Supporting Information

Synthesis of Heterocyclic-Fused Benzofurans via C–H Functionalization of Flavones and Coumarins

Youngtaek Moon, Yechan Kim, Hyerim Hong and Sungwoo Hong*

Department of Chemistry, Korea Advance Institute of Science and Technology (KAIST), Daejeon 305-701,

Korea

I.	General Methods and Materials	S2
		S2
11.	Optimization Study	S4
III.	Experimental Procedures	S5
IV.	Compound characterizations	

Appendix I

Spectral Copies of ¹ H- and ¹³ C-NMR Data Obtained in this Study	S16
--	-----

I. General Methods and Materials. Unless stated otherwise, reactions were performed in flame-dried glassware. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F^{254} plates and visualization on TLC was achieved by UV light (254 and 365 nm). Flash column chromatography was undertaken on silica gel (400-630 mesh). ¹H NMR was recorded on 400 MHz and chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, td = doublet of triplet, ddd = doublet of doublet. Coupling constants, *J*, were reported in hertz unit (Hz). ¹³C NMR was recorded on 100 MHz and was fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of Chloroform-d. Mass spectral data were obtained from the KAIST Basic Science Institute by using ESI method. Dichloromethane was distilled from calcium hydride. Commercial grade reagents and solvents were used without further purification except as indicated below.

II. Optimization Study

Table S1. Optimization of catalytic Cu system.^a

0

		OH		o	
Entry	Cu(II) (equiv)	Solvent	Oxidant (equiv)	Additive (equiv)	Yield $(\%)^b$
1	$Cu(OAc)_2(0.3)$	DMSO	PhI(OAc) ₂ (1.5)		-
2	$Cu(OAc)_2(0.3)$	DMSO	PhI(OTFA) ₂ (1.5)		-
3	$Cu(OAc)_2(0.3)$	DMSO	$Ag_2CO_3(1.5)$		27
4	$Cu(OAc)_2(0.3)$	DMSO	$K_{2}S_{2}O_{8}(3)$		-
5	$Cu(OAc)_2(0.3)$	DMSO	BQ (1.5)		trace
6	$Cu(OAc)_2(0.3)$	DMSO	O_2		9
7	$Cu(OAc)_2(0.3)$	PhMe/DMSO(20:1)	O_2		11
8	$Cu(OAc)_2(0.3)$	PhMe/DMSO(20:1)	O_2	$Zn(OTf)_2(0.2)$	65
9	$Cu(OAc)_2(0.3)$	PhMe/DMSO(20:1)	O_2	$Zn(OTf)_2(0.7)$	80
10	$Cu(OAc)_2 (0.3)$	PhMe/DMSO(20:1)	O_2	Zn(OTf) ₂ (1.0)	82
11	$Cu(OAc)_2(0.3)$	PhMe/DMSO(20:1)	O_2	$Zn(OTf)_2$ (1.2)	77
12	$Cu(OAc)_2(0.3)$	PhMe/DMSO(20:1)	O_2	Zn(OTf) ₂ (2.0)	75

Ö

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

^{*a*} Reactions were conducted at 120 °C for 24 h.

Table S2. Screen of solvents and additives.^a

Entry	Cu(II) (equiv)	Solvent	Additive (equiv)	Yield $(\%)^b$
1	$Cu(OAc)_2$ (1.2)	DMF	-	19
2	$Cu(OAc)_2$ (1.2)	DMSO	-	56
3	$Cu(OAc)_2$ (1.2)	PhMe	-	15
4	$Cu(OAc)_2$ (1.2)	DMSO	K ₂ CO ₃ (1.5)	40
5	$Cu(OAc)_2$ (1.2)	DMSO	TEA (1.5)	41
6	$Cu(OAc)_2$ (1.2)	DMSO	pyridine (1.5)	42
7	$Cu(OAc)_2$ (1.2)	DMSO	TFA (2)	-
8	$Cu(OAc)_2$ (1.2)	DMSO	AcOH (2)	34
9	$Cu(OAc)_2$ (1.2)	DMSO	PivOH (2)	9
10	$Cu(OAc)_2$ (1.2)	DMF/DMSO(20:1)	-	54
11	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	-	71
12	$Cu(OAc)_2$ (1.2)	Dioxane/DMSO(20:1)	-	34
13	$Cu(OAc)_2$ (1.2)	DME/DMSO(20:1)	-	trace
14	$Cu(OAc)_2$ (1.2)	DCE/DMSO(20:1)	-	24
15	$Cu(OAc)_2$ (1.2)	MeCN/DMSO(20:1)	-	26
16	$Cu(OAc)_2$ (1.2)	Xylene/DMSO(20:1)	-	38
17	Cu(OTf) ₂ (1.2)	PhMe/DMSO(20:1)	-	-
18	Cu(OPiv) ₂ (1.2)	PhMe/DMSO(20:1)	-	31
19	$Cu(TFA)_2$ (1.2)	PhMe/DMSO(20:1)	-	22
20	Cu(OMe) ₂ (1.2)	PhMe/DMSO(20:1)	-	59
21	$Cu(OAc)_2(1.2)$	PhMe/DMSO(20:1)	$Zn(OTf)_{2}(0.2)$	87

^a Reactions were conducted at 120 °C for 24 h.

Table S3. Screen of Lewis acids.^{*a*}

ОН _____ 〔

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Entry	Cu(II) (equiv)	Solvent	Additive (equiv)	Yield $(\%)^b$
1	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	Zn(OAc) ₂ (0.2)	35
2	Cu(OAc) ₂ (1.2)	PhMe/DMSO(20:1)	$Zn(OTf)_2$ (0.2)	87
3	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	$ZnBr_{2}(0.2)$	77
4	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	$ZnI_{2}(0.2)$	38
5	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	LiOTf (0.2)	63
6	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	KOTf (0.2)	75
7	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	AgOTf (0.2)	71
8	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	Bi(OTf) ₃ (0.2)	26
9	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	In(OTf) ₃ (0.2)	81
10	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	Sm(OTf) ₃ (0.2)	69
11	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	Yb(OTf) ₃ (0.2)	48
12	$Cu(OAc)_2$ (1.2)	PhMe/DMSO(20:1)	Sn(OTf) ₂ (0.2)	67

^{*a*} Reactions were conducted at 120 °C for 24 h.

The exposure of C3-deuteriated 2-methoxyphenyl chromone to the catalytic conditions did not induce H/D scrambling, indicating that the important role of the phenolic OH directing group coordination during the C-H functionalization.

Scheme 1S. H/D exchange experiments.

III. Experimental Procedure

General procedure (GPI) for intramolecular C-O coupling reaction:

2-(2-hydroxyphenyl)flavone (0.063 mmol), $Cu(OAc)_2$ (1.2 eq) and $Zn(OTf)_2$ (0.2 eq) were combined in PhMe/DMSO(20:1) mixture (0.84 mL) in a cap test tube. The reaction mixture was heated to 120 °C. The reaction

was stirred for 12-24 hours. The mixture was monitored by TLC using EtOAc and *n*-hexane = 1 : 1 as the mobile phase and stirred until starting material disappeared. After cooled to RT, the mixture solvent was removed under reduced pressure. The reaction mixture was diluted with CH_2Cl_2 and the residue was extracted with aqueous NH_4Cl (3 × 30 ml). The organic layer was dried over MgSO₄. After removal of solvent, the residue was purified by flash chromatography on silica gel to give desired product.

IV. Compound Characterizations :

11H-benzofuro[**3,2-b**]**chromen-11-one** (**2a**). Yield 87 % (13.0 mg). mp 187–189 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.44 (dd, J = 8.0, 1.7 Hz, 1H), 7.95 (dt, J = 8.0, 1.0 Hz, 1H), 7.76 – 7.57 (m, 4H), 7.49 – 7.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 155.8, 155.0, 149.0, 137.3, 133.4, 130.5, 126.5, 125.1, 124.8, 124.2, 120.5, 118.3, 118.0, 113.4. HRMS (ESI⁺) m/z calcd. for C₁₅H₈NaO₃⁺ [M+Na]⁺: 259.0366, found: 259.0368.

3-methyl-11H-benzofuro[3,2-b]chromen-11-one (2b). Yield 84% (13.4 mg). mp 203–205 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.32 (d, *J* = 8.2 Hz, 1H), 7.94 (ddd, *J* = 7.9, 1.3, 0.8 Hz, 1H), 7.66 (dt, *J* = 8.5, 0.9 Hz, 1H), 7.60 (ddd, *J* = 8.5, 7.0, 1.3 Hz, 1H), 7.46 (s, 1H), 7.42 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 7.29 – 7.25 (m, 1H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 156.0, 155.0, 148.8, 144.8, 137.3, 130.2, 126.4, 126.2, 124.1, 122.8, 120.5, 118.1, 118.1, 113.4, 21.8. HRMS (ESI⁺) m/z calcd. for C₁₆H₁₀NaO₃⁺ [M+Na]⁺: 273.0522, found: 273.0503.

2-methyl-11H-benzofuro[3,2-b]chromen-11-one (2c). Yield 96% (15.2 mg). mp 222–224 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.23 (d, J = 0.7 Hz, 1H), 7.95 (dt, J = 7.9, 1.0 Hz, 1H), 7.65 (dt, J = 8.5, 0.9 Hz, 1H), 7.63 – 7.50 (m, 3H), 7.42 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 155.0, 154.1, 149.0, 137.3, 134.9, 134.6, 130.3, 125.9, 124.8, 124.1, 120.5, 118.1, 118.0, 113.4, 20.9. HRMS (ESI⁺) m/z calcd. for C₁₆H₁₀NaO₃⁺ [M+Na]⁺: 273.0522, found: 273.0514.

7H-benzo[h]benzofuro[3,2-b]chromen-7-one (2d). Yield 85% (15.3 mg). mp 225–227 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.70 – 8.63 (m, 1H), 8.35 (d, *J* = 8.7 Hz, 1H), 8.05 (ddd, *J* = 7.9, 1.4, 0.7 Hz, 1H), 7.94 – 7.89 (m, 1H), 7.79 (dd, *J* = 8.8, 0.8 Hz, 1H), 7.73 – 7.66 (m, 3H), 7.62 (ddd, *J* = 8.5, 7.1, 1.3 Hz, 1H), 7.47 (ddd, *J* = 8.0, 7.1, 1.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 154.9, 153.0, 148.2, 138.2, 135.7, 130.2, 129.3, 128.1, 127.3, 125.1, 124.2, 124.1, 122.3, 121.4, 121.2, 120.3, 118.0, 113.5. HRMS (ESI⁺) m/z calcd. for C₁₉H₁₀NaO₃⁺ [M+Na]⁺: 309.0522, found: 309.0511.

3-fluoro-11H-benzofuro[3,2-b]chromen-11-one (**2e**). Yield 78% (12.4 mg). mp 224–226 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.47 (dd, J = 8.9, 6.3 Hz, 1H), 7.96 (dt, J = 8.0, 1.0 Hz, 1H), 7.68 (dt, J = 8.5, 0.9 Hz, 1H), 7.63 (ddd, J = 8.5, 7.0, 1.3 Hz, 1H), 7.46 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 7.37 (dd, J = 9.0, 2.4 Hz, 1H), 7.24 – 7.19 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 166.5, 165.4 (d, $J_{CF} = 255.1$ Hz), 156.8 (d, $J_{CF} = 13.1$

Hz), 155.0 , 149.3 (d, $J_{CF} = 1.6$ Hz), 137.2 , 130.6 , 128.9 (d, $J_{CF} = 10.6$ Hz), 124.3 , 122.0 (d, $J_{CF} = 2.5$ Hz), 120.5 , 117.8 , 113.7 (d, $J_{CF} = 22.7$ Hz), 113.5 , 105.2 (d, $J_{CF} = 25.7$ Hz). HRMS (ESI⁺) m/z calcd. for C₁₅H₇FNaO₃⁺ [M+Na]⁺: 277.0271, found: 277.0266.

2-fluoro-11H-benzofuro[**3**,**2-b**]**chromen-11-one** (**2f**). Yield 72% (11.4 mg). mp 217–219 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.09 (dd, J = 8.4, 3.1 Hz, 1H), 7.97 (ddd, J = 7.9, 1.3, 0.8 Hz, 1H), 7.71 – 7.61 (m, 3H), 7.49 – 7.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3 (d, $J_{CF} = 2.3$ Hz), 159.4 (d, $J_{CF} = 246.9$ Hz), 155.2 , 151.9 (d, $J_{CF} = 1.8$ Hz), 149.4 , 136.8 , 130.8 , 126.5 (d, $J_{CF} = 7.5$ Hz), 124.3 , 121.5 (d, $J_{CF} = 25.4$ Hz), 120.6 , 120.2 (d, $J_{CF} = 8.1$ Hz), 117.8 , 113.5 , 111.6 (d, $J_{CF} = 24.4$ Hz). HRMS (ESI⁺) m/z calcd. for C₁₅H₇FNaO₃⁺ [M+Na]⁺: 277.0271, found: 277.0273.

2-chloro-11H-benzofuro[3,2-b]chromen-11-one (2g). Yield 71% (12.0 mg). mp 273–275 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.43 (dd, J = 2.4, 0.6 Hz, 1H), 7.97 (dt, J = 8.0, 1.1 Hz, 1H), 7.70 – 7.61 (m, 4H), 7.46 (ddd, J = 8.0, 6.8, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 155.2, 154.1, 149.4, 137.1, 133.6, 131.0, 130.8, 126.3, 126.0, 124.4, 120.6, 119.9, 117.8, 113.5. HRMS (ESI⁺) m/z calcd. for C₁₅H₇ClNaO₃⁺ [M+Na]⁺: 292.9976, found: 292.9952.

2-bromo-11H-benzofuro[3,2-b]chromen-11-one (2h). Yield 45% (9.0 mg). mp 271–273 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.59 (d, J = 2.5 Hz, 1H), 7.97 (dt, J = 8.0, 1.1 Hz, 1H), 7.82 (dd, J = 8.9, 2.5 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.59 (d, J = 8.9 Hz, 1H), 7.46 (ddd, J = 8.0, 6.7, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 155.3, 154.6, 149.4, 137.1, 136.4, 130.9, 129.2, 126.6, 124.4, 120.6, 120.2, 118.5, 117.8, 113.5. HRMS (ESI⁺) m/z calcd. for C₁₅H₇BrNaO₃⁺ [M+Na]⁺: 336.9471, found: 336.9444.

3-hydroxy-11H-benzofuro[**3**,**2-b**]**chromen-11-one** (**2i**). Yield 63% (10.0 mg). mp 315–317 °C. orange solid. ¹H NMR (400 MHz, Dimethyl sulfoxide-d₆) δ 10.99 (s, 1H), 8.12 (d, *J* = 8.8 Hz, 1H), 8.09 (ddd, *J* = 7.9, 1.3, 0.7 Hz, 1H), 7.87 (dt, *J* = 8.5, 0.8 Hz, 1H), 7.73 (ddd, *J* = 8.5, 7.2, 1.3 Hz, 1H), 7.54 (ddd, *J* = 8.0, 7.2, 0.8 Hz, 1H), 7.11 (d, *J* = 2.2 Hz, 1H), 7.02 (dd, *J* = 8.8, 2.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.9, 162.8, 157.3, 154.0, 147.9, 136.6, 130.4, 127.3, 124.5, 120.5, 117.6, 117.1, 114.8, 113.3, 102.9. HRMS (ESI⁺) m/z calcd. for C₁₅H₈NaO₄⁺ [M+Na]⁺: 275.0315, found: 275.0287.

2-hydroxy-11H-benzofuro[3,2-b]chromen-11-one (2j). Yield 72% (11.5 mg). mp 296-298 °C. white solid. ¹H NMR (400 MHz, Dimethyl sulfoxide-d₆) δ 10.12 (s, 1H), 8.04 (ddd, *J* = 7.9, 1.4, 0.7 Hz, 1H), 7.84 (dt, *J* = 8.5, 0.8 Hz, 1H), 7.75 – 7.68 (m, 2H), 7.56 – 7.47 (m, 2H), 7.29 (dd, *J* = 9.0, 3.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 165.8, 154.7, 154.2, 148.9, 148.4, 136.3, 130.8, 125.5, 124.5, 122.8, 120.6, 119.8, 117.5, 113.3, 108.4. HRMS (ESI⁺) m/z calcd. for C₁₅H₈NaO₄⁺ [M+Na]⁺: 275.0315, found: 275.0287.

11-oxo-11H-benzofuro[**3,2-b**]**chromen-3-yl trifluoromethanesulfonate** (**2k**). Yield 82% (19.5 mg). mp 161-163 ^oC. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.57 (d, *J* = 8.9 Hz, 1H), 7.97 (dt, *J* = 8.0, 1.1 Hz, 1H), 7.73 – 7.62 (m, 3H), 7.48 (ddd, *J* = 8.0, 6.6, 1.5 Hz, 1H), 7.40 (dd, *J* = 8.9, 2.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 155.9, 155.3, 151.9, 149.7, 137.2, 131.1, 129.1, 125.1, 124.6, 123.5, 120.6, 120.3, 118.3, 117.6, 117.1, 113.9, 113.6, 111.8. HRMS (ESI⁺) m/z calcd. for C₁₆H₇F₃NaO₆S⁺ [M+Na]⁺: 406.9808, found: 406.9822.

8-fluoro-11H-benzofuro[**3**,**2-b**]**chromen-11-one** (**2**]**.** Yield 69% (10.9 mg). mp 226–228 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.45 (ddd, J = 8.0, 1.7, 0.5 Hz, 1H), 7.94 (ddd, J = 8.7, 5.3, 0.5 Hz, 1H), 7.75 (ddd, J = 8.6, 7.0, 1.7 Hz, 1H), 7.67 (ddd, J = 8.5, 1.3, 0.5 Hz, 1H), 7.49 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.37 (ddd, J = 8.6, 2.2, 0.5 Hz, 1H), 7.25 – 7.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8 , 164.3 (d, J_{CF} = 251.4 Hz), 155.8 , 155.6 (d, J_{CF} = 13.9 Hz), 148.7 , 138.1 (d, J_{CF} = 3.3 Hz), 133.5 , 126.6 , 125.0 , 121.7 (d, J_{CF} = 10.7 Hz), 118.2 , 114.6 (d, J_{CF} = 1.8 Hz), 113.5 (d, J_{CF} = 25.0 Hz), 101.1 (d, J_{CF} = 26.9 Hz). HRMS (ESI⁺) m/z calcd. for C₁₅H₇FNaO₃⁺ [M+Na]⁺: 277.0271, found: 277.0241.

9-chloro-11H-benzofuro[3,2-b]chromen-11-one (**2m**). Yield 77% (13.0 mg). mp 264–266 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.47 (ddd, *J* = 8.0, 1.7, 0.5 Hz, 1H), 7.88 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.76 (ddd, *J* = 8.6, 7.0, 1.7 Hz, 1H), 7.68 (dd, *J* = 8.5, 0.8 Hz, 1H), 7.62 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.49 (ddd, *J* = 8.1, 7.0, 1.2 Hz,

1H), 7.39 (t, J = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 155.8, 150.8, 148.7, 137.8, 133.7, 130.3, 126.7, 125.2, 125.1, 125.0, 119.8, 119.2, 119.0, 118.3. HRMS (ESI⁺) m/z calcd. for C₁₅H₇ClNaO₃⁺ [M+Na]⁺: 292.9976, found: 292.9957.

8-chloro-11H-benzofuro[3,2-b]chromen-11-one (2n). Yield 65% (11.0 mg). mp 211–213 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.46 (ddd, J = 8.0, 1.7, 0.5 Hz, 1H), 7.90 (dd, J = 8.5, 0.5 Hz, 1H), 7.76 (ddd, J = 8.6, 7.0, 1.7 Hz, 1H), 7.71 – 7.65 (m, 2H), 7.49 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.44 (dd, J = 8.5, 1.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 155.8, 155.0, 148.5, 137.8, 136.6, 133.6, 126.6, 125.3, 125.1, 125.1, 121.2, 118.3, 116.8, 114.0. HRMS (ESI⁺) m/z calcd. for C₁₅H₇ClNaO₃⁺ [M+Na]⁺: 292.9976, found: 292.9950.

8-hydroxy-11H-benzofuro[3,2-b]chromen-11-one (20). Yield 76% (12.0 mg). mp 295-297 °C. light yellow solid. ¹H NMR (400 MHz, Dimethyl sulfoxide-d₆) δ 10.66 (s, 1H), 8.32 – 8.20 (m, 1H), 7.93 – 7.79 (m, 3H), 7.61 – 7.50 (m, 1H), 7.13 (d, *J* = 2.0 Hz, 1H), 7.02 (dd, *J* = 8.6, 2.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 164.8, 161.2, 156.5, 155.0, 149.4, 135.7, 133.5, 125.5, 125.1, 124.6, 121.4, 118.4, 114.9, 109.1, 98.6. HRMS (ESI⁺) m/z calcd. for C₁₅H₈NaO₄⁺ [M+Na]⁺: 275.0315, found: 275.0286.

7-bromo-11H-benzofuro[3,2-b]chromen-11-one (2p). Yield 77% (15.3 mg). mp 262–264 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.45 (dd, J = 8.0, 1.7 Hz, 1H), 8.12 (d, J = 2.0 Hz, 1H), 7.76 (ddd, J = 8.6, 7.0, 1.7 Hz, 1H), 7.72 – 7.65 (m, 2H), 7.56 (d, J = 8.9 Hz, 1H), 7.49 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 155.8, 153.6, 147.7, 138.1, 133.8, 133.4, 126.6, 125.1, 125.1, 123.2, 119.8, 118.3, 117.3, 115.0. HRMS (ESI⁺) m/z calcd. for C₁₅H₇BrNaO₃⁺ [M+Na]⁺: 336.9471, found: 336.9454.

7-chloro-11H-benzofuro[**3,2-b**]**chromen-11-one** (**2q**). Yield 62% (10.5 mg). mp 254–256 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.45 (dd, J = 8.0, 1.7 Hz, 1H), 7.96 (d, J = 2.1 Hz, 1H), 7.76 (ddd, J = 8.7, 7.0, 1.7 Hz, 1H), 7.67 (dd, J = 8.5, 1.1 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.56 (dd, J = 8.9, 2.1 Hz, 1H), 7.49 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 155.8, 153.3, 147.9, 138.3, 133.7, 130.7, 130.0, 126.6, 125.1, 120.1, 119.3, 118.3, 114.7. HRMS (ESI⁺) m/z calcd. for C₁₅H₇ClNaO₃⁺ [M+Na]⁺: 292.9976, found: 292.9950.

10-tosylchromeno[3,2-b]indol-11(10H)-one (2r). Yield 82% (13.0 mg). mp 244–246 °C. light yellow solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.49 (d, *J* = 8.7 Hz, 1H), 8.35 (dd, *J* = 8.0, 1.7 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.70 – 7.63 (m, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 154.7, 150.0, 144.8, 138.6, 136.7, 133.2, 130.6, 129.5, 127.8, 126.9, 124.8, 124.7, 124.1, 120.3, 120.0, 118.8, 117.7, 116.2, 21.7. HRMS (ESI⁺) m/z calcd. for C₂₂H₁₅NNaO₄S⁺ [M+Na]⁺: 412.0614, found: 412.0601.

chromeno[3,2-b]indol-11(10H)-one (2s). Yield 74% (11.0 mg). mp 279-281 °C. light yellow solid. ¹H NMR (400 MHz, Dimethyl sulfoxide-d₆) δ 12.17 (s, 1H), 8.32 (d, J = 7.8 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 7.89 – 7.82 (m, 2H), 7.59 – 7.49 (m, 3H), 7.26 (ddd, J = 8.0, 6.6, 1.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 168.4, 155.3, 143.8, 137.0, 133.3, 128.0, 125.4, 124.2, 123.2, 120.9, 120.4, 119.4, 118.4, 114.7, 113.2. HRMS (ESI⁺) m/z calcd. for C₁₅H₉NNaO₂⁺ [M+Na]⁺: 258.0525, found: 258.0507.

6H-benzofuro[2,3-c]chromen-6-one (4a). Yield 46% (6.8 mg). mp 165–167 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.16 (d, J = 8.0 Hz, 1H), 8.10 (dd, J = 7.8, 1.6 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.62 (ddd, J = 8.4, 7.1, 1.3 Hz, 1H), 7.55 – 7.39 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 153.6, 152.1, 138.5, 129.8, 127.4, 124.9, 124.8, 124.0, 122.9, 122.4, 117.6, 116.8, 113.4. HRMS (ESI⁺) m/z calcd. for C₁₅H₈NaO₃⁺ [M+Na]⁺: 259.0366, found: 259.0398.

3-(dimethylamino)-6H-benzofuro[2,3-c]chromen-6-one (4b). Yield 52% (8.8 mg). mp 204–206 °C. light yellow solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.12 (d, *J* = 7.9 Hz, 1H), 7.90 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.6 Hz, 1H), 7.58 (ddd, *J* = 8.4, 7.1, 1.3 Hz, 1H), 7.48 – 7.40 (m, 1H), 6.75 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.66 (d, *J* = 2.5 Hz, 1H), 3.04 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 154.4, 154.3, 151.4, 136.1, 129.5, 128.7, 124.5, 124.2, 12

123.1, 122.7, 113.2, 109.7, 105.5, 99.3, 40.2. HRMS (ESI⁺) m/z calcd. for $C_{17}H_{13}NNaO_3^+$ [M+Na]⁺: 302.0788, found: 302.0797.

10-methyl-6H-benzofuro[**2**,**3-c**]**chromen-6-one** (**4c**). Yield 44% (8.8 mg). mp 188–190 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.15 (dd, J = 7.8, 1.1 Hz, 1H), 7.99 – 7.95 (m, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.57 – 7.46 (m, 2H), 7.46 – 7.41 (m, 2H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 153.7, 152.1, 138.7, 134.7, 131.3, 129.7, 127.2, 124.9, 124.1, 122.5, 122.5, 117.6, 117.0, 112.9, 21.5. HRMS (ESI⁺) m/z calcd. for C₁₆H₁₀NaO₃⁺ [M+Na]⁺: 273.0522, found: 273.0525.

10-chloro-6H-benzofuro[**2,3-c**]**chromen-6-one** (**4d**). Yield 51% (11.0 mg). mp 219–221 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.15 (dd, J = 2.2, 0.6 Hz, 1H), 8.06 (dd, J = 7.7, 1.4 Hz, 1H), 7.67 (dd, J = 9.0, 0.6 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.52 – 7.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 153.2, 152.1, 139.6, 130.6, 130.1, 126.7, 125.1, 123.9, 123.7, 122.5, 117.7, 116.3, 114.5. HRMS (ESI⁺) m/z calcd. for C₁₅H₇ClNaO₃⁺ [M+Na]⁺: 292.9976, found: 292.9958.

10-fluoro-6H-benzofuro[**2**,**3-c**]**chromen-6-one** (**4e**). Yield 50% (10.2 mg). mp 225–227 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.03 (dd, J = 7.8, 1.4 Hz, 1H), 7.83 (dd, J = 8.1, 2.5 Hz, 1H), 7.73 – 7.66 (m, 1H), 7.59 – 7.41 (m, 3H), 7.38 (td, J = 8.9, 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8 (d, $J_{CF} = 243.3$ Hz), 153.4 (d, $J_{CF} = 24.3$ Hz), 152.1 , 140.0 , 130.0 , 127.3 (d, $J_{CF} = 4.5$ Hz), 125.1 , 123.7 , 123.0 (d, $J_{CF} = 10.6$ Hz), 118.1 (d, $J_{CF} = 26.4$ Hz), 117.7 , 116.4 , 114.5 (d, $J_{CF} = 9.4$ Hz), 108.5 (d, $J_{CF} = 25.6$ Hz). HRMS (ESI⁺) m/z calcd. for $C_{15}H_7FNaO_3^+$ [M+Na]⁺: 277.0271, found: 277.0270.

2-fluoro-6H-benzofuro[**2**,**3-c**]**chromen-6-one** (**4f**). Yield 48% (7.6 mg). mp 210–212 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.18 – 8.12 (m, 1H), 7.82 – 7.71 (m, 2H), 7.66 (ddt, J = 8.5, 7.5, 1.3 Hz, 1H), 7.57 – 7.44 (m, 2H), 7.30 – 7.21 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 159.2 (d, $J_{CF} = 244.9$ Hz), 157.4 , 153.2 , 148.4 (d, $J_{CF} = 2.3$ Hz), 139.1 , 130.1 , 126.8 (d, $J_{CF} = 3.0$ Hz), 125.1 , 122.6 , 122.1 , 119.1 (d, $J_{CF} = 8.8$ Hz), 117.7 (d, $J_{CF} = 9.6$ Hz), 117.1 (d, $J_{CF} = 24.3$ Hz), 113.6 , 110.0 (d, $J_{CF} = 25.0$ Hz). HRMS (ESI⁺) m/z calcd. for $C_{15}H_7FNaO_3^+$ [M+Na]⁺: 277.0271, found: 277.0273.

2-methyl-6H-benzofuro[**2,3-c**]**chromen-6-one** (**4g**). Yield 47% (9.2 mg). mp 196–198 °C. white solid. ¹H NMR (400 MHz, Chloroform-d) δ 8.16 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.86 – 7.82 (m, 1H), 7.69 (dt, *J* = 8.5, 0.9 Hz, 1H), 7.61 (ddd, *J* = 8.4, 7.1, 1.3 Hz, 1H), 7.48 (ddd, *J* = 8.1, 7.1, 1.1 Hz, 1H), 7.35 – 7.27 (m, 2H), 2.49 (s, 3H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \ \delta \ 157.2, \ 153.7, \ 150.2, \ 138.6, \ 134.7, \ 130.7, \ 129.7, \ 127.3, \ 124.7, \ 123.9, \ 123.0, \ 122.4, \ 117.2, \ 123.9, \ 123.0, \ 122.4, \ 117.2, \ 123.9, \ 123.0, \ 122.4, \ 117.2, \ 123.9, \ 123.0, \ 122.4, \ 117.2, \ 123.9, \ 123.0, \ 122.4, \ 117.2, \ 123.9, \ 123.0, \ 122.4, \ 117.2, \ 123.9, \ 123.0, \ 122.4, \ 117.2, \ 123.9, \ 123.0,$

116.5, 113.3, 21.1. HRMS (ESI⁺) m/z calcd. for $C_{16}H_{10}NaO_3^+$ [M+Na]⁺: 273.0522, found: 273.0515.

Appendix I

Spectral Copies of ¹H and ¹³C NMR Data Obtained in this Study

11H-benzofuro[3,2-b]chromen-11-one (2a)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

3-methyl-11H-benzofuro[3,2-b]chromen-11-one (2b)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

2-methyl-11H-benzofuro[3,2-b]chromen-11-one (2c)

100 MHz, ¹³C NMR in CDCl₃

7H-benzo[h]benzofuro[3,2-b]chromen-7-one (2d)

100 MHz, ¹³C NMR in CDCl₃

3-fluoro-11H-benzofuro[**3,2-b**]chromen-11-one (2e)

100 MHz, ¹³C NMR in CDCl₃

2-fluoro-11H-benzofuro[3,2-b]chromen-11-one (2f)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

2-chloro-11H-benzofuro[3,2-b]chromen-11-one (2g)

100 MHz, ¹³C NMR in CDCl₃

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

2-bromo-11H-benzofuro[3,2-b]chromen-11-one (2h)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

3-hydroxy-11H-benzofuro[3,2-b]chromen-11-one (2i)

400 MHz, ¹H NMR in DMSO-d₆

100 MHz, ¹³C NMR in DMSO-d₆

2-hydroxy-11H-benzofuro[3,2-b]chromen-11-one (2j)

400 MHz, ¹H NMR in DMSO-d₆

100 MHz, ¹³C NMR in DMSO-d₆

11-oxo-11H-benzofuro[3,2-b]chromen-3-yl trifluoromethanesulfonate (2k)

100 MHz, ¹³C NMR in CDCl₃

8-fluoro-11H-benzofuro[3,2-b]chromen-11-one (2l)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

9-chloro-11H-benzofuro[3,2-b]chromen-11-one (2m)

100 MHz, ¹³C NMR in CDCl₃

8-chloro-11H-benzofuro[3,2-b]chromen-11-one (2n)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

8-hydroxy-11H-benzofuro[3,2-b]chromen-11-one (20)

400 MHz, ¹H NMR in DMSO-d₆

100 MHz, ¹³C NMR in DMSO-d₆

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

7-bromo-11H-benzofuro[3,2-b]chromen-11-one (2p)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

7-chloro-11H-benzofuro[3,2-b]chromen-11-one (2q)

400 MHz, ¹H NMR in CDCl₃

100 MHz, ¹³C NMR in CDCl₃

10-tosylchromeno[3,2-b]indol-11(10H)-one (2r)

190

ίo

180

170

180 150 140 130 120 110 100 90 80 70 80 50 40 30 20 fl (ppm)

100 MHz, ¹³C NMR in CDCl₃

10

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

100 MHz, ¹³C NMR in DMSO-d₆

6H-benzofuro[2,3-c]chromen-6-one (4a)

100 MHz, ¹³C NMR in CDCl₃

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

3-(dimethylamino)-6H-benzofuro[2,3-c]chromen-6-one (4b)

100 MHz, ¹³C NMR in CDCl₃

10-methyl-6H-benzofuro[2,3-c]chromen-6-one (4c)

100 MHz, ¹³C NMR in CDCl₃

10-chloro-6H-benzofuro[2,3-c]chromen-6-one (4d)

100 MHz, ¹³C NMR in CDCl₃

10-fluoro-6H-benzofuro[2,3-c]chromen-6-one (4e)

100 MHz, ¹³C NMR in CDCl₃

2-fluoro-6H-benzofuro[2,3-c]chromen-6-one (4f)

100 MHz, ¹³C NMR in CDCl₃

2-methyl-6H-benzofuro[2,3-c]chromen-6-one (4g)

100 MHz, ¹³C NMR in CDCl₃