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.34$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.7$ (d), 145.7 (s , 110.5 (t), 81.3 (s$), 65.8$ (d), 45.7 (d), 41.9 (t), 28.0 (t), 25.3 (q), 20.3 (q); IR (neat): $v^{\sim}=3416,2968,1717,1652,1104 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{Na}^{+}$: 191.1048 [$M+\mathrm{Na}^{+}$]; found: 191.1041; elemental analysis calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: C 71.39, H 9.59; found: C 71.49, H 9.50.
(3R,3aR,4R,7aS)-4-(tert-butyldimethylsilyloxy)-3-hydroxy-3,7-dimethyl-2,3,3a,4,5,7a-hexahy dro- $\mathbf{1 H}$-indene-4-carbaldehyde (10): To a stirring solution of aldehyde $\mathbf{8}$ ($121 \mathrm{mg}, 0.718 \mathrm{mmol}$) in THF (109 mL) were added TBSCN ($122 \mathrm{mg}, 0.862 \mathrm{mmol}$), and PNPCl ($41.3 \mathrm{mg}, 0.0718 \mathrm{mmol}$)
at room temperature. After stirring for 2 hr , TMSCN $(0.14 \mathrm{~mL}, 1.12 \mathrm{mmol})$ was added at same temperature. The mixture was concentrated in vacuo, and the residue was passed through a pad of silica gel (hexane/AcOEt $=15: 1$) and then concentrated in vacuo to give a crude product.
A solution of the above crude product in THF (4.00 mL) was added to a pre-prepared LDA (0.39 M solution in THF, $4.97 \mathrm{~mL}, 1.94 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ and then allowed to warm to $0{ }^{\circ} \mathrm{C}$. After stirring for 40 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$, and then pre-mixed allyl bromide $(0.31 \mathrm{~mL}$, $3.59 \mathrm{mmol})$ and HMPA ($0.31 \mathrm{~mL}, 1.80 \mathrm{mmol}$) was introduced to the mixture. After stirring for 15 min at same temperature, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was passed through a pad of silica gel (hexane/AcOEt $=30: 1$) and then concentrated in vacuo to give a crude diene 9 .
To a stirring solution of the above crude diene 9 in degassed 1,2-dichloroethane (144 mL) was added Grubbs $2^{\text {nd }}$ generation catalyst ($61.0 \mathrm{mg}, 0.0718 \mathrm{mmol}$) at room temperature, and then refluxed. After stirring for 6 hr , cooled to room temperature, and then added DMSO (0.51 mL , $7.18 \mathrm{mmol})$. After stirring for 12 hr , the solvent was removed in vacuo, the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the residue was passed through a pad of silica gel (hexane/AcOEt $=12: 1$) and then concentrated in vacuo to give a crude product.
To a stirring solution of the above crude product in toluene (14.4 mL) was added DIBAH (1.02 M solution in hexane, $1.41 \mathrm{~mL}, 1.44 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ and then allowed to warm to $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$, and then $\mathrm{Et}_{2} \mathrm{O}(14.4 \mathrm{~mL})$, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (7.18 mL), and 0.50 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (14.4 mL) were introduced to the mixture. The mixture was then allowed to warm to room temperature and then the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was passed through a pad of silica gel (hexane/ $\mathrm{AcOEt}=15: 1$) and then concentrated in vacuo to give a crude product.
To a stirring solution of the above crude product in THF (7.18 mL) were added acetic acid (0.82 $\mathrm{mL}, 14.4 \mathrm{mmol}$) and TBAF (1.00 M solution in THF, $7.18 \mathrm{~mL}, 7.18 \mathrm{mmol}$) at room temperature, and then allowed to warm to $40^{\circ} \mathrm{C}$. After stirring for 5 hr , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous NaHCO_{3} solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane/AcOEt $=4: 1$) to give α-siloxyaldehyde $\mathbf{1 0}(156 \mathrm{mg}, 67 \%$ yield for 5 steps) as a white needle-like crystalline solid. $R_{\mathrm{f}}=0.60$ (hexane/AcOEt 2:1); m.p. $77-78{ }^{\circ} \mathrm{C}$ (recrystallized from hexane/AcOEt); $[\alpha]_{\mathrm{D}}{ }^{25}=+9.70\left(c=1.51\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.77(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.96-1.73 (m, 4H), $1.69(3 \mathrm{H}, \mathrm{s}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=204.0$ (d), 137.4 (s), 116.5 (d), 81.3 (s$), 78.4$ (s$), 58.9$ (d), 41.5 (t$), 39.8$ (d), 35.3 (t), 27.9 (q), 25.8 (q) $\times 3,25.6$ (t), 20.2 (q), 18.6 (s$),-2.5(\mathrm{q}),-3.1(\mathrm{q}) ;$ IR (KBr): $\mathrm{v}^{\sim}=3420,2956$, 2931, 2857, 1733, $1653 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{Na}^{+}: 347.2018$ [$\left.\mathrm{M}^{2} \mathrm{Na}^{+}\right]$; found: 347.2023; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$: C 66.62, H 9.94; found: C 66.54, H 9.90 .
(4aS,4a ${ }^{1} R, 7 \mathrm{aS}, 9 \mathrm{a} R$)-4a-(tert-butyldimethylsilyloxy)-3,7,9a-trimethyl-4a,5,7a,8,9,9a-hexahydr oindeno[1,7-bc]oxepin-2(4a $\left.{ }^{1} \boldsymbol{H}\right)$-one (12): To a stirring solution of α-siloxyaldehyde $\mathbf{1 0}$ (101 mg , 0.311 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.22 \mathrm{~mL})$ were added 2-(diethoxyphosphoryl)propanoic acid (211 mg , $0.933 \mathrm{mmol})$, and WSC ($179 \mathrm{mg}, 0.933 \mathrm{mmol}$) at room temperature. After stirring for 30 min , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous NaHCO_{3} solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, and then concentrated in vacuo. The residue was passed through a pad of silica gel (hexane/AcOEt $=3: 2$) and then concentrated in vacuo to give a crude product.
To a stirring solution of the above crude product in THF (62.4 mL) was added $\mathrm{KO}^{t} \mathrm{Bu}(48.9 \mathrm{mg}$, 0.435 mmol) at room temperature and then allowed to warm to $60^{\circ} \mathrm{C}$. After stirring for 2 hr , the mixture was cooled to room temperature and then the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, and then concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=12: 1$) to give α, β-unsaturated lactone $12\left(88.1 \mathrm{mg}, 78 \%\right.$ yield for 2 steps) as a colorless oil. $R_{\mathrm{f}}=0.35$ (hexane/AcOEt 12:1); $[\alpha]_{\mathrm{D}}{ }^{25}=+161.66\left(c=1.29\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.20(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=11.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.13$ $(\mathrm{m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dt}, J=14.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ $(\mathrm{s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.9$ (s), 140.7 (d), 137.0 (s), 127.7 (s$), 117.7$ (d), 85.8 (s$), 73.1$ (s$), 58.7$ (d), 41.3 (d), 41.1 (t), 40.7 (t), 26.5 (t), 25.7 (q) $\times 3,24.6$ (q), 24.1 (q), 20.1 (q), 18.4 (s), -2.1 (q), -2.4 (q); IR (neat): $v^{\sim}=2957,2930,2857,1698,1684,1254 \mathrm{~cm}^{-1}$; UV/Vis: $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 215 \mathrm{sh}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ cm^{-1} 9100); HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}+\mathrm{H}^{+}: 363.2355\left[M+\mathrm{H}^{+}\right]$; found: 363.2350; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$: C 69.56, H 9.45; found: C 69.39, H 9.49.

Sinularianin B (1): To a stirring solution of α, β-unsaturated lactone $\mathbf{1 2}(71.0 \mathrm{mg}, 0.196 \mathrm{mmol})$ in THF (1.96 mL) was added TBAF (1.00 M solution in THF, $0.49 \mathrm{~mL}, 0.490 \mathrm{mmol}$) at room temperature. After stirring for 2 hr , a suspension of $4 \AA$ molecular sieves (14.0 mg) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($271 \mathrm{mg}, 1.96 \mathrm{mmol}$) in $\mathrm{MeOH}\left(9.80 \mathrm{~mL}\right.$) was added and the mixture was warmed to $40^{\circ} \mathrm{C}$. After stirring for 36 hr , the solvent was removed in vacuo. The residue was passed through a pad of silica gel $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and then concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane/AcOEt $=2: 1$) to give sinularianin B (1) $(48.0 \mathrm{mg}, 99 \%$ yield) as a colorless oil. $R_{\mathrm{f}}=0.15$ (hexane/AcOEt 2:1); $[\alpha]_{\mathrm{D}}{ }^{25}=-111.40\left(c=1.55\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.16(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=1.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}$, $1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~s}$, $3 \mathrm{H}), 1.47(\mathrm{brs}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.7$ (s), 152.2 (d), 137.3 (s$), 129.1$ (s$), 117.2$ (d), 85.4 (s$), 78.4$ (s$), 56.6$ (d), 41.8 (t), 40.9 (d), 39.7 (t), 26.0 (q), 25.3 (t), 20.2 (q), 10.6 (q); IR (neat): $v^{\sim}=3445,2962,1734,1658 \mathrm{~cm}^{-1}$; UV/Vis $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm}$ 213sh ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 9600$); HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}+\mathrm{Na}^{+}: 271.1310\left[M+\mathrm{Na}^{+}\right]$; found: 271.1313; elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C 72.55, H 8.12; found: C 72.37, H 7.93.

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

3

98ャ1 691

$\stackrel{\text { 咢 }}{\substack{i n}}$

- 38.2031
$\stackrel{\circ}{8}$

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

$\frac{\text { \% }}{\substack{0}}$ $\stackrel{\circ}{6}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

teos $011-$

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

てrgl 2 tl
$8019011-$

Electronic Supplementary Material（ESI）for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

$6689011-$
6095 881
LャL9 ¢ \ddagger ¢

－NN゚N 毋 $\rightarrow-$
$1686^{\circ} 97$
$61 \forall L^{\circ}$ \％s
$9687^{\circ} 6 \varepsilon$

Electronic Supplementary Material（ESI）for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

 8

¢	\％	N్య゙	윽Nㅡㅇరㅇ̈ㅇ	－180	¢	
¢ั่	なை	은	¢下̇io	¢	なヺ「	ล่เล่ ลั่

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013
 $\begin{array}{r}173.7375 \\ -152.1938 \\ \square \\ -137.3303 \\ -129.1268 \\ \hline\end{array}$

+

-

