Cu(I)-Catalyzed Intramolecular Oxidative C–H Amination of 2-Aminoacetophenones: a Convenient Route toward Isatins

Pang-Chi Huang, Parthasarathy Gandeepan and Chien-Hong Cheng*

Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan

chcheng@mx.nthu.edu.tw

Supporting Information

Table of Contents	Page No
Experimental Section	S-2
Details of Optimization Studies	S-2
General Procedure for Synthesis of Isatins	S-3
¹ H NMR, ¹³ C NMR, IR and HRMS Data of compounds 2a-2t	S-4
References	S-9
¹ H and ¹³ C NMR Spectra	S-10

General. All reactions were conducted under an oxygen atmosphere on a dual-manifold Schlenk line unless otherwise mentioned and in oven-dried glass wares. All solvents were dried according to known methods and distilled prior to use.¹ 2-Aminoacetophenones **1** were synthesized according to the literature procedures.² Other reagents were commercially available and used as purchased.

Table. Optimization Studies for the Formation of N-Methylisatin 2a.^a

	Ĉ	NH Me NH O ₂ , 12	$\xrightarrow{\text{and}} \qquad $	⊨O e	
		1a	2a		
entry	[Cu]/L, mol% ^b	Cu source	ligand	solvent	yield % ^c
1	10	Cu(OAc) ₂	bpy	DMSO	12
2	10	Cu(OH) ₂	bpy	DMSO	20
3	10	CuO	bpy	DMSO	5
4	10	Cu ₂ O	bpy	DMSO	trace
5	10	CuCl	bpy	DMSO	3
6	10	CuCl ₂	bpy	DMSO	10
7	10	CuBr	bpy	DMSO	13
8	10	CuI	L1	DMSO	70
9	10	CuI	L2	DMSO	27
10	10	CuI	L3	DMSO	85
11	10	CuI	L4	DMSO	86
12	10	CuI	dppe	DMSO	69
13	10	CuI	TMEDA	DMSO	47
14	10	CuI	bpy	DMF	68
15	5	CuI	bpy	DMF	22
16	20	CuI	bpy	DMF	67
17	20	CuI	bpy	DMF	59^d
18	10	CuI	bpy	DMF	31 ^e
19	10	CuI	bpy	DMAc	65
20	10	CuI	bpy	o-DCB	47
21	10	Cul	bpy	o-xylene	26
22	10	Cul	бру	DMSO	91 (89)' ND
23	—	—	-	DMSO	N.K.

^{*a*} Unless otherwise mentioned, all reactions were carried out using **1a** (0.3 mmol), CuI, ligand in 0.6 mL solvent. ^{*b*} The ratio of Cu source and ligand was 1:1. ^{*c*} Yields were determined by the ¹H NMR integration method using CH₂Br₂ as the internal standard. ^{*d*} 1.2 mL DMF was used. ^{*e*} Reaction was carried out for 120 °C. ^{*f*} Isolated yield. bpy = 2,2'-bipyridine. DMAc = *N*,*N*-dimethylacetamide. *o*-DCB = *o*-dichlorobenzene.

		$\begin{array}{c} O \\ H \\ H \\ \hline Solvent, T^{\circ}C \\ \hline O_2, 12 h \end{array}$	
	1m	2m	
entry	CuI/bpy, mol% ^b	solvent	yield % ^c
1	10	DMF	trace
2	10	DMSO	trace
3	10	o-xylene	74
4	10	Ph-Cl	73
5	10	o-DCB	75
6	10	2-ethoxyethanol	complicated
7	10	AcOH	complicated
8	10	o-DCB	66^d
9	10	$o ext{-DCB}^e$	66
10	5	o-DCB	72
11	10	o-DCB	77 (72) ^{<i>f</i>, <i>g</i>}
12	-	o-DCB	N.R.

Table. Optimization Studies for the Formation of N-Tolylisatin 2m.^a

^a Unless otherwise mentioned, all reactions were carried out using **1m** (0.3 mmol) in 0.6 mL solvent. ^b The ratio of Cu source and ligand was 1:1. ^c Yields were determined by the ¹H NMR integration method using CH₂Br₂ as the internal standard. ^d Reaction was carried out for 120 °C, 24 h. ^e 1.2 mL o-DCB was used. ^fReaction was carried out for 3 h. ^g Isolated yield.

General Procedure for the Copper-Catalyzed Synthesis of Isatines:

A sealed tube containing CuI (0.030 mmol, 10.0 mol%), 2,2'-bipyridine (10.0 mol%) was evacuated and purged with oxygen gas three times. Then, DMSO or o-DCB (0.6 mL), 2-aminoacetophenone 1 (0.30 mmol), were sequentially added to the system via a syringe under an oxygen atmosphere and the reaction mixture was allowed to stir at 140 °C for 3-12 h. When the reaction was completed, the mixture was cooled and diluted with CH₂Cl₂ (10 mL). The mixture was filtered through a Celite and silica gel pads and washed with EA (50 mL). The combined filtrate was concentrated and the residue was purified by a silica gel column using hexane-EtOAc as eluent to give pure 2a in 89%.

1-Methylindoline-2,3-dione (2a)

red solid; **m.p.** $121 - 122 \,^{\circ}C$; ¹H NMR (400 MHz, CDCl₃): δ 7.64 – 7.59 (m, 2H), 7.14 (td, J = 7.4, 0.8 Hz, 1H), 6.91 (d, $J = 8.0 \,\text{Hz}$, 1H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 183.2, 158.0, 151.2, 138.3, 124.9, 123.6, 117.1, 109.9, 26.0; **IR** (neat, cm⁻¹): 1728, 1606, 1469, 1327, 1112,

1089; **HRMS** (EI^+) calcd for C₉H₇NO₂: 161.0477, found: 161.0474.

1-Propylindoline-2,3-dione (2b)

red solid; **m.p.** 66 – 68 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.61 – 7.57 (m, 2H), 7.11 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 3.70 (t, J = 7.2 Hz, 2H), 1.75 (sextet, J = 7.4 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 183.5, 158.1, 150.9, 138.3, 125.2,

123.5, 117.4, 110.1, 41.6, 20.5, 11.2; **IR** (neat, cm⁻¹): 2962, 1728, 1614, 1471, 1342, 1128, 1093; **HRMS** (EI⁺) calcd for $C_{11}H_{11}NO_2$: 189.0790, found: 189.0785.

1-(2-Methoxyethyl)indoline-2,3-dione (2c)

red solid; **m.p.** 75 – 76 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.60 – 7.56 (m, 2H), 7.10 (td, J = 8.0, 0.8 Hz, 1H), 7.05 (dd, J = 8.4, 0.8 Hz, 1H), 3.91 (t, J = 5.4 Hz, 2H), 3.66 (t, J = 5.4 Hz, 2H), 3.34 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 183.3, 158.3, 151.4, 138.2, 125.0,

123.5, 117.4, 111.0, 69.8, 58.9, 40.3; **IR** (neat, cm⁻¹): 2929, 2894, 2832, 1743, 1614, 1471, 1344, 1118, 1093; **HRMS** (EI⁺) calcd for $C_{11}H_{11}NO_3$: 205.0739, found: 205.0738.

5-Methyl-1-propylindoline-2,3-dione (2d)

red solid; **m.p.** 78 – 79 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.41 – 7.37 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 3.67 (t, J = 7.2 Hz, 2H), 2.33 (s, 3H), 1.73 (sextet, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 183.8, 158.2, 148.8, 138.6, 133.3, 125.6,

117.4, 110.0, 41.7, 20.53, 20.50, 11.2; **IR** (neat, cm⁻¹): 2966, 2875, 1730, 1619, 1492, 1344, 1207, 1122; **HRMS** (EI⁺) calcd for $C_{12}H_{13}NO_2$: 203.0946, found: 203.0949.

4,6-Dimethyl-1-propylindoline-2,3-dione (2e)

red solid; **m.p.** 110 – 112 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 6.68 (d, J = 0.8 Hz, 1H), 6.50 (s, 1H), 3.65 (t, J = 7.2 Hz, 2H), 2.52 (s, 3H), 2.38 (s, 3H), 1.72 (sextet, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 183.2, 158.7, 151.3, 149.6, 141.0,

126.3, 113.5, 108.2, 41.4, 22.6, 20.6, 17.8, 11.2; **IR** (neat, cm⁻¹): 3056, 2962, 2875, 1731, 1616, 1596, 1456, 1261, 1149; **HRMS** (EI⁺) calcd for $C_{13}H_{15}NO_2$: 217.1103, found: 217.1100.

5-Bromo-1-propylindoline-2,3-dione (2f)

red solid; **m.p.** 124 – 125 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.71 – 7.68 (m, 2H), 6.82 (dd, J = 8.0, 0.8 Hz, 1H), 3.69 (t, J = 7.4 Hz, 2H), 1.73 (sextet, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 182.3, 157.3, 149.7, 140.4, 127.9,

118.5, 116.2, 111.9, 41.8, 20.4, 11.2; **IR** (neat, cm⁻¹): 3079, 2971, 2873, 1736, 1606, 1465, 1432, 1330, 1178, 1116; **HRMS** (EI⁺) calcd for C₁₁H₁₀BrNO₂: 266.9895, found: 266.9873.

5-Propyl-5*H*-[1,3]dioxolo[4,5-*f*]indole-6,7-dione (2g)

dark red solid; **m.p.** 130 – 131 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.03 (s, 1H), 6.43 (s, 1H), 6.06 (s, 2H), 3.62 (t, *J* = 7.4 Hz, 2H), 1.70 (sextet, *J* = 7.4 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 180.9, 159.1, 156.5, 150.7, 144.2, 110.2,

104.8, 102.6, 93.2, 41.7, 20.7, 11.2; **IR** (neat, cm⁻¹): 2925, 1720, 1610, 1475, 1245, 1118, 1031; **HRMS** (EI⁺) calcd for $C_{12}H_{11}NO_4$: 233.0688, found: 233.0686.

1-Benzylindoline-2,3-dione (2h)

	_
Bn	

red solid; **m.p.** 122 - 123 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.61 (dd, J = 7.2, 0.8 Hz, 1H), 7.48 (td, J = 8.0, 1.2 Hz, 2H), 7.36 – 7.30 (m, 4H), 7.09 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 4.94 (s,

2H); ¹³C NMR (100 MHz, CDCl₃): δ 183.1, 158.2, 150.6, 138.3, 134.4, 128.9, 128.0, 127.3, 125.2, 123.7, 117.5, 110.9, 43.9; **IR** (neat, cm⁻¹): 3454, 3029, 1731, 1612, 1471, 1349, 1176, 1002; **HRMS** (EI⁺) calcd for C₁₅H₁₁NO₂: 237.0790, found: 237.0789.

1-Phenylindoline-2,3-dione (2l)

red solid; **m.p.** $128 - 129 \,^{\circ}\text{C}$; ¹**H NMR** (400 MHz, CDCl₃): δ 7.70 (dd, J = 7.2, 0.8 Hz, 1H), 7.58 - 7.52 (m, 3H), 7.47 (d, J = 6.8 Hz, 1H), 7.42 (d, J = 7.2 Hz, 2H), 7.18 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H)

1H); ¹³C NMR (100 MHz, CDCl₃): δ 182.8, 157.2, 151.5, 138.3, 132.8, 129.9, 128.7, 125.9, 125.5, 124.2, 117.4, 111.2; **IR** (neat, cm⁻¹): 3060, 1739, 1608, 1498, 1465, 1365, 1301, 1193, 929; **HRMS** (EI⁺) calcd for C₁₄H₉NO₂: 223.0633, found: 223.0625.

1-(*p*-Tolyl)indoline-2,3-dione (2m)

red solid; **m.p.** $131 - 132 \,^{\circ}$ C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.68 (d, $J = 7.6 \,\text{Hz}, 1\text{H}$), 7.53 (t, $J = 7.8 \,\text{Hz}, 1\text{H}$), 7.36 (d, $J = 8.4 \,\text{Hz}, 2\text{H}$), 7.31 (d, $J = 8.0 \,\text{Hz}, 2\text{H}$), 7.16 (t, $J = 7.4 \,\text{Hz}, 1\text{H}$), 6.87 (d, $J = 7.6 \,\text{Hz}, 1\text{H}$), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 183.0, 157.4, 151.8, 138.9, 138.3, 130.5, 130.1, 125.7, 125.4, 124.1, 117.3, 111.2, 21.2; **IR**

(neat, cm⁻¹): 2919, 1737, 1612, 1515, 1465, 1365, 1299, 1180, 1093, 927; **HRMS** (EI⁺) calcd for $C_{15}H_{11}NO_2$: 237.0790, found: 237.0789.

1-(4-Fluorophenyl)indoline-2,3-dione (2n)

red solid; **m.p.** 222 – 224 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.71 (d, J = 7.2 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.28 – 7.23 (m, 2H), 7.19 (t, J = 7.6 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H); ¹³C **NMR** (100 MHz, DMSO-d₆): δ 182.7, 161.4 (d, J = 243.9 Hz), 157.6, 151.2, 138.0, 129.6, 129.0 (d, J = 9.3 Hz), 124.7, 123.7, 117.6, 116.7

(d, J = 22.5 Hz), 110.7; **IR** (neat, cm⁻¹): 1735, 1606, 1508, 1461, 1361, 1288, 1182, 1097; **HRMS** (EI⁺) calcd for C₁₄H₈FNO₂: 241.0539, found: 241.0537.

1-(4-Bromophenyl)indoline-2,3-dione (20)

red solid; **m.p.** 169 – 170 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.72 – 7.68 (m, 3H), 7.56 (t, J = 7.8 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ 182.3, 157.1, 151.0, 138.4, 133.1, 131.8, 127.5, 125.7, 124.5, 122.4, 117.5, 110.7; **IR** (neat, cm⁻¹): 1737, 1610, 1494, 1465,

1363, 1294, 1180, 1012, 925; **HRMS** (EI⁺) calcd for $C_{14}H_8BrNO_2$: 300.9738, found: 300.9743.

1-(4-(Trifluoromethyl)phenyl)indoline-2,3-dione (2p)

red solid; **m.p.** $171 - 173 \degree$ C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.83 (d, J = 8.0 Hz, 2H), 7.74 (dd, J = 7.2, 0.8 Hz, 1H), 7.62 – 7.57 (m, 3H), 7.23 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 182.0, 157.0, 150.6, 138.4, 136.1, 130.5 (q, J = 32.8 Hz), 127.0 (q, J = 3.6 Hz), 126.0, 125.8, 124.7, 123.5 (q, J = 270.8 Hz),

117.5, 111.1; **IR** (neat, cm⁻¹): 3095, 1743, 1606, 1469, 1373, 1317, 1160, 1114, 925; **HRMS** (EI⁺) calcd for C₁₅H₈F₃NO₂: 291.0507, found: 291.0502.

1-(4-Methoxyphenyl)indoline-2,3-dione (2q)

red solid; **m.p.** $155 - 156 \,^{\circ}$ C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.68 (d, $J = 7.6 \,\text{Hz}, 1\text{H}$), 7.53 (t, $J = 7.6 \,\text{Hz}, 1\text{H}$), 7.32 (d, $J = 8.8 \,\text{Hz}, 2\text{H}$), 7.15 (t, $J = 7.6 \,\text{Hz}, 1\text{H}$), 7.06 (d, $J = 8.4 \,\text{Hz}, 2\text{H}$), 6.83 (d, $J = 7.6 \,\text{Hz}, 1\text{H}$), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 183.1, 159.6, 157.6, 152.0, 138.3, 127.4, 125.4, 125.3, 124.1, 117.4, 115.2, 111.1,

55.5; **IR** (neat, cm⁻¹): 2917, 2840, 1731, 1608, 1513, 1465, 1297, 1251, 1184, 1027; **HRMS** (EI⁺) calcd for C₁₅H₁₁NO₃: 253.0739, found: 253.0736.

4,6-Dimethyl-1-(*p*-tolyl)indoline-2,3-dione (2r)

red solid; **m.p.** 156 – 157 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.35 (d, J = 8.8 Hz, 2H), 7.27 – 7.25 (m, 2H), 6.72 (s, 1H), 6.44 (s, 1H), 2.58 (s, 3H), 2.43 (s, 3H), 2.30 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 182.6, 158.1, 152.3, 149.7, 141.3, 138.7, 130.43, 130.39, 126.9, 126.1, 113.6, 109.3, 22.7, 21.2, 18.1; **IR** (neat, cm⁻¹): 2921, 2852,

1747, 1731, 1614, 1513, 1363, 1276, 1164, 941; **HRMS** (EI⁺) calcd for C₁₇H₁₅NO₂: 265.1103, found: 265.1106.

5-(*p*-Tolyl)-5*H*-[1,3]dioxolo[4,5-*f*]indole-6,7-dione (2s)

dark red solid; **m.p.** 180 – 182 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.34 (d, J = 8.0 Hz, 2H), 7.26 – 7.23 (m, 2H), 7.09 (s, 1H), 6.37 (s, 1H), 6.05 (s, 2H), 2.42 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 180.2, 158.4, 156.4, 151.5, 144.7, 138.8, 130.5, 130.1, 125.9, 110.3, 104.5, 102.6, 94.2, 21.2; **IR** (neat, cm⁻¹): 2917, 1737, 1716, 1610,

1469, 1382, 1253, 1232, 1157, 1039, 945; **HRMS** (EI⁺) calcd for $C_{16}H_{11}NO_4$: 281.0688, found: 281.0689.

5-Bromo-1-(*p*-tolyl)indoline-2,3-dione (2t)

red solid; **m.p.** 192 – 194 °C; ¹**H NMR** (400 MHz, CDCl₃): δ 7.79 (d, J = 2.0 Hz, 1H), 7.63 (dd, J = 8.8, 2.0 Hz, 1H), 7.36 (d, J = 8.8 Hz, 2H), 7.27 – 7.25 (m, 2H), 6.78 (d, J = 8.4 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 181.9, 156.6, 150.6, 140.5, 139.3, 130.7, 129.8, 128.1, 125.7, 118.6, 116.9, 113.0, 21.2; **IR** (neat,

cm⁻¹): 2923, 1745, 1604, 1467, 1436, 1290, 1189, 1122; **HRMS** (EI⁺) calcd for $C_{15}H_{10}BrNO_2$: 314.9895, found: 314.9890.

References:

- Perrin, D. D.; Armarego, W. L. F. *In Purification of Laboratory Chemicals*, 3rd ed.; Pergamon Press: New York, 1988.
- Sugasawa, T.; Toyoda, T.; Adachi, M.; Sasakura, K. J. Am. Chem. Soc. 1978, 100, 4842.

10

11

21

