Accelerating Influence of the *gem*-Difluoromethylene Group in a Ring-Closing Olefin Metathesis reaction: A Thorpe Ingold Effect?

César A. Urbina-Blanco‡, Maciej Skibiński‡, David O'Hagan* and Steven P. Nolan*

*EaSTCHEM School of Chemistry, University of St Andrews, KY16 9ST St Andrews United Kingdom

Supporting Information

Table of Contents

General considerations	3
Synthesis of the substrates 5-Fluoronona-1,8-diene (1b) Nona-1,8-dien-5-one (5) 5,5-Difluoronona-1,8-diene (1c) 5,5-bis(dimethylcarboxyl)-nona-1,8-diene (1d) 2,2-bis(but-3-en-1-yl)-1,3-dioxolane (1e)	3 3 6 8 10 12
Synthesis of the products 5,5-Difluocyclohept-1-ene (2c)	14 14
Procedure for the reaction kinetics Representative NMR indicating the chemical shifts used	17 17
Conversion (%) vs time (s) for compounds 2a-2e	21
DFT calculated energies of compounds 1a-1e and 2a-2e	22
XYZ coordinates of compounds 1a-1e	23
Rotational energies for 1a-1e	25
XYZ coordinates of compounds 2a-2e	28
Cambridge Structural Database (CSD) Search	30
References	33

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

General considerations

All reagents were purchased from commercial supliers and used as received unles stated, 1,8-nonadiene was distilled prior tu use. Complex **M20** and **M23** were purchased from Umicore. Nona-1,8-dien-5-ol and nona-1,8-dien-5-one **(5)** were synthesized according to reported procedures.

Synthesis of the substrates

5-Fluoronona-1,8-diene (1b)

To a solution of nona-1,8-dien-5-ol (2.58 g, 18.4 mmol, 1 eq)¹ in DCM (40 mL), DAST (3.59 mL, 36.8 mmol, 2 eq) was added dropwise at -78 °C. The resulting mixture was stirred for 5 h and gradually warmed to R.T. Stirring was continued for 2h. The reaction mixture was quenched with saturated aqueous NaHCO₃ solution (80 mL) and extracted with DCM (3 × 40 mL). The combined organic extracts were dried over MgSO₄ and concentrated by Vigreux distillation. The concentrate was purified over silica gel, eluting with pentane. Bulk solvent was removed by Vigreux distillation (atmospheric pressure, 55 °C). Traces of solvent were removed by Vigreux distillation at reduced pressure (500 mbar, 40-50 °C) yielding 5-fluoronona-1,8-diene (0.95 g, 36%) as a pale-yellow liquid:

R_f = 0.25 (pentane); ¹**H NMR** (400 MHz, CD₂Cl₂) $\delta_{\rm H}$ 5.83 (2H, ddt, *J* = 17.1, 10.2, 6.7 Hz, *CH*-2), 5.04 (2H, ddt, *J* = 17.1, 2.0, 1.6 Hz, *CH*-1a), 4.97 (2H, ddt, *J* = 10.2, 2.0, 1.3 Hz *CH*-1b), 4.49 (1H, dtt, *J* = 49.4, 8.2, 4.1 Hz, *CH*-5), 2.27-2.06 (4H, m, *CH*₂-3), and 1.79-1.53 (4H, m, *CH*₂-4); {¹⁹**F**}¹**H NMR** (400 MHz, CD₂Cl₂) $\delta_{\rm H}$ 5.83 (2H, ddt, *J* = 17.1, 10.2, 6.7 Hz, *CH*-2), 5.04 (2H, ddt, *J* = 17.1, 2.0, 1.6 Hz, *CH*-1a), 4.97 (2H, ddt, *J* = 10.2, 2.0, 1.3 Hz *CH*-1b), 4.49 (1H, tt, *J* = 8.2, 4.1 Hz, *CH*-5), 2.27-2.06 (4H, m, *CH*₂-3), and 1.77-1.57 (4H, m, *CH*₂-4); ¹³**C NMR** (100 MHz, CD₂Cl₂) $\delta_{\rm C}$ 138.3 (*C*-2), 115.1 (*C*-1), 93.5 (d, *J* = 167.3 Hz, *C*-5), 34.7 (d, *J* = 21.1 Hz, *C*-4), and 29.7 (d, *J* = 45.5 Hz, *C*-3); {¹H}¹⁹**F NMR** (376 MHz, CD₂Cl₂) $\delta_{\rm F}$ -182.97 (dtt, *J* = 49.4, 30.8, 16.9 Hz, *CF*-5). **HRMS** *m/z* (EI⁺) Found: [M]⁺.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

¹H NMR of **1b** (400 MHz, CD₂Cl₂)

 ^{13}C NMR of 1b (100 MHz, $\text{CD}_2\text{Cl}_2)$

{¹H}¹⁹F NMR of **1b** (376 MHz, CD₂Cl₂)

Nona-1,8-dien-5-one (5)

Concentrated sulfuric acid (16.3 mL) was added dropwise to a solution of chromium trioxide (19.35 g, 193.5, 2.5 eq) in water (56.4 mL). The resulting Jones reagent was added dropwise to a solution of nona-1,8-dien-5-ol¹ (10.75 g, 76.6 mmol, 1 eq) at 0 °C. Reaction mixture was left to stir overnight at RT and quenched with isopropanol (10 mL). Acetone was removed under reduced pressure and the residue extracted with Et₂O (4 × 150 mL). Combined organic extracts were washed with water (150 mL), saturated aqueous NaHCO₃ solution (150 mL), brine (150 mL), dried over MgSO₄ and concentrated. Purification by distillation under reduced pressure (2.6 mBar, 42-44 °C) yielded nona-1,8-dien-5-one (9.64 g, 91%) as a pale-yellow oil:

R_f = 0.61 (DCM); ¹**H** NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 5.76 (2H, ddt, *J* = 17.0, 10.3, 6.6 Hz, *CH*-2), 4.98 (2H, ddt, *J* = 17.0, 1.8, 1.6 Hz, *CH*-1a), 4.93 (2H, ddt, *J* = 10.3, 1.8, 1.3 Hz *CH*-1b), 2.51-2.43 (4H, m, *CH*₂-4), 2.34-2.23 (4H, m, *CH*₂-3); ¹³**C** NMR (125 MHz, CDCl₃) $\delta_{\rm c}$ 209.5 (C-5), 137.2 (C-2), 115.4 (C-1), 42.0 (C-4), 27.8 (C-3). LRMS *m*/*z* (ES⁺) 161.09 [M+Na]⁺.

¹H NMR of **5** (300 MHz, CDCl₃)

 ^{13}C NMR of **5** (125 MHz, CDCl_3)

5,5-Difluoronona-1,8-diene (1c)

A mixture of nona-1,8-dien-5-one (3.86 g, 27.9 mmol, 1 eq) and neat DAST (10.9 mL, 111.7 mmol, 4 eq) was stirred for 6 days at 45 °C. Crude reaction was added portionwise to a biphasic mixture of saturated aqueous NaHCO₃ solution (300 mL) and pentane (150 mL) at 0 °C. The aqueous layer was separated and extracted with pentane (3×100 mL). The combined organic extracts were dried over MgSO₄ and concentrated by Vigreux distillation. The concentrate was purified over silica gel, eluting with pentane. Bulk solvent was removed by Vigreux distillation (atmospheric pressure, 55 °C). Traces of solvent were removed by Vigreux distillation at reduced pressure (700 mbar, 45-60 °C) yielding 5,5-difluoronona-1,8-diene (2.47 g, 55%) as a pale-yellow oil:

R_f = 0.44 (pentane); ¹**H NMR** (300 MHz, CDCl₃) **δ**_H 5.83 (2H, ddt, *J* = 17.1, 10.2, 6.6 Hz, *CH*-2), 5.07 (2H, ddt, *J* = 17.1, 1.7, 1.7 Hz, *CH*-1a), 5.01 (2H, ddt, *J* = 10.2, 1.7, 1.3 Hz *CH*-1b), 2.30-2.19 (4H, m, *CH*₂-3), and 2.03-1.83 (4H, m, *CH*₂-4); ¹³**C NMR** (75 MHz, CDCl₃) **δ**_C 137.1 (*C*-2), 124.7 (t, *J* = 241.0 Hz, *C*-5), 115.4 (*C*-1), 35.9 (t, *J* = 25.4 Hz, *C*-4), 26.6 (t, *J* = 5.2 Hz, *C*-3); {¹⁹**F**}¹**H NMR** (300 MHz, CDCl₃) **δ**_H 5.83 (2H, ddt, *J* = 17.1, 10.2, 6.6 Hz, *CH*-2), 5.07 (2H, ddt, *J* = 17.1, 1.7, 1.7 Hz, *CH*-1a), 5.01 (2H, ddt, *J* = 10.2, 1.7, 1.3 Hz *CH*-1b), 2.30-2.19 (4H, m, *CH*₂-3), and 1.97-1.88 (4H, m, *CH*₂-4); ¹³**C NMR** (75 MHz, CDCl₃) **δ**_C 137.1 (*C*-2), 124.7 (t, *J* = 241.0 Hz, *C*-5), 115.4 (*C*-1), 35.9 (t, *J* = 25.4 Hz, *C*-4), 26.6 (t, *J* = 5.2 Hz, *C*-5), 115.4 (*C*-1), 35.9 (t, *J* = 25.4 Hz, *C*-4), 26.6 (t, *J* = 5.2 Hz, *C*-5), 115.4 (*C*-1), 35.9 (t, *J* = 25.4 Hz, *C*-4), 26.6 (t, *J* = 5.2 Hz, *C*-5), 115.4 (*C*-1), 35.9 (t, *J* = 25.4 Hz, *C*-4), 26.6 (t, *J* = 5.2 Hz, *C*-5), 115.4 (*C*-1), 35.9 (t, *J* = 25.4 Hz, *C*-4), 26.6 (t, *J* = 5.2 Hz, *C*-3); {¹H}¹⁹**F NMR** (282 MHz, CDCl₃) **δ**_F -99.06; ¹⁹**F NMR** (282 MHz, CDCl₃) **δ**_F -99.06; ¹⁹**F NMR** (282 MHz, CDCl₃) **δ**_F -99.06; ¹⁹**F NMR** (282 MHz, CDCl₃) **δ**_F -99.06; (quintet, *J* = 16.51 Hz, *CF*₂-5). **HRMS** *m*/*z* (EI⁺) Found: [M]⁺ 160.1056. C₉H₁₄F₂ requires [M]⁺ 160.1058; **LRMS** *m*/*z* (EI⁺) 160.0 [M]⁺.

¹H NMR of **1c** (300 MHz, CDCl₃)

 ^{13}C NMR of 1c (75 MHz, CDCl_3)

5,5-bis(dimethylcarboxyl)-nona-1,8-diene (1d)

To a suspension of NaH (1.30 g, 51.5 mmol) in DMF (80 mL) dimethyl malonate (4 mL, 34.4 mmol) was added dropwise at 0 °C. After 20 min, 4bromo-1-butene (4.68 mL, 44.7 mmol) was added dropwise, the mixture was stirred for 2 h at room temperature. A further aliquot of NaH (1.30 g, 51.5 mmol) and 4-bromo-1-butene (4.68 mL, 44.7 mmol) were added at 0 °C and stirred for 12 h at RT. A third aliquot of NaH (0.87 g, 34.4 mmol) followed by 4-bromo-1-butene (3.60 mL, 34.4 mmol) was added at 0 °C and stirring continued for 4 h. Reaction was quenched with saturated aqueous NH₄Cl solution (50 mL), diluted with DCM (150 mL) and washed with brine (5 × 100 mL). Organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification over silica gel, eluting with pentane and DCM (30:70), followed by Vigreux distillation at reduced pressure (3 mBar, 101-102 °C) yielded 5,5-bis(dimethylcarboxyl)-nona-1,8-diene (5.33 g, 64%) as a colourless oil:

R_f = 0.41 (DCM); ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 5.76 (2H, ddt, *J* = 17.0, 10.3, 6.4 Hz, *CH*-2), 5.02 (2H, ddt, *J* = 17.0, 1.8, 1.4 Hz, *CH*-1a), 4.96 (2H, ddt, *J* = 10.3, 1.8, 1.2 Hz, *CH*-1b), 3.71 (6H, s, *CH*₃-7), 2.02-1.90 (8H, m, *CH*₂-3, 4); ¹³**C NMR** (100 MHz, CDCl₃) $\delta_{\rm C}$ 172.0 (C-6), 137.5 (C-2), 115.2 (C-1), 57.2 (C-5), 52.5 (C-7), 31.9 (CH₂), 28.5 (CH₂). **HRMS** *m*/*z* (ES⁺) Found: [M+Na]⁺ 263.1254. C₁₃H₂₀NaO₄ requires [M+Na]⁺ 263.1259; **LRMS** *m*/*z* (ES⁺) 263.03 [M+Na]⁺.

¹H NMR of **1d** (500 MHz, CDCl₃)

¹³C NMR of **1d** (100 MHz, CDCl₃)

2,2-bis(but-3-en-1-yl)-1,3-dioxolane (1e)

p-Toluenesulfonic acid monohydrate (0.04 g, 0.2 mmol) was added to a mixture of nona-1,8-dien-5-one (3.05 g, 22.1 mmol, 1 eq) and ethane-1,2-diol (1.60 mL, 28.7 mmol, 1.3 eq) in toluene (60 mL). Resulting solution was refluxed for 2.5 h, until 0.4 mL of water had been collected in a Dean-Stark trap. Solution was washed with aqueous NaOH solution (10% w/v, 15 mL), water (5 × 10 mL), and brine (20 mL). The organic extracts were dried over MgSO₄ and concentrated. Purification by Vigreux distillation under reduced pressure (2.6 mBar, 62-64 °C) yielded 2,2-bis(but-3-en-1-yl)-1,3-dioxolane (2.17 g, 54%) as a colourless oil:

R_f = 0.5 (pentane:Et₂O, 92:8); ¹**H** NMR (500 MHz, CDCl₃) $δ_{\rm H}$ 5.83 (2H, ddt, J = 17.0, 10.2, 6.5 Hz, *CH*-2), 5.02 (2H, ddt, J = 17.0, 1.7, 1.7 Hz, *CH*-1a), 4.97-4.91 (2H, m, *CH*-1b), 3.95 (4H, s, *CH*₃-6), 2.16-2.10 (4H, m, *CH*₂-3), 1.74-1.68 (4H, m, *CH*₂-4); ¹³**C** NMR (125 MHz, CDCl₃) $δ_{\rm C}$ 138.6 (*C*-2), 114.4 (*C*-1), 111.3 (*C*-5), 65.2 (*C*-6), 36.6 (*C*-4), 28.2 (*C*-3). HRMS *m*/*z* (ES⁺) Found: [M+H]⁺ 183.1387. C₁₁H₁₉O₂ requires [M+H]⁺ 183.1385; LRMS *m*/*z* (ES⁺) 183.12 [M+H]⁺.

¹H NMR of **1e** (500 MHz, CDCl₃)

Synthesis of the products

5,5-Difluocyclohept-1-ene (2c)

To a solution of 5,5-difluoronona-1,8-diene (1.67 g, 10.4 mmol) in pentane (520 mL) was added M23 (0.10 g, 0.10 mmol). The reaction was stirred for 3 h at RT. The bulk solvent was removed by Vigreux distillation. The concentrate was purified over silica gel, eluting with pentane. Bulk solvent was removed by Vigreux distillation (amospheric pressure, 45-55 °C). Traces of pentane were removed by Vigreux distillation at reduced pressure (700 mbar, 45-60 °C) yielding 5,5-difluorocyclohept-1-ene (0.92 g, 67%) as a pale-yellow liquid:

R_f = 0.44 (pentane); ¹**H NMR** (500 MHz, CDCl₃) **δ**_H 5.90-5.81 (2H, m, *CH*-2), 2.22-2.08 (4H, m, *CH*₂-3), 2.04-1.89 (4H, m, *CH*₂-4); ¹**H NMR** (500 MHz, C₇D₈) **δ**_H 5.60-5.51 (2H, m, *CH*-2), 1.85-1.76 (4H, m, *CH*₂-3), 1.75-1.65 (4H, m, *CH*₂-4); {¹⁹**F**}¹**H NMR** (500 MHz, CDCl₃) **δ**_H 5.90-5.81 (2H, m, *CH*-2), 2.20-2.10 (4H, m, *CH*₂-3), 2.01-1.92 (4H, m, *CH*₂-4); ¹³**C NMR** (125 MHz, CDCl₃) **δ**_C 131.7 (*C*-2), 126.1 (t, *J* = 239.4 Hz, *C*-5), 35.6 (t, *J* = 25.4 Hz, *C*-4), 21.1 (t, *J* =6.8 Hz, *C*-3); {¹**H**}¹⁹**F NMR** (470 MHz, CDCl₃) **δ**_F -89.98; {¹**H**}¹⁹**F NMR** (470 MHz, C₇D₈) **δ**_F -89.85; ¹⁹**F NMR** (470 MHz, CDCl₃) **δ**_F -89.98 (quintet, *J* = 15.0 Hz, *CF*₂-5). **HRMS** *m*/*z* (El⁺) Found: [M]⁺ 132.0755. C₇H₁₀F₂ requires [M]⁺ 132.0751; **LRMS** *m*/*z* (El⁺) 132.08 [M]⁺.

 ^{13}C NMR of $\textbf{2c}~(125~\text{MHz},~\text{CDCI}_3)$

$^{19}\text{F}\{^1\text{H}\}$ NMR of 2c (470 MHz, CDCl_3)

Procedure for the reaction kinetics

Inside a glovebox, 800 μ L of a stock solution of the substrate in toluene-*d*₈ (0.25 mmol/800 μ L; 0.3125 mmol/5 mL) and the internal standard (1,3,5–trimethoxybenzene or α, α, α -trifluorotolune, 0.125 mmol/800 μ L; 0.1562 mmol/5 mL) were introduced in a Wilmad® screw-cap NMR tube. The NMR tube was left to equilibrate at 15 °C inside the NMR after and then 200 μ L of a stock solution of the catalysts (0.05mmol/200 μ L; 0.125mmol/5mL) were injected into the NMR tube. The progress of the reaction was followed by ¹H NMR and ¹⁹F{¹H}NMR. (1 scan per datapoint).

Representative NMR indicating the chemical shifts used

¹H NMR of the RCM of **1a** (500 MHz, toluene- d_8)

-165

-170

-175

5-Fluorocycloheptene **2b** is an unknown compound. The signal at ¹⁹F-NMR \Box = -165.8 ppm is assigned to **2b** based on expectation. It is alone in this region and has a similar chemical shift to related cycloalkanes. Eg fluorocycloheptane has a chemical shift of $\delta_{\rm F}$ = -165 ppm (see I. Busci, B. Torok, A. I. Marko, G. Rasul, G. K. S Prakash, G. A. Olah., *J. Am. Chem. Soc.*, 2002, **124**, 7728 – 7736) and fluorocyclooctane has a chemical shift of $\Box_{\rm F}$ = -160 ppm (see H. J. Schneider, W. Gschwendtner, D. Heiske, V. Hoppen, F. Thomas, *Tetrahedron*, 1977, **33**, 1769 – 1773). The signal at $\Box_{\rm F}$ = -177 ppm is assigned to 4-fluorocyclohexene (see F. J. Weigert, *J. Org. Chem.*, 1980, **45**, 3476 – 3483).

-180 f1 (ppm) -185

-190

-195

 $^{19}\text{F}\{^1\text{H}\}\,$ NMR of the RCM of 1c (470 MHz, toluene-d_8)

¹H NMR of the RCM of **1d** (500 MHz, toluene-d₈)

¹H NMR of the RCM of **1e** (500 MHz, toluene- d_8)

Conversion (%) vs time (s) for compounds 2a-2e

Time	% 2a	Time	% 2b	Time	% 2c	Time	% 2d	Time	% 2e
0	0	0	0.0	0	0.0	0	0.0	0	0.0
300	1.35	960	6.4	1200	33.1	660	19.0	240	11.8
378	1.63	1923	9.7	1849	43.6	792	24.1	379	16.8
990	3.10	2885	11.4	2500	51.7	1407	41.3	990	36.3
1604	4.37	3848	12.5	3150	57.7	2020	52.9	1602	49.4
2219	5.37	4811	13.3	3800	62.2	2634	61.0	2217	58.1
2833	6.08	5774	13.8	4452	65.6	3249	66.7	2832	63.9
3447	6.65	6736	14.0	5103	67.9	3863	70.3	3449	67.7
4062	7.11	7695	14.3	5753	69.7	4479	72.6	4064	70.5
4675	7.44	8658	14.5	6403	71.0	5094	74.3	4680	72.1
5290	7.56	9621	14.7	7053	71.9	5711	75.3	5294	73.4
5905	7.77	10583	14.9	7702	72.6	6328	76.1	5908	74.2
6519	7.97	11546	15.0	8354	73.2	6941	76.6	6523	74.9
7134	8.21	12509	15.2	9004	73.7	7555	77.0	7139	75.5
7748	8.38	13472	15.3	9654	74.0	8169	77.3	7753	75.9
8363	8.43	14434	15.4	10304	74.3	8783	77.5	8369	76.4
8977	8.74	15398	15.5	10954	74.6	9398	77.7	8983	76.6
9592	8.79	16360	15.5	11605	74.7	10013	77.9	9596	76.7
10202	8.93	17323	15.6	12255	74.9	10627	78.1	10212	76.7
10817	9.01	18285	15.7	12905	75.1	11242	78.2	10827	77.2
11431	9.05	19249	15.7	13555	75.3	11857	78.2	11442	77.3
12045	9.18	20211	15.8	14205	75.3	12478	78.3	12057	77.7
12659	9.25	21173	15.8	14855	75.4	13094	78.3	12671	77.6
13274	9.27	22136	15.9	15505	75.4	13709	78.4	13286	77.5
13888	9.43	23099	15.9	16155	75.6	14324	78.5	13900	77.7
14503	9.50	24062	16.0	16805	75.7	14938	78.5	14515	77.6
15117	9.64	25025	15.9	17455	75.6	15553	78.5	15131	77.6
15733	9.61	25987	16.0	18105	75.7	16168	78.4	15746	77.8
16347	9.64	26950	16.0	18755	75.9	16785	78.5	16361	77.9
16961	9.71	27913	16.0	19405	75.8	17400	78.5	16975	77.9
17576	9.81	28876	16.0	20055	76.0	18015	78.5	17591	78.1
18190	9.84	29839	16.1	20705	75.9	18629	78.5	18205	77.8
18804	9.87			21355	75.9	19244	78.6	18821	78.2
19418	9.91			22007	76.0	19859	78.5	19435	78.0
20032	9.97			22657	76.0	20472	78.6	20049	78.0
20645	9.99			23307	76.1	21087	78.6	20663	78.2

DFT calculated energies of compounds 1a-1e and 2a-2e

All the DFT static calculations were performed at the GGA level with the Gaussian09 set of programs, 2 using the B3LYP functional. 3 with a 6-311+G(d,p) basis set.

- **E+ZP** Sum of Electronic and zero-point Energies
- **E+T** Sum of Electronic and thermal Energies
- H Sum of Electronic and thermal Enthalpies
- **G** Sum of Electronic and thermal Free Energies

Enero							
Energy (a.u.)							
E+T	Н	G					
7 -352.418183	-352.417239	-352.467425					
1 -451.697518	-451.696574	-451.749228					
-550.986162	-550.985218	-551.039279					
3 -808.194809	-808.193864	-808.266378					
9 -580.277674	-580.276730	-580.334249					
7 -273.849919	-273.848975	-273.887144					
6 -373.130230	-373.129286	-373.169553					
9 -472.420744	-472.419799	-472.461306					
1 -729.632349	-729.631404	-729.690767					
1 -501.713052	-501.712108	-501.758252					
	E+T 7 -352.418183 1 -451.697518 0 -550.986162 8 -808.194809 9 -580.277674 7 -273.849919 6 -373.130230 9 -472.420744 1 -729.632349 1 -501.713052	E+T H 7 -352.418183 -352.417239 1 -451.697518 -451.696574 0 -550.986162 -550.985218 8 -808.194809 -808.193864 9 -580.277674 -580.276730 7 -273.849919 -273.848975 6 -373.130230 -373.129286 9 -472.420744 -472.419799 1 -729.632349 -729.631404 1 -501.713052 -501.712108					

XYZ coordinates of compounds 1a-1e

	1a		1b	1c
С	0.00000	0.54807	C 0.00000 0.17438 0.45385	C 0.00000 0.30981
0.16656 C	1.28116	-0.13211 -	H 0.00000 0.29691 1.54394 C -1.27706 -0.51638 -	0.00701 C 1.28513 -0.39452 -
0.32807 H	1.28454	-0.14763 -	0.00020 H -1.25787 -1.54402	0.39688 H 1.27006 -0.50709 -
1.42529 H	1.28963	-1.18044 -	0.38235 H -1.27445 -0.58501 -	1.48573 H 1.26555 -1.40138
0.00761 C	-1.28116	-0.13212 -	1.09328 C 1.27706 -0.51639 -	0.03018 C -1.28513 -0.39452 -
0.32807 H	-1.28963	-1.18045 -	0.00020 H 1.27445 -0.58501 -	0.39688 H -1.26555 -1.40138
0.00762 H	-1.28454	-0.14763 -	1.09328 H 1.25787 -1.54402	0.03018 H -1.27006 -0.50709 -
1.42529 C	2.56463	0.55488	0.38234 C -2.55990 0.19033	1.48573 C 2.56427 0.33913
0.17262 H	2.58317	0.55206	0.47274 H -2.57976 1.21053	0.04487 H 2.58919 0.41124
1.26813 H	2.54019	1.60843 -	0.08181 H -2.53265 0.26954	1.13476 H 2.53181 1.36223 -
0.13806 C	-2.56463	0.55488	1.56818 C 2.55990 0.19033 0.47274	0.34514 C -2.56427 0.33913
0.17262 H	-2 54019	1 60843 -	H 2.53265 0.26953 1.56818 H 2.57976 1.21053 0.08181	0.04487 H -2 53181 1 36223 -
0.13806 H	-2 58317	0.55206	C 3.80621 -0.54267	0.34514 H -2 58919 0 41124
1.26813	-3 81843	-0.08311 -	H 3.90928 -1.55869	1.13476 C -3.80402 -0.34809 -
0.35476 H	-3 02388	-0.09549	C -3.80621 -0.54267	0.45505
1.43936	2 91942	0.09311	H -3.90928 -1.55869	1.53767
0.35476	3 02388	-0.005/18 -	C -4.76388 -0.05100 -	0.45505
1.43936	4 77922	0.030+0	H -4.70586 0.95510 -	1.53767
0.38884	4.71023	-0.02905	H -5.63992 -0.63384 -	0.31555
1.47340	4.71002	-0.04330	C 4.76388 -0.05099 -	1.39918
0.05753	1 77924	0 62062	H 5.63992 -0.63384 -	0.10821
0.38884	-5 65703	-1.07980	H 4.70586 0.95510 -	0.31555 H -5 63215 -1 34727
0.05754	-3.03735	-0.64335	F 0.00000 1.49625 -0.06680	0.10821 H -4.70133 -0.81971
1.47340	0.00000	1 50700		1.39918
0.15413	0.00000	0 56561		F 0.00000 1.59194 -
1.26401	0.00000	0.50501		0.52374
	<u>1d</u>	0.1.100.1	<u>1e</u>	4
0.31508	-0.05579	0.14924 -	0.13133	
C 1.18260	1.17523	-0.27218 -	C 1.26659 -0.89269 - 0.23155	
H 1.97370	1.27865	0.47915 -	H 1.22943 -1.42876 - 1.18580	
H 1.70197	0.92773	-1.19994 -	H 1.22881 -1.64539	
C 1 11867	-1.35986	-0.14504 -	C -1.26656 -0.89271 - 0.23152	
H 1 57943	-1.27768	-1.13161 -	H -1.22878 -1.64538	
H 1,94023	-1.39211	0.57505 -	H -1.22939 -1.42882 - 1.18575	
C 0 47559	2.53475	-0.44557 -	C 2.57967 -0.10174 -	
H 0 3/166	2.45620	-1.16931	H 2.63145 0.40093 0.84112 H 2.57973 0.67290	
H 0.02199	2.82499	0.50450 -	0.90500	
C	-2.68287	-0.06791 -	0.12874	
H	-2.74174	0.90405	0.90508	

0.16505			H -2.63144 0.40096
Н	-2.71154	-0.83379	0.84106
0.44971			C -3.78782 -0.97662 -
C	-3.86942	-0.23456 -	0.31141
1.23970			H -3.86311 -1.48752 -
Н	-3 97856	0.51995 -	1 27100
2 01773	0.07.000	0.01000	C 3 78785 -0 97656 -
C.	3 59979	-0.89026 -	0.31143
1 43918	0.00010	0.00020	H 3.86316 -1.48740 -
н	3 78258	-0.22761 -	1 27105
2 28474	0.10200	0.22701	C 4 74304 -1 17125
C	4 31764	-2 00677 -	0.59549
1 33339	1.01701	2.00011	H 4 71183 -0.68716
Н	4 17964	-2 69724 -	1 56736
0 50614	1.17001	2.00721	H 5 58996 -1 81948
н	5 07761	-2 26547 -	0 39974
2 06209	0.07701	2.20041	C -4 74301 -1 17127
C.00203	-4 76889	-1 21200 -	0.59552
1 15862	-4.70003	-1.21233 -	H _5 58002 _1 81052
н	-5 60742	-1 27326 -	0.30080
1 8/338	-5.00742	-1.27520 -	H _1 71181 _0 68711
1.0 4 550	4 70493	1 09291	1 -4.71101 -0.00711
0.20483	-4.70403	-1.90201 -	0 0,0001 0,68456
0.39403	0 13476	0 50641	0 0.00001 0.00430
1 09767	-0.13470	-0.50641	
1.00707	0.01022	1 67667	0 0.00001 0.94052 -
0.06221	0.01033	1.07007 -	
0.06231	1 16052	2 04501	U = 0.00000 - 2.09120 - 0.00974
0 52000	1.10052	2.04391	1 -0.00000 2.02044
0.52090	0 22074	0 15011	
2.07167	-0.32074	0.15611	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.07107	0.04040	0 46467	C -0.00017 2.20004 -
0 20424	-0.84310	2.40107 -	
0.39421	1 07250	2 42022	
0.07101	1.27352	3.43932	
0.87191	0 40075	2 70000	H -0.86904 2.80016 -
1 50057	0.46975	3.70022	0.99505
1.56057	2.25460	2 5 4 2 0 6	
П 4 22062	2.25469	3.34290	
1.32963	1 10000	4.00004	
	1.19203	4.00034 -	
0.01665	0.00040	4 00054	
0	-0.02648	-1.92054	
1.27049	0.00570	0.00000	
C	-0.20573	-2.23822	
2.65318			
H	-0.14932	-3.29847	
2.78576	0 50400	4 70700	
H	0.56133	-1.76532	
3.23014	40000 40	0057	
н -1	.16332 -1.8	8857	
2.97824			1

Rotational energies for 1a-1e

	1a	1b			
Angle	Energy	Angle	Energy		
U	(a.u)	0	(a.u)		
-179.964	-352.6558313	-180.285	-451.9283047		
-171.605	-352.6555624	-172.547	-451.9279916		
-163.198	-352.6548012	-164.250	-451.9269954		
-153.659	-352.6537149	-155.523	-451.9255246		
-143.170	-352.6525192	-145.432	-451.9237942		
-131.797	-352.6515666	-134.038	-451.9223436		
-119.459	-352.6511801	-121.270	-451.9215244		
-107.370	-352.6514441	-108.597	-451.9216932		
-96.500	-352.6522392	-97.134	-451.9226672		
-87.309	-352.6531762	-87.034	-451.9239951		
-78.985	-352.6539396	-78.271	-451.9253230		
-70.668	-352.6543899	-69.749	-451.9263181		
-62.683	-352.6544449	-61.449	-451.9268735		
-54.913	-352.6539061	-53.304	-451.9268009		
-46.984	-352.6527711	-45.216	-451.9260293		
-38.503	-352.6511323	-36.724	-451.9246526		
-28.620	-352.6492558	-27.465	-451.9229226		
-16.808	-352.6475799	-16.751	-451.9212259		
-2.076	-352.6467547	-4.452	-451.9201148		
13.220	-352.6472572	9.388	-451.9200634		
26.027	-352.648809	22.170	-451.9210886		
36.423	-352.6506971	33.554	-451.9227098		
45.503	-352.6524072	43.972	-451.9244413		
53.836	-352.6536561	53.300	-451.9258403		
62.013	-352.6542947	62.304	-451.9266590		
70.325	-352.6543676	71.292	-451.9268520		
78.765	-352.6539753	80.216	-451.9265168		
87.155	-352.6532454	89.271	-451.9257760		
96.751	-352.6522972	98.682	-451.9248427		
107.601	-352.6514952	109.210	-451.9240029		
119.462	-352.6512007	120.417	-451.9236255		
131.943	-352.6515665	132.095	-451.9238964		
143.414	-352.6524856	143.107	-451.9247830		
153.914	-352.6536694	153.626	-451.9259711		
163.003	-352.6547929	162.958	-451.9271593		
171.745	-352.6555567	171.677	-451.9279976		
180.041	-352.6558312	179.712	-451.9283047		

	1c		1e
Angle	Energy	Angle	Energy
	(a.u)		(a.u)
-179.256	-551.2097073	-184.954	-580.5630165
-171.477	-551.2093756	-174.954	-580.5626784
-163.212	-551.2084686	-164.954	-580.5617529
-154.346	-551.2071454	-154.954	-580.5604967
-143.995	-551.2056825	-144.954	-580.5591820
-132.454	-551.2045309	-134.954	-580.5582450
-120.5	-551.2040291	-124.954	-580.5579009
-108.168	-551.2044094	-114.954	-580.5581629
-97.0802	-551.2054381	-104.954	-580.5591817
-87.277	-551.2067396	-94.954	-580.5606362
-78.5122	-551.2079073	-84.954	-580.5620508
-69.9539	-551.2086600	-74.954	-580.5629771
-61.549	-551.2089092	-64.954	-580.5632121
-53.2186	-551.2084890	-54.954	-580.5627327
-44.6027	-551.2074134	-44.954	-580.5615717
-35.3313	-551.2058651	-34.954	-580.5599044
-25.125	-551.2041348	-24.954	-580.5580934
-13.5568	-551.2026903	-14.954	-580.5565954
-0.59065	-551.2020731	-4.954	-580.5557730
12.60209	-551.2025893	5.046	-580.5560498
24.30318	-551.2039590	15.046	-580.5573230
34.70406	-551.2056170	25.046	-580.5591901
44.21369	-551.2071509	35.046	-580.5611020
53.09049	-551.2082041	45.046	-580.5626054
61.82354	-551.2086307	55.046	-580.5633691
70.41695	-551.2083939	65.046	-580.5632666
79.19634	-551.2076200	75.046	-580.5624989
88.27514	-551.2064088	85.046	-580.5613055
98.32812	-551.2051201	95.046	-580.5598333
109.8903	-551.2041345	105.046	-580.5585031
122.0624	-551.2038787	115.046	-580.5577591
134.0159	-551.2044621	125.046	-580.5578503
145.2761	-551.2056444	135.046	-580.5587426
155.4278	-551.2071290	145.046	-580.5601166
164.5491	-551.2084563	155.046	-580.5615742
172.9152	-551.2093808	165.046	-580.5626336
180.7442	-551.2097073	175.046	-580.5630164

1d								
Angle Energy Angle Energy								
0	(a.u)	0	(a.u)					
181.757	-808.5275066	-8.243	-808.5214351					
176.757	-808.5274610	-13.243	-808.5219539					
171.757	-808.5273026	-18.243	-808.5227095					
166.757	-808.5270416	-23.243	-808.5236048					
161.757	-808.5266626	-28.243	-808.5245938					
156.757	-808.5261488	-23.243	-808.5236048					
151.757	-808.5255254	-28.243	-808.5245938					
146.757	-808.5248024	-33.243	-808.5256009					
141.757	-808.5239611	-38.243	-808.5265348					
136.757	-808.5230650	-43.243	-808.5273620					
131.757	-808.5221957	-48.243	-808.5280312					
126.757	-808.5214157	-53.243	-808.5285220					
121.757	-808.5207870	-58.243	-808.5288260					
116.757	-808.5203776	-63.243	-808.5289173					
111.757	-808.5202059	-68.243	-808.5287781					
106.757	-808.5202504	-73.243	-808.5284352					
101.757	-808.5205129	-78.243	-808.5278927					
96.757	-808.5209477	-83.243	-808.5271716					
91.757	-808.5215333	-88.243	-808.5263289					
86.757	-808.5222634	-93.243	-808.5254018					
81.757	-808.5230355	-98.243	-808.5244756					
76.757	-808.5238029	-103.243	-808.5236367					
71.757	-808.5245670	-108.243	-808.5229547					
66.757	-808.5254224	-113.243	-808.5224710					
61.757	-808.5261810	-118.243	-808.5222216					
56.757	-808.5267090	-123.243	-808.5222112					
51.757	-808.5269538	-128.243	-808.5224290					
46.757	-808.5269063	-133.243	-808.5228505					
41.757	-808.5266328	-138.243	-808.5234169					
36.757	-808.5261292	-143.243	-808.5240668					
31.757	-808.5254298	-148.243	-808.5247802					
26.757	-808.5246237	-153.243	-808.5255379					
21.757	-808.5237557	-158.243	-808.5262433					
16.757	-808.5229134	-163.243	-808.5268217					
11.757	-808.5221692	-168.243	-808.5271897					
6.757	-808.5215983	-173.243	-808.5274510					
1.757	-808.5212504	-178.243	-808.5275066					
-3.243	-808.5211913							

XYZ coordinates of compounds 2a-2e

		2a				2b		
С	-0.66691	1.54461	-0.15640	С	-1.91891	-0.66764	-0.21134	٦
н	-1.16944	2.43313	-0.53115	н	-2.78327	-1.17266	-0.63473	
С	0.66837	1.54399	-0.15640	С	-1.91891	0.66764	-0.21134	
н	1.17174	2.43204	-0.53113	н	-2.78327	1.17266	-0.63473	
С	-1.56224	0.43003	0.33455	С	-0.82880	-1.55891	0.33634	
н	-1.47485	0.34659	1.42786	н	-0.80270	-1.47991	1.43257	
н	-2.60256	0.70775	0.14148	Н	-1.08545	-2.59953	0.12370	
С	1.56265	0.42856	0.33455	С	-0.82880	1.55891	0.33634	
н	2.60323	0.70529	0.14148	н	-1.08545	2.59953	0.12370	
н	1.47519	0.34519	1.42786	Н	-0.80270	1.47991	1.43257	
С	-1.30220	-0.95559	-0.28474	С	0.58586	-1.29453	-0.21611	
н	-2.13929	-1.61002	-0.01565	н	1.24560	-2.11139	0.09225	
н	-1.31597	-0.86773	-1.37766	Н	0.56509	-1.28979	-1.31057	
С	1.30129	-0.95682	-0.28475	С	0.58586	1.29453	-0.21611	
н	1.31513	-0.86898	-1.37767	н	0.56509	1.28979	-1.31057	
н	2.13775	-1.61205	-0.01567	Н	1.24560	2.11139	0.09225	
С	-0.00077	-1.63819	0.15973	С	1.21495	0.00000	0.27615	
н	-0.00081	-1.72589	1.25503	н	1.25356	0.00000	1.37253	
н	-0.00126	-2 66485	-0 22401	F	2 56894	0 00000	-0 14918	

	2c			2d			2e	
C -2.09670	-0.66760	-	С	0.00000	1.58985	C -2.70300	-0.65097 -	
0.18870 H -2.97999 0.56037	-1.17992	-	2.15337 H 2.45868	0.49464	2.51816	0.01510 H -3.63659 0.27739	-1.14221 -	
C -2.09673	0.66740	-	H 1 87377	-1.01559	1.89227	C -2.69519	0.68121	
H -2.98007 0.56049	1.17962	-	C 0.92365	0.75351	1.05659	H -3.62250 0.12594	1.21320 -	
C -0.96278 0.29650	-1.53985		H 1.26320	1.69701	0.61748	C -1.51268 0.23481	-1.54619	
H -0.81724 1.37493	-1.40482		H 0.26865	1.01020	1.88992	H -1.20699 1.28609	-1.47722	
H -1.23402 0.15880	-2.58899		C 0.07291	0.00000	0.00000	H -1.81036 0.07300	-2.58547	
C -0.96298 0.29647	1.53984		C 0.92365	-0.75351	-1.05659	C -1.49263 0.42645	1.52280	
H -1.23439 0.15866	2.58892		H 0.26865	-1.01020	-1.88992	H -1.77454 0.38875	2.57830	
H -0.81758 1.37493	1.40488		H 1.26320	-1.69701	-0.61748	H -1.18587 1.46086	1.32646	
C 0.38446 0.41333	-1.30800	-	C 2.15337	0.00000	-1.58985	C -0.27919 0.64406	-1.26548 -	
H 1.08581 0.14076	-2.10169	-	H 2.45868	-0.49464	-2.51816	H 0.42761 0.54306	-2.09472 -	
H 0.25394 1.49832	-1.34149	-	H 1.87377	1.01559	-1.89227	H -0.56565 1.69907	-1.21838 -	
C 0.38447 0.41311	1.30825	-	C 3.34986	0.02023	-0.66722	C -0.26958 0.48942	1.32400 -	
H 0.25417 1.49810	1.34206	-	H 4.31606	0.04842	-1.16622	H -0.57139 1.53881	1.38970 -	
H 1.08566 0.14004	2.10188	-	C 3.34986	-0.02023	0.66722	H 0.44746 0.30544	2.12995 -	
C 1.07322 0.06656	0.00005	-	н 4.31606	-0.04842	1.16622	C 0.49455 0.30047	0.01075 -	
F 2.31219 0.69504	0.00001	-	0.83165	1.02965	-0.69677 -	0 1.66614 1.13622	0.02735 -	
F 1.35958 1.29458	-0.00011		0.83165	-1.02965	0.69677 -	0 0.97675	-0.04180	
			0 1.71337	1.55760	0.17698 -	C 2.37391 1.02167	-0.32885	
			0.76359	1.36227	-1.85299 -	H 2.83968 1.89245	0.13503	
			0 1.71337	-1.55760	-0.17698 -	H 2.55147 1.04769	-1.41139	
			O 0.76359	-1.36227	1.85299 -	C 2.80101 0.30937	0.27463 -	
			C 2.60951	-2.55583	0.34795 -	H 2.99409 0.21845	1.35125 -	
			H 2.04722	-3.41070	0.72578 -	H 3.66720 0.76191	-0.21033	-
			H 3.23789	-2.84996	-0.48968 -			
			H 3.21267	-2.13715	1.15450 -			

C	2.55583	-0.34795	-
2.60951			
н	2.84996	0.48968	-
3.23789			
Н	2.13715	-1.15450	-
3.21267			
Н	3.41070	-0.72578	-
2.04722			

Cambridge Structural Database (CSD) Search

The Cambridge Structure Database (CSD) Search was conducted on 29.04.2013 using ConQuest and Mercury software. Histograms and a statistical summary of the relevant angles were obtained for organic species containing the specified motifs.

_	max	min	range	count	average	st. dev.
ANG 1	120.73	110.42	10.31	28	117.34	2.17
ANG 2	105.83	102.93	2.89	28	104.33	0.67

_	max	min	range	count	average	st. dev.
ANG 1	124.42	92.72	31.70	2241	108.57	2.50
ANG 2	127.45	102.25	25.20	2241	109.24	1.61

	max	min	range	count	average	st. dev.
ANG 1	121.27	103.75	17.52	174	111.79	2.18
ANG 2	112.60	98.91	13.69	174	105.68	1.15

_	max	min	range	count	average	st. dev.
ANG 1	115.97	101.45	14.52	168	108.12	3.55
ANG 2	112.67	103.30	9.38	168	107.72	1.65

References

(1) Lemière, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. *J. Am. Chem. Soc.* **2009**, *131*, 2993-3006.

(2) Gaussian 09, Revision A.1 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Wallingford CT, 2009.

(3) (a) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098-3100; (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* **1988**, *37*, 785-789; (c) Vosko, S. H.; Wilk, L.; Nusair, M. *Canadian Journal of Physics* **1980**, *58*, 1200-1211; (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. *The Journal of Physical Chemistry* **1994**, *98*, 11623-11627.