Supporting information

Development of a Tailor-made Bis(oxazolidine)pyridine-metal catalyst for the [3+2] Cycloaddition of Azomethine Imines with Propiolates

Takayoshi Arai*, Yuta Ogino, Toru Sato

Department of Chemistry, Graduate School of Science, Chiba University Inage, Chiba 263-8522, Japan.

Contents

1. General	S3
2. Synthesis of 4-(3-hydroxypropoxy)pyridine-2,6-dicarbaldehyde	S4
3. Synthesis of polymer-supported PyBodines-Cu catalysts and Solid-phase catalysis/CD-HTS	S7
4. General procedure for the synthesis of PyBodines and the analytical data	S 8
5. General procedure of PyBodine(Ala)-Cu(OAc) ₂ catalyzed [3+2]-cycloaddition and the analytical data of cycloadducts	S10
6. ¹ H-NMR and ¹³ C-NMR spectra of compounds (A-E) toward the solid-phase catalysis	S16
7. ¹ H-NMR and ¹³ C-NMR spectra of PyBodines	S20
8. ¹ H-NMR and ¹³ C-NMR spectra of [3+2]-cycloadducts	S23
9. HPLC data of [3+2]-cycloadducts	S34
10. Proposed model of PyBodine(Ala)-Cu(OAc) ₂ catalyzed [3+2]-cycloaddition	S45

1. General

Infrared (IR) spectra were recorded on a JASCO FT/IR-4100 Fourier transform infrared spectrophotometer. NMR spectra were recorded on a JEOL JNM-ECA500 or JEOL JNM-ECA400 spectrometer, operating at 500 MHz or 400 MHz for ¹H-NMR and 125 MHz or 100 MHz for ¹³C-NMR. Chemical shifts in CDCl₃ were reported downfield from TMS (=0 ppm) for ¹H-NMR. For ¹³C-NMR, chemical shifts were reported downfield from TMS (=0 ppm) or in the scale relative to CHCl₃ (77.00 ppm for ¹³C-NMR) as an internal reference. Optical rotations were measured on a JASCO P-1020 Polarimeter. The enantiomeric excess (*ee*) was determined by HPLC analysis. Column, DAICEL CHIRALPAK AD-H, OD-H; mobile phase, hexane-*i*-PrOH; flow rate, 1.0 mL/min. General experimental details for synthesis of PyBidine ligand see reference 4 in the manuscript. Azomethine imines were synthesized according to the literature procedure ².

1) T. Arai, A. Mishiro, N. Yokoyama, K. Suzuki and H. Sato, *J. Am. Chem. Soc.*, 2010, **132**, 5338.

2) R. Shintani and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 10778.

2. Synthesis of 4-(3-hydroxypropoxy)pyridine-2,6-dicarbaldehyde

The 4-(3-hydroxypropoxy)pyridine-2,6-dicarbaldehyde (E) was synthesized by following Scheme.

Synthesis of dimethyl 4-hydroxypyridine-2,6-dicarboxylate (A)

Chelidamic acid monohydrate (12.3 mmol) was added to a round flask containing a stir bar. After dissolving in MeOH (30 ml), thionyl chloride (24.6 mmol) was added, and stirred 24 hours at 50 °C. The mixture was quenched by adding potassium carbonate aqueous, and extracted with CH_2Cl_2 . The resulting solution was concentrated in

vacuo to afford a product A.

Dimethyl 4-hydroxypyridine-2,6-dicarboxylate (A)

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.59 (s, 1H), 7.56 (s, 2H), 3.86 (s, 6H); ¹³C NMR (400 MHz, DMSO-*d*₆) δ 166.3, 165.2, 149.7, 115.7, 53.0; HRMS (ESI) calcd for C₉H₁₀NO₅ [M + H]⁺ 212.0554; found, 212.0552. These data were identical to those previously reported.³⁾

3) Zeng, T.; Yang, L.; Hudson, R.; Song, G.; Moores A. R.; Li, C.-J. Org. Lett. 2011, 13, 442–445.

Synthesis of dimethyl 4-(3-((tert-butyldiphenylsilyl)oxy)propoxy)pyridine-2,6-dicarboxylate (B)

A mixture of **A** (4.95 mmol), 3-((*tert*-butyldiphenylsilyl)oxy)propan-1-ol (5.94 mmol), and PPh₃ (5.94 mmol) was dissolved to THF (25 ml) in a round flask containing a stir bar. To the solution, DIAD (5.94 mmol) was added dropwise at 0 °C and was stirred 14 hours at rt. The resulting solution was concentrated in *vacuo*, and purified by column chromatography (hexane:AcOEt = 3:1) to afford product **B**.

Dimethyl 4-(3-((tert-butyldiphenylsilyl)oxy)propoxy)pyridine-2,6-dicarboxylate (B)

FTIR (neat) 3324, 2930, 2883, 2855, 1717, 1597, 1452, 1369, 1345, 1251, 1100, 1070, 1033, 1005, 883, 822, 785, 736, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 2H), 7.64-7.61 (m, 4H), 7.62-7.28 (m, 6H), 4.26 (t, *J*= 6.0 Hz, 2H), 4.02 (s, 6H), 3.86 (t, *J*= 6.0 Hz, 2H), 2.07-2.03 (pentet, *J*= 6.0 Hz, 2H), 1.04 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 165.1, 149.6, 135.4, 133.4, 129.6, 127.6, 114.4, 65.4, 59.5, 53.1, 31.5, 26.8, 19.1; HRMS (ESI) calcd for C₂₈H₃₄NO₆Si [M + H]⁺ 508.2150; found, 508.2137.

Synthesis of (4-(3-((*tert*-butyldiphenylsilyl)oxy)propoxy)pyridine-2,6-diyl)dimethanol (**C**)

To the solution of **B** (4.31 mmol) in THF-MeOH (5:2) (22 ml) was LiBH₄ slowly at 0 °C. The mixture was stirred 1 h at 50 °C. The resulting mixture was diluted by water and extracted with CHCl₃. After evaporation, the residue was purified by column chromatography (hexane:AcOEt = 3:1 to 0:1) to afford product **C**.

(4-(3-((*tert*-butyldiphenylsilyl)oxy)propoxy)pyridine-2,6-diyl)dimethanol (C)

FTIR (neat) 3364, 3065, 2926, 1606, 1455, 1301, 1158, 1077, 741, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.62 (m, 4H), 7.43-7.26 (m, 6H), 6.67 (s, 2H), 4.70 (s, 4H), 4.18 (t, *J*= 6.0 Hz, 2H), 3.84 (t, *J*= 6.0 Hz, 2H), 2.02 (pentet, *J*= 6.0 Hz, 2H), 1.03 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 160.1, 135.5, 133.6, 129.7, 127.7, 105.5, 64.7, 64.4, 59.9, 31.8, 26.8, 19.2; FTMS (ESI) calcd for C₂₆H₃₄NO₄Si [M + H]⁺ 452.2019; found, 452.2250.

Synthesis of 4-(3-((tert-butyldiphenylsilyl)oxy)propoxy)pyridine-2,6-dicarbaldehyde (D)

Oxalyl chloride (6.51 mmol) and CH_2Cl_2 were added to a round flask under Ar. The solution was stirred several minutes at -78 °C. DMSO (14.09 mmol) in CH_2Cl_2 was added slowly to the flask, and **C** (2.71 mmol) (CH_2Cl_2 solution) was added to the flask. After stirring 30 min at -78 °C, Et_3N (27.10 mmol) was added to the flask, and stirred for 30 min at rt. The resulting mixture was diluted by water and extracted with CH_2Cl_2 . The concentrated residue was dried *in vacuo* to afford product **D**.

4-(3-((tert-butyldiphenylsilyl)oxy)propoxy)pyridine-2,6-dicarbaldehyde (D)

FTIR (neat) 3413, 3071, 2957, 2857, 1714, 1594, 1449, 1365, 1313, 1111, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 2H), 7.64-7.60 (m, 4H), 7.57 (s, 2H), 7.42-7.32 (m, 6H), 4.26 (t, *J*= 6.0 Hz, 2H), 3.86 (t, *J*= 6.0 Hz, 2H), 2.06 (pentet, *J*= 6.0 Hz, 2H), 1.03 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 192.4, 167.0, 154.7, 135.5, 133.4, 129.7, 127.7, 111.4, 65.7, 59.6, 46.2, 31.6, 26.8, 19.2; HRMS (ESI) calcd for C₂₆H₃₀NO₄Si [M + H]⁺ 448.1939; found, 448.1939.

Synthesis of 4-(3-hydroxypropoxy)pyridine-2,6-dicarbaldehyde (E)

To the compound **D** (2 mmol) in a round flask was added tetra butyl ammonium fluoride (1 mol/L THF solution) (3 ml) and the resulting mixture was stirred 20 hours at rt. The resulting solution was diluted with water and extracted with CHCl₃. The residue was dried in vacuo to afford a product (**E**) as a mixture with tetra butyl ammonium.

4-(3-hydroxypropoxy)pyridine-2,6-dicarbaldehyde (E)

¹H NMR (400 MHz, CDCl₃) δ 10.11 (s, 2H), 7.66 (s, 2H), 4.32 (t, J= 6.1 Hz, 2H), 3.88 (t, J= 6.1 Hz, 2H), 2.11 (pentet, J= 6.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 167.1, 154.8, 111.6, 66.2, 59.1, 31.5.

3. Synthesis of polymer-supported PyBodines-Cu catalysts and Solid-phase catalysis/CD-HTS

Immobilization of compound E on the polystyrene beads:

To the (4-Methoxyphenyl)diisopropylsilylpropyl polystyrene beads (loading: 1.4 mmol/g, purchased from NovaBioChem) (286 mg, 0.4 mmol) in a 10 mL polystyrene column, 7.6 ml of a 3% TfOH/CH₂Cl₂ solution (5 equiv. of TfOH) was added by syringe. The resin turned bright red upon acid treatment and was the gently agitated for 30 min under Ar atmosphere to get the Si-OTf functionality. Once activation was completed, excess acid was removed by washing with CH₂Cl₂ under Ar atmosphere. Then, a treatment of the beads with 2,6-lutidine (0.37 mL, 8 equiv. relative to Si-OTf) followed by addition of **E** (176 mg, 0.8 mmol) resulted yellow resin. After the gentle agitation of the reaction mixture for 15 h under Ar atmosphere, the filtrated beads were washed with CH₂Cl₂. The resulting beads were dried *in vacuo*.

Preparation of polymer-supported PyBodines-Cu catalysts and asymmetric [3+2]-cycloaddition:

The polystyrene beads (8.0 mg) were swollen in CH_2Cl_2 (0.5 ml) for 30 min at room temperature in a solvent-resistant scintillation vial. To the swollen beads, amino alcohol (10 equiv. relative to the compound **E** on the polystyrene beads) was added. After the gentle agitation of the reaction mixture for 15 h under Ar atmosphere, the filtrated beads were washed with CH_2Cl_2 . The resulting beads dried *in vacuo* were used as the polymer-supported PyBodines. To the polymer-supported PyBodines, copper salt (0.05 mmol, ca. 1.0 eq. to PyBodines) [CuOAc (0.6 mg), Cu(OAc)₂ (0.9 mg), CuI (1.0 mg)] was added in CH_2Cl_2 (0.5 mL) for 30 h. The resulting beads were washed with CH_2Cl_2 , and dried *in vacuo*. To the polymer supported PyBodines-Cu catalysts in CH_2Cl_2 (0.5 mL), **1a** (8.71 mg, 0.05 mmol) and **2a** (6.0µl, 0.06 mmol) were added. After carrying out the asymmetric reaction at rt for 11 h, the reaction mixtures were analyzed by the solid-phase catalysis/CD-HTS.

Solid-phase catalysis/CD-HTS:

HTS system was constructed with an autosampler (JASCO AS-2057), a pump (JASCO PU-2080), and a CD-detector (JASCO CD-2095). A line between the auto sampler and the CD-detector was connected by Teflon tube as shown in the picture. For the CD-HTS examined in Figure 3 of the manuscript, the sample was prepared by a dilution of 25 μ l of the reaction mixture with 950 μ l of an eluent (*i*PrOH/Hex = 1/9). In each period of 3 min interval, 5 μ l of the sample

was injected, and the CD was operated at 254nm (flow rate: 0.5 mL/min). The CD data was analyzed by using JASCO-BOWIN program.

4. General procedure for the preparation of PyBodines and the analytical dada

Synthesis of PyBodines:

To a solution of 2,6-pyridine dicarboxyaldehyde (0.5 mmol) in CH_2Cl_2 (2 mL) was added amino alcohol (1 mmol), and the mixture was stirred at rt for 6 hours. The resulting solution was concentrated *in vacuo* to afford adduct.

[Analytical dada of PyBodines]

2,6-bis((2R,4S)-4-methyl-5,5-diphenyloxazolidin-2-yl)pyridine

FTIR (neat) 2952, 2922, 2853, 1458, 939, 700 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.09 (t, J = 7.7 Hz, 1H), 7.82 (d, J = 7.7 Hz, 2H), 7.51-7.50 (m, 4H), 7.44-7.40 (m, 4H), 7.35-7.31 (m, 6H) 7.17-7.10 (m, 6H), 5.62 (d, J = 12.6 Hz, 2H), 4.20-4.16 (m, 2H), 3.69 (t, J = 12.6 Hz, 2H), 1.04 (d, J = 6.6 Hz, 6H); ¹³C NMR(125 MHz, CDCl₃) δ 155.3, 145.7, 143.6, 138.2, 128.2, 127.5, 127.3, 127.1, 126.7, 124.5, 90.6, 88.2, 63.7, 53.4, 18.1; FTMS (ESI) calcd for C₃₇H₃₆N₃O₂ [M + H]⁺ 554.2808; found, 554.2806; [α]_D²⁶ - 82.1 (*c* 1.01, CHCl₃).

2,6-bis((4S)-4-isopropyl-5,5-diphenyloxazolidin-2-yl)pyridine

FTIR 2956, 2924, 2854, 1456, 1377, 1003, 938, 813, 755, 728, 700 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*6) δ 8.06 (t, J = 7.6Hz, 1H), 7.76 (d, J = 7.6Hz, 2H), 7.44-7.36 (m, 8H), 7.31-7.28 (m, 2H) 7.23-7.19 (m, 4H), 7.13-7.11 (m, 6H), 5.54 (d, J = 12.5 Hz, 2H), 3.89 (dd, J = 12.5, 3.4 Hz, 2H), 3.75 (t, J = 12.5 Hz, 2H), 1.92-1.85 (m, 2H), 1.08 (d, J = 6.7 Hz, 6H), 0.15 (d, J = 6.7 Hz, 6H) ; ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 146.4, 143.8, 138.1, 128.1, 127.8, 127.6, 127.5, 127.2, 126.7, 124.6, 90.2, 88.0, 73.0, 28.6, 23.3, 16.8; FTMS (ESI) calcd for C₄₁H₄₄N₃O₂ [M + H]⁺ 610.3434; found, 610.3434; [α]_D²⁶ - 42.9 (c 1.05, CHCl₃).

2,6-bis((3R,7aS)-1,1-diphenylhexahydropyrrolo[1,2-c]oxazol-3-yl)pyridine

FTIR (neat) 2925, 2854, 1462, 1446, 1377, 1006, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.88 (m, 3H), 7.59 (d, J = 7.2 Hz, 4H), 7.49 (d, J = 7.2 Hz, 4H), 7.35-7.17 (m, 12H), 5.59 (s, 2H), 4.59 (brs, 2H), 2.58-2.47 (m, 4H), 1.87-1.80 (m, 2H), 1.64-1.48 (m, 4H), 1.34-1.26 (m, 2H); ¹³C NMR(100 MHz, CDCl₃) δ 156.44, 145.50, 144.01, 136.68, 128.19, 127.97, 127.23, 126.45, 126.17, 121.07, 91.75, 88.11, 72.48, 48.84, 29.92, 25.99; FTMS (ESI+) calcd for C₄₁H₄₀N₃O₂ [M + H]⁺ 606.3121; found 606.3118; [α]_D²⁶ - 177.6 (*c* 1.14, CHCl₃).

5. General procedure of PyBodine (Ala)-Cu $(OAc)_2$ catalyzed [3+2]-cycloaddition and the analytical data of cycloadducts

General procedure of [3+2]*-cycloaddition*:

PyBodine (Ala) (0.015 mmol) and Cu(OAc)₂ (0.0165 mmol) were added to a round flask containing a stir bar under Ar. CH₂Cl₂ (1 mL) was added to the flask and the mixture was stirred over 12 hours. To the resulting solution was added azomethine imine (0.15 mmol) and 4A MS (75 mg) at rt. After cooling to -40 °C, to the mixture was added ethyl propiolate (0.18 mmol). After stirring for appropriate time, the reaction mixture was purified by silica gel column chromatography (Et₂O/Hexane=2/1 to Et₂O) to afford cycloadduct.

[Analytical data of cycloadducts]

(R)-ethyl 5-oxo-1-phenyl-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate

Yellow oil; FTIR (neat) 3087, 3031, 2980, 2928, 2853, 1699, 1602, 1433, 1414, 1388, 1364, 1321, 1251, 1206, 1173, 1104, 1039, 842, 752, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ 7.54 (d, *J* =0.5 Hz, 1H), 7.44-7.25 (m, 5H), 5.15 (d, *J* =1.7 Hz, 1H), 4.15-3.95 (m, 2H) 3.41-3.36 (m, 1H) 3.08-3.00

(m, 1H) 2.95-2.83 (m, 1H), 2.79-2.70 (m, 1H), 1.13 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 163.4, 138.2, 128.5, 128.4, 128.3, 128.2, 118.5, 73.3, 60.4, 51.6, 35.7, 14.0; HRMS (ESI) Calcd for C₁₅H₁₆N₂O₃Na⁺ [M + Na]⁺: 295.1053; Found, 295.1048; The enantiomeric excess of (*R*)-ethyl-5-oxo-1-phenyl-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK AD-H, *i*-PrOH/hexane 20/80, flow rate 1.0 mL/min, *t*R 10.7 min (major, 97%) and 13.1 min (minor, 3%), detection at 330 nm]; $[\alpha]_D^{23}$ -371 (*c* 0.57, CHCl₃).

(R)-ethyl 5-oxo-1-(p-tolyl)-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate

3.05-3.00 (m, 1H), 2.91-2.84 (m, 1H), 2.78-2.73 (m, 1H), 2.34 (s, 3H), 1.15 (t, J=7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl3) δ 164.5, 163.4, 138.2, 135.1, 129.2, 128.3, 128.1, 118.5, 72.9, 60.3, 51.3, 35.7, 21.1, 14.0; HRMS (ESI) Calcd for C₁₆H₁₈N₂O₃⁺ [M + H]⁺: 287.1390; Found, 287.1389; The enantiomeric excess of (*R*)-ethyl 5-oxo-1-(p-tolyl)-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK AD-H, *i*-PrOH/hexane 20/80, flow rate 1.0 mL/min, *t*R 8.2 min (major, 95%) and 9.4 min (minor, 5%), detection at 330 nm]; [α]_D²⁴ –312 (*c* 0.44, CHCl3).

(R)-ethyl 5-oxo-1-(o-tolyl)-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate

Yellow oil; FTIR (neat) 3099, 2985, 2860, 1692, 1600, 1416, 1362, 1319, 1248, 1098, 751, 665 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 1H), 7.32-7.30 (m, 1H), 7.22-7.16 (m, 3H), 5.48 (d, *J*=1.4 Hz, 1H), 4.10-4.00 (m, 2H), 3.35 (m, 1H), 3.10-3.04 (m, 1H), 2.86-2.84 (m, 1H),

2.78-2.74 (m, 1H), 2.45 (s, 3H), 1.12 (t, J=7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl3) δ 164.7, 163.3, 136.5, 135.9, 130.7, 128.52, 128.46, 128.1, 126.3, 118.7, 69.3, 60.4, 51.6, 35.7, 25.3, 19.4, 14.0; HRMS [ESI] Calcd for C₁₆H₁₈N₂O₃⁺ [M + H]⁺: 287.1390; Found, 287.1387; The enantiomeric excess of (*R*)-ethyl 5-oxo-1-(*o*-tolyl)-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK AD-H, *i*-PrOH/hexane 5/95, flow rate 1.0 mL/min, *t*R 23.9 min (minor, 2.7%) and 27.7 min (major, 97.3%), detection at 330 nm]; $[\alpha]_D^{24}$ –338 (*c* 0.21, CHCl3).

$(R) - ethyl \ 1 - (3 - chlorophenyl) - 5 - oxo - 1, 5, 6, 7 - tetrahydropyrazolo [1, 2 - a] pyrazole - 2 - carboxylate$

Yellow oil; FTIR (neat) 3086, 2981, 2927, 2851, 1697, 1599, 1433, 1363, 1319, 1248, 1198, 1171, 1105, 1024, 763 cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ 7.53 (s, 1H), 7.42 (s, 1H), 7.30 (d, *J* =1.4 Hz, 3H), 5.12 (d, *J* =1.8 Hz, 1H), 4.15-3.95 (m, 2H), 3.50-3.45 (m, 1H), 3.09-3.02 (m, 1H), 2.98-2.89 (m, 1H), 2.78-2.72 (m, 1H), 1.16 (t, *J* =7.2 Hz, 3H); ¹³C NMR

(100 MHz, CDCl3) δ 164.7, 163.2, 140.9, 134.4, 129.6, 128.7, 128.5, 128.3, 126.5, 73.0, 60.5, 52.1, 35.5, 14.0; HRMS (ESI) Calcd for C₁₅H₁₆N₂O₃Cl⁺ [M + H]⁺: 307.0844; Found, 307.0839; The enantiomeric excess of (*R*)-ethyl 1-(3-chlorophenyl)-5-oxo-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK AD-H, *i*-PrOH/hexane 20/80, flow rate 1.0 mL/min, *t*R 9.1 min (major, 97%) and 11.1 min (minor, 3%), detection at 330 nm]; [α]_D²⁴ –462 (*c* 0.23, CHCl3).

(R)-ethyl 1-(4-fluorophenyl)-5-oxo-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate

Yellow oil; FTIR (neat) 3083, 2982, 2933, 2850, 1696, 1604, 1509, 1433, 1364, 1320, 1251, 1172, 1106, 849 cm⁻¹; ¹H NMR (500 MHz, CDCl3) δ 7.53 (s, 1H), 7.40-7.36 (m, 2H), 7.07-7.04 (m, 2H), 5.14 (d, *J*=1.7 Hz, 1H), 4.13-4.02 (m, 2H), 3.43 (m, 1H), 3.07-3.02 (m, 1H),

2.95-2.88 (m, 1H), 2.79-2.73 (m, 1H), 1.15 (t, *J*=7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.6, 163.3, 134.4, 129.9, 129.8, 128.5, 118.2, 115.5, 115.3, 60.5, 51.8, 35.7, 14.0; HRMS (ESI) Calcd for C₁₅H₁₅N₂FO₃⁺ [M + H]⁺: 291.1139; Found, 291.1136; The enantiomeric excess of (*R*)-ethyl 1-(4-fluorophenyl)-5-oxo-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK AD-H, *i*-PrOH/hexane 20/80, flow rate 1.0 mL/min, *t*R .8.1 min (major, 94.3%) and 10.3 min (minor, 5.7%), detection at 330 nm]; $[\alpha]_D^{24}$ –317 (*c* 0.52, CHCl3).

$(R) - ethyl \ 1 - (4 - iodophenyl) - 5 - oxo - 1, 5, 6, 7 - tetrahydropyrazolo [1, 2 - a] pyrazole - 2 - carboxylate$

Yellow oil; FTIR (neat) 3084, 2981, 2925, 2851, 1696, 1604, 1509, 1434, 1364, 1319, 1250, 1171, 1105, 1026, 849 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.52 (m, 1H), 7.40-7.36 (m, 2H), 7.09-7.03 (m, 2H), 5.14 (d, J =1.6 Hz, 1H), 4.13-4.01 (m, 2H) 3.46-3.41 (m, 1H),

3.08-3.01 (m, 1H), 2.97-2.90 (m, 1H), 2.79-2.72 (m, 1H), 1.15 (t, J = 7.2, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 163.3, 134.4, 129.86, 129.79, 128.5, 118.1, 115.5, 115.3, 72.8, 60.4, 51.8, 35.6, 14.0; The enantiomeric excess of (*R*)-ethyl 1-(4-iodophenyl)-5-oxo-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK AD-H, *i*-PrOH/hexane 20/80, flow rate 1.0 mL/min, *t*R 9.4 min (major, 97%) and 13.2 min (minor, 3%), detection at 330 nm]; $[\alpha]_{\rm D}^{24}$ -311 (*c* 0.51, CHCl₃).

(R)-ethyl1-(4-methoxyphenyl)-5-oxo-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate

Yellow oil; FTIR (neat) 2929, 2849, 1698, 1603, 1513, 1435, 1365, 1320, 1249, 1197, 1173, 1102, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.29 (d, *J*=8.8, 2H), 6.90 (d, *J*=8.8, 2H), 5.13 (s, 1H), 4.13-4.03 (m, 2H), 3.80 (s, 3H), 3.36 (m, 1H),

3.03-2.99 (m, 1H), 2.88-2.79 (m, 2H), 1.15 (t, *J*=7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl3) δ 164.6 163.4, 159.6, 130.1, 129.3, 128.2, 118.6, 113.9, 72.5, 60.3, 55.2, 51.1, 35.7, 14.0; HRMS (ESI) Calcd for C₁₆H₁₈N₂O₄⁺ [M + H]⁺: 303.1139; Found, 303.1336; The enantiomeric excess of (*R*)-ethyl 1-(4-methoxyphenyl)-5-oxo-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK AD-H, *i*-PrOH/hexane 20/80, flow rate 1.0 mL/min, *t*R .11.1 min (major, 92%) and 11.6 min (minor, 8%), detection at 330 nm]; [α]_D²³ -346 (*c* 0.51, CHCl3).

(R)-methyl 5-oxo-1-phenyl-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate

Yellow solid; FTIR (neat) 3083, 2921, 2862, 1714, 1604, 1456, 1407, $N_{\text{A}} = \frac{1305, 1246, 1210, 1167, 1105, 700 \text{ cm}^{-1}; {}^{1}\text{H NMR (400 MHz, CDCl3)} \delta}{7.53 \text{ (brs, 1H)}, 7.38-7.31 \text{ (m, 5H)}, 5.17 \text{ (d, } J = 1.6 \text{ Hz, 1H}), 3.62 \text{ (s, 3H)},}$ 3.41-3.36 (m, 1H), 3.08-3.01 (m, 1H), 2.94-2.85 (m, 1H), 2.79-2.72 (m,

1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 163.8, 138.1, 128.6, 128.5, 128.2, 117.9, 73.1, 51.5, 35.7; HRMS (ESI) Calcd for $C_{14}H_{15}N_2O_3^+$ [M + H]⁺: 259.1077; Found, 259.1073; The enantiomeric excess of (R)-methyl 5-oxo-1-phenyl-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK AD-H, i-PrOH/hexane 20/80, flow rate 1.0 mL/min, tR 11.3 min (major, 99%) and 12.7 min (minor, 1%), detection at 330 nm]; $[\alpha]_D^{24}$ -446 (c 0.91, CHCl3).

(R)-tert-butyl

5-oxo-1-phenyl-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate Yellow oil; FTIR (neat) 3084, 2977, 2929, 2850, 1695, 1602, 1435, 1367, 1306, 1253, 1156, 1109, 843, 751, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl3) & 7.49 (brs, 1H), 7.39–7.32 (m, 5H), 5.09 (d, J=1.6 Hz, 1H),

3.42-3.37 (m, 1H), 3.08–3.01 (m, 1H), 2.93-2.84 (m, 1H), 2.78–2.71 (m, 1H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 162.7, 138.6, 128.5, 128.3, 128.2, 128.1, 120.3, 81.1, 73.6, 51.7, 35.7, 27.9; HRMS (ESI) Calcd for $C_{17}H_{21}N_2O_3^+$ [M + H]⁺: 301.1547; Found, 301.1541; The enantiomeric excess of (R)-tert-butyl-5-oxo-1-phenyl-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK OD-H, i-PrOH/hexane 20/80, flow rate 1.0 mL/min, tR 9.2 min (major, 90%) and 11.6 min (minor, 10%), detection at 330 nm]; $[\alpha]_D^{24}$ -237 (*c* 0.56, CHCl₃).

$(R) - ethyl \ 1 - cyclohexyl - 5 - oxo - 1, 5, 6, 7 - tetrahydropyrazolo [1, 2 - a] pyrazole - 2 - carboxylate$

Yellow solid; FTIR (neat) 3115, 2981, 2923, 2852, 1696, 1605, 1482, 1360, 1365, 1255, 1205, 1021, 964, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ 7.38 (s, 1H), 4.26-4.14 (m, 2H), 4.05 (s, 1H), 3.60-3.56 (m, 1H), 2.99-2.90 (m, 2H), 2.62-2.58 (m, 1H), 2.02-1.12 (m, 14H); ¹³C NMR (100

MHz, CDCl₃) δ 166.4 164.0, 129.6, 115.7, 75.7, 60.3, 56.1, 39.2, 35.0, 30.1, 26.7, 26.5, 26.3, 25.9, 14.2; HRMS (ESI) Calcd for $C_{15}H_{22}N_2O_3^+$ [M+H]⁺: 279.1730; Found, 279.1700; The enantiomeric excess of (*R*)-ethyl 1-cyclohexyl-5-oxo-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK OJ-H, *i*-PrOH/hexane 20/80, flow rate 1.0 mL/min, *t*R .5.6 min (major, 94%) and 7.1 min (minor, 6%), detection at 330 nm]; [α]_D²⁴ –440 (*c* 0.47, CHCl3).

(R)-ethyl 1-isopropyl-5-oxo-1,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-2-carboxylate

Yellow oil; FTIR (neat) 2963, 2933, 2873, 1694, 1602, 1541, 1415, 1362, 1313, 1255, 1195, 1169, 1103, 1023, 784, 662 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 4.31-4.13 (m, 2H), 4.10-4.09 (m, 1H), 3.63-3.53 (m, 1H) 3.03-2.93 (m, 2H), 2.66-2.57 (m, 1H), 2.36 (sepd, J = 6.8, 2.7 Hz, 1H),

1.29 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 6.8 Hz, 3H), 0.85 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 164.0, 129.8, 116.3, 76.0, 60.4, 56.1, 35.1, 29.2, 19.5, 16.1, 14.2; HRMS (ESI) Calcd for C₁₂H₁₈N₂O₃Na⁺ [M+Na]⁺: 261.1210; Found, 261.1208; The enantiomeric excess was determined by chiral stationary-phase HPLC analysis [DAICEL CHIRALPAK OJ-H, i-PrOH/hexane 10/90, flow rate 1.0 mL/min, tR 7.3 min (major, 92.4%) and 11.8 min (minor, 7.6%), detection at 330 nm]; [α]_D²⁰ –566 (c = 0.23, CHCl₃).

6. ¹H-NMR and ¹³C-NMR spectra of Compounds (A-E) toward the solid-phase catalysis

S19

7. ¹H-NMR and ¹³C-NMR spectra of PyBodines

8. ¹H-NMR and ¹³C-NMR spectra of [3+2]-cycloadducts

9. HPLC data of [3+2]-cycloadducts

(Table 2, entry 2) **₿**5.23 % Z.QE+Q5-0-COOEt 1.\$E+Q\$ 1.QE+Q5-5.QE+Q4-,77 % Q.QE+QQ -\$.0<u>6</u>+04 Z.00 \$.QQ 10.00 [min] 00 al 50.39 % 6.QE+Q **4**9.61 % 4.0<u>5</u>+04 2.QE+Q4 Q.Q5+QQ -2.05+04 -4.05+04 2.00 6.QQ g. 00 10.00 4.00

(Table 2, entry 3)

S36

(Table 2, entry 4)

(Table 2, entry 6)

S40

(Table 2, entry 8)

(Table 2, entry 11)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

10. Proposed model of PyBodine(Ala)-Cu(OAc)₂ catalyzed [3+2]-cycloaddition