Electronic Supplementary Information (ESI)

KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production

Guiju Tao,^a Zile Hua,^{*a} Zhe Gao,^b Yan Zhu,^a Yan Zhu,^c Yu Chen,^a Zhu Shu,^a Lingxia Zhang ^a and Jianlin Shi^{*a}

 ^a State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.
 R. China.

^b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese

Academy of Sciences, Shanxi, 030001, P. R. China

^cAnalysis and Testing Center for Inorganic Materials, Shanghai Institute of Ceramics,

Chinese Academy of Sciences, Shanghai, 200050, P. R. China

E-mail: jlshi@mail.sic.ac.cn; huazl@mail.sic.ac.cn

Table of Contents:

Experimental details

Fig. S1. Wide-angle X-ray diffraction patterns of \mathbf{x} KF/*m*-Mg₂Fe and *m*-Mg₂Fe support.

Fig. S2. N_2 adsorption–desorption isotherms (a) and their corresponding pore-size distributions (b) of \mathbf{x} KF/*m*-Mg₂Fe and *m*-Mg₂Fe support.

Fig. S3. Wide-angle X-ray diffraction patterns of non-calcined 20KF/*m*-Mg₂Fe-M and 20KF/*m*-Mg₂Fe-W as well as calcined *m*-Mg₂Fe support.

Fig. S4. SEM images of 10KF/m-Mg₂Fe-M (a) and 30KF/m-Mg₂Fe-M (b).

Fig. S5. TEM images of xKF/m-Mg₂Fe and m-Mg₂Fe support.

Fig. S6. CO₂-TPD profiles of xKF/*m*-Mg₂Fe and *m*-Mg₂Fe support.

Scheme S1. Schematic diagram of the transesterification reaction between soybean oil and methanol.

Table S1. Yields of FAMEs with fresh \mathbf{x} KF/*m*-Mg₂Fe-**W** as well as 1st recycled **20**KF/*m*-Mg₂Fe-**W** and 30KF/*m*-CaAl4(700)-700-3 (our previous reported mesostructured KF/Ca-Al bi-metal oxides).

Table S2. Recyclability and stability of **20**KF/*m*-Mg₂Fe-**M**.

Fig. S8. Influence of alcohol to oil molar ratios and the catalyst amounts on the yield of biodiesel catalyzed by 20KF/*m*-Mg₂Fe-M.

Experimental details

Materials: Magnesium chloride hexahydrate (MgCl₂·6H₂O), ferrous sulfate heptahydrate (FeSO₄·7H₂O), sodium oxalate (Na₂C₂O₄), potassium fluoride dihydrate (KF·2H₂O), potassium hydroxide (KOH) were obtained from Sinopharm Chemical Reagent Co.. Methyl laurate was purchased from TCI. Soybean oil was obtained from the local supermarket. Methanol (MeOH) was purchased from Sigma-Aldrich. All regents were used without further purification. Deionized water was used in all synthesis experiments.

Synthesis of KF/m-Mg₂Fe composites: The support, mesoporous Mg-Fe bi-metal oxides with a Mg/Fe molar ratio of 2 (m-Mg₂Fe), was synthesized by the simple template–free strategy according to our previous report ¹ with a modified calcination duration of 1 h. Then, the obtained m-Mg₂Fe was wetted by KF·2H₂O methanol or aqueous solutions with different concentrations corresponding to the loading amounts of KF·2H₂O (10, 20, and 30% (wt/wt m-Mg₂Fe support)) by incipient wetness impregnation. After ultrasonically treated for 5 min, the slurries were placed statically for 6 h and further dried at 100 °C overnight after the solvents were evaporated under reduced pressure in a rotary evaporator at room temperature for methanol or 40 °C for water. Prior to use, these dried materials were activated by calcining at 400 °C for 1 h. The resultant composites are denoted as \mathbf{x} KF/m-Mg₂Fe-M or \mathbf{x} KF/m-Mg₂Fe-W, where ' \mathbf{x} ', ' \mathbf{M} ' and ' \mathbf{W} ' are the nominal KF·2H₂O loading amount, Methanol (the impregnation solvent) and Water (the impregnation solvent), respectively. The whole synthesis process of the mesostructured KF/m-Mg₂Fe composites with different impregnation solvents is shown in Fig. 1.

Characterization: Wide-angle X-ray diffraction patterns were recorded on a Rigaku D/Max 2200PC diffractometer with CuKa radiation (40 kV and 40 mA) and a scanning rate of 4 $^{\circ}$ min⁻¹. N₂ adsorption/desorption measurements were performed by

using Micromeritics Tristar 3000 at 77 K and the mesoporous specific surface area, pore size distributions were calculated using the Brunauer-Emmett-Teller (BET) and Barrett–Joyner–Halenda (BJH) methods, respectively. Α vibrating-sample magnetometer (PPMS Model 6000 Quantum Design, San Diego, USA) was used to study the magnetic properties. Transmission electron microscopy (TEM) images and field emission scanning electron microscopic (FE-SEM) images were obtained by a JEOL-2010F electron microscope operating at 200 kV and a Hitachi S-4800, respectively. Carbon dioxide temperature-programmed desorption (CO₂-TPD) was performed on a ChemiSorb 2750 instrument (Micromeritics, USA). About 50 mg of sample was put into a quartz "U" tube and pretreated under a helium stream at 350 °C for 1 h (10 °C min⁻¹, 25 ml min⁻¹). The sample was then cooled to room temperature, and a flow of CO_2 gas (25 ml min⁻¹) was subsequently introduced into the quartz "U" tube for 1 h. Then the temperature was raised to 100 °C and the gas flow was changed to the helium gas flow again for 1 h to remove loosely adsorbed carbon dioxide molecules from the catalyst surface. The sample was then heated to 850 °C under helium flow (25 ml min⁻¹) to desorb CO₂, which was detected using an online thermal conductivity detector. The product of the transesterification reaction was analyzed by a GC-MS (Agilent, 6890/5973N), with the injector and detector temperatures being maintained at 240 °C and 260 °C, respectively. The oven temperature in the GC-MS was increased to 195 °C from 60 °C at a heating rate of 5 °C min⁻¹ and further to 205 °C at 1 °C min⁻¹. The leaching amounts of K and/or Mg species of catalysts into biodiesel were evaluated by measuring the K and Mg concentrations in the biodiesel after evaporating methanol with ICP-OES (Vista AX).

Transesterification reactions: The transesterification reaction of soybean oil with methanol was carried out in a three-necked flask equipped with a condenser and a magnetic stirrer under mild conditions: stirring at 200 rpm, atmospheric pressure, and 60 °C without protecting gas. Typically, 5.0 g of soybean oil, 0.8 g of methyl laurate (internal standard) and a specified volume of methanol were added into the flask. Then, a certain amount of catalyst was added into the above mixture after it reached

60 °C. The product was collected with a micro syringe per 10 min and analyzed by the GC-MS. The yield of biodiesel was determined by the following equation:
Yield (%) = actual weight of total FAMEs * 100% / weight of soybean oil (4)
In which the actual weight of total FAMEs (fatty acid monoalkyl esters, main content of biodiesel) was determined by GC-MS.

After each reaction, the catalyst was separated from the reaction mixture with a magnet, washed with cyclohexane, dried under vacuum at room temperature for 4 h and calcined at 400 °C for 1 h before reuse.

Reference

1 Z. Gao, J. Zhou, F. Cui, Y. Zhu, Z. Hua and J. Shi, *Dalton Trans.*, 2010, **39**, 11132.

Fig. S1. Wide-angle X-ray diffraction patterns of \mathbf{x} KF/*m*-Mg₂Fe-M, 20KF/*m*-Mg₂Fe-W ($\mathbf{x} = \mathbf{10}$, 20, or 30, the loading amounts (%) of KF·2H₂O; $\mathbf{M} = \mathbf{M}$ ethanol, $\mathbf{W} = \mathbf{W}$ ater, the impregnation solvent) and *m*-Mg₂Fe support.

Fig. S2. N₂ adsorption–desorption isotherms (a) and their corresponding pore-size distributions (b) of \mathbf{x} KF/*m*-Mg₂Fe-M, 20KF/*m*-Mg₂Fe-W ($\mathbf{x} = \mathbf{10}, \mathbf{20}, \text{ or } \mathbf{30}$, the loading amounts (%) of KF·2H₂O; $\mathbf{M} = \mathbf{M}$ ethanol, $\mathbf{W} = \mathbf{W}$ ater, the impregnation solvent) and *m*-Mg₂Fe support.

Fig. S3. Wide-angle X-ray diffraction patterns of non-calcined 20KF/m-Mg₂Fe-M and 20KF/m-Mg₂Fe-W (M = MeOH, W = Water, the impregnation solvent) as well as calcined m-Mg₂Fe support.

Fig. S4. SEM images of 10KF/m-Mg₂Fe-M (a) and 30KF/m-Mg₂Fe-M (b) (M = Methanol, the impregnation solvent).

Fig. S5. TEM images of m-Mg₂Fe support (a), 10KF/m-Mg₂Fe-M (b), 20KF/m-Mg₂Fe-M (c), 30KF/m-Mg₂Fe-M (d) and 20KF/m-Mg₂Fe-W (e) (M = Methanol, W = Water, the impregnation solvent).

Fig. S6. CO₂-TPD profiles of \mathbf{x} KF/*m*-Mg₂Fe-M, 20KF/*m*-Mg₂Fe-W ($\mathbf{x} = \mathbf{10}, \mathbf{20}, \text{ or } \mathbf{30}$, the loading amounts (%) of KF·2H₂O; $\mathbf{M} = \mathbf{M}$ ethanol, $\mathbf{W} = \mathbf{W}$ ater, the impregnation solvent) and *m*-Mg₂Fe support.

Scheme S1. The transesterification reaction schematic diagram between soybean oil and methanol (FAMEs: fatty acid monoalkyl esters).

Fig. S7. Magnetization curves of m-Mg₂Fe support and 20KF/m-Mg₂Fe-M composite (as a representative; M = Methanol, the impregnation solvent).

Table S1. Yields of FAMEs with fresh \mathbf{x} KF/*m*-Mg₂Fe(\mathbf{y} 0 \mathbf{z})-W- \mathbf{a} 0 \mathbf{b} (\mathbf{x} is the loading amount (%) of KF·2H₂O; $\mathbf{W} = \mathbf{W}$ ater, the impregnation solvent; ' \mathbf{y} 0 \mathbf{z} ' indicates that *m*-Mg₂Fe support was calcined at ' \mathbf{y} ' °C for ' \mathbf{z} ' h and ' \mathbf{a} 0 \mathbf{b} ' means that the supported catalyst was activated at ' \mathbf{a} ' °C for ' \mathbf{b} ' h) as well as 1st recycled 20KF/*m*-Mg₂Fe-W and 30KF/*m*-CaAl4(700)-700-3 (our previous reported mesostructured KF/Ca-Al bi-metal oxides).

Materials	FAMEs Yield [%]		
20KF/m-Mg ₂ Fe(401)-W-503 ^{a)}	91.10±0.50		
48.6 KF/ <i>m</i> -Mg ₂ Fe(401)- W-401 ^{a)}	91.40±0.71		
20KF/m-Mg ₂ Fe(403)-W-403 ^{a)}	86.90±0.98		
30KF/m-Mg ₂ Fe(403)-W-403 ^{a)}	91.46±0.96		
1^{st} recycled 20 KF/ <i>m</i> -Mg ₂ Fe- W ^{a)}	77.14±0.42		
1 st recycled 30KF/ <i>m</i> -CaAl4(700)-700-3 ^{b)}	70.38±0.13		

^{a)}Reaction conditions: reaction temperature of 60 °C, alcohol to oil (A/O) molar ratio of 12:1, catalyst amount (catalyst/oil weight ratio) of 3 wt%, reaction duration of 1 h and stirring at 200 rpm; ^{b)}Reaction conditions: reaction temperature of 60 °C, A/O molar ratio of 18:1, catalyst amount of 3 wt%, reaction duration of 5 h and stirring at 200 rpm.

Table S2. Recyclability and stability of 20KF/*m*-Mg₂Fe-M (M = Methanol, the impregnation solvent).

Recycle	1 st use	1 st roovala	2 nd roovala	2 rd recycle	4 th roovalo	EN 14214
times	i use	1 lecycle	2 lecycle	5 lecycle	4 lecycle	Standard
FAMEs yield [%] ^{a)}	100.00±0.53	93.34±1.78	84.10±1.62	77.13±1.40	59.57±0.16	≥96.5
Leached K $[mg kg^{-1}]^{a)}$	23.37±0.30	8.00±1.06	13.03±0.81	25.50±0.60	20.17±0.80	≤ 5
Leached Mg $[mg kg^{-1}]^{a)}$	<1	<1	1.30±0.17	1.37±0.15	5.47±0.15	≤ 5
Leached Fe [mg kg ⁻¹] ^{a)}	<2.5	<2.5	<2.5	<2.5	<2.5	-

^{a)}Reaction conditions: reaction temperature of 60 °C, A/O molar ratio of 12:1, catalyst amount of 3 wt%, reaction duration of 1 h and stirring at 200 rpm.

Fig. S8. Influence of alcohol to oil (A/O) molar ratios (a) and the catalyst amounts in catalyst/oil weight ratio (b) on the yield of biodiesel catalyzed by 20KF/*m*-Mg₂Fe-M (**M** = **M**ethanol, impregnation solvent).