Highly permeable mixed matrix membrane containing CAU-1-NH₂ for H₂ and CO₂ separation

Lujie Cao, Kai Tao, Aisheng Huang, Chunlong Kong* and Liang Chen*

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.

Electronic Supporting Information:

Experimental details, scanning electron microscope (SEM), powder X-ray diffraction patterns (XRD), thermogravimetric analysis, N_2 adsorption-desorption isotherms, H_2 and CO_2 adsorption isotherms and adsorption kinetics, and H_2 and CO_2 mixture breakthrough curves.

Table of Contents

1. Experimental details

2. Additional table and figures

1. Experimental details

1.1 Synthesis of CAU-1-NH₂ powder

All chemicals and reagents of analytical grade were commercially available and used as received. The typical synthesis procedure of CAU-1-NH₂ is obtained from the reference.¹ A mixture of AlCl₃•6H₂O (2.967 g, 12.3 mmol) and H₂N–H₂BDC (0.746 g, 4.1 mmol) was suspended in methanol (30 ml) and heated at 125 $^{\circ}$ C for 5 h. Then the obtained CAU-1-NH₂ powder was heated at 150 $^{\circ}$ C under vacuum for two days. At last, a yellow microcrystalline product was obtained.

1.2 Preparation of CAU-1-NH₂/PMMA membrane

There are mainly two steps for the preparation of MMMs. The first step is to disperse the filler in the solvent with an ultrasonic bath. The second step is to add polymer. We have prepared 5%, 10%, 15%, 20% and 25% percent based mixed matrix membrane. In all cases, the quality of chloroform remains 15g. Typically, for 15 wt.% concentration, 0.15g CAU-1-NH₂ and 0.85g Poly(methyl methacrylate) PMMA was carefully dissolved in 5g and 10g chloroform, respectively. Then, the two solutions are mixed. After that, the whole mixture is stirred overnight. Before the casting, different intervals of sonication and stirring take place to ensure a well dispersion. Subsequently, the membranes are cast on a flat surface and then left overnight for evaporation of solvent at room temperature. Once dried, the membranes are placed in a vacuum oven for 24 h at 423 K to anneal and remove the remaining solvent.

1.3 Characterizations

The BET surface area was measured on Accelerated Surface Area and Porosimetry System (ASAP 2020M, Micromeritics Company). The TGA was analyzed by Thermogravimetric Thermal Analyzer (Pyris Diamond TG/DTA, Perkin-Elmer Company). The powder X-ray diffraction data were collected from a Bruker D8 Advance X-ray Diffractometer with CuK α radiation (k = 1.5406 Å). Scanning electron microscopy images were obtained from a scanning electron microscope (the Quanta FEG 250, FEI Company). Prior to observation the sample was sputter-coated with a platinum layer to increase their conductivity.

For gas permeation test, the supported CAU-1-NH₂ membrane was sealed in a permeation module with silicone O-rings. The feed gases were fed to the top side of the membrane. All the tests were made in the room temperature and the upstream pressure is 3 bar.

Permeability and selectivity are two key parameters generally used to characterize polymeric membranes.² Permeability \mathbf{P}_A is difined as Eq(1), in which V is taken as 30 ml for each permeation test by our soap flow gauge. The symbol S is the virtual permeation area of the membrane (1.6 mm in diameter), while P and t is the permeation pressure (3 bar) and permeation time (recorded in the 30 ml permeation gas), respectively. L is the thickness of the prepared membrane estimated from its cross-section SEM image.

Eq.(1)
$$\mathbf{P}_{A} = (\mathbf{V} \times \mathbf{L})/(22.4 \times \mathbf{P} \times \mathbf{S} \times \mathbf{t})$$

Permeability values are typically reported in Barrer units (1 Barrer = 1×10^{-10} cm3 (STP) cm cm⁻² s⁻¹ cm Hg⁻¹ = 3.348×10^{-16} mol m m⁻² Pa⁻¹ s⁻¹).

The ideal selectivity, S_{AB} (Eq.(2)), is given by the ratio of the two pure gas permeabilities:

Eq. (2)
$$S_{AB} = \frac{P_A}{P_B}$$

For permeation of actual A/B mixtures, the mixed separation factor (α_{AB}), is calculated from composition analysis as the ratio of the mole fractions of the components in the permeate stream, y, and the feed stream, x (Eq. (3)).

Eq. (3)
$$\alpha_{AB} = \frac{(y_A/y_B)}{(x_A/x_B)}$$

2. Additional table and figures

Fig. S1. SEM image (top) and XRD pattern (down) of pure CAU-1-NH₂ powder.

Fig. S2. N₂ adsorption-desorption isotherms of CAU-1-NH₂ powder at 77.3 K.

Fig. S3. The surface SEM images of PMMA membrane (a) and CAU-1-NH₂/PMMA with 5 wt% (b), 15 wt% (c) and 25 wt% (d) CAU-1-NH₂ loadings, respectively.

Fig. S4. XRD patterns of CAU-1-NH₂, PMMA and CAU-1-NH₂/PMMA with 5 wt% (a), 15 wt% (b) and 25 wt% (c) CAU-1-NH₂ loadings, respectively.

Fig. S5. TGA curves of CAU-1-NH₂ powder and CAU-1-NH₂/PMMA with 5 wt% (a), 15 wt% (b) and 25 wt% (c) CAU-1-NH₂ loadings, respectively.

Fig. S6 The adsorption isotherms of H_2 (77 K, top) and CO_2 (303 K, bottom) on CAU-1-NH₂ powders.

Fig. S7 The adsorption kinetics of H_2 (77 K, top) and CO_2 (303 K, bottom) on CAU-1-NH₂ powders.

Fig. S8 The breakthrough curves of H_2 and CO_2 mixtures (50:50) on CAU-1-NH₂ powders at 303 K.

Table S1. Comparison of the H₂ and CO₂ permeability and selectivity of different MMMs in this work and literatures. Null means that the thickness is unknown from the references and symbol "–" means that the data are not provided in references. (1 Barrer= $7.50062 \times 10^{-18} \text{ m}^3$ (STP) m/m² S Pa, and 1GPU= $7.5005 \times 10^{-16} \text{ m}^3$ (STP) /m² S Pa)

MMMs	Thickness	Loadings	Testing	H ₂ Permeability	H_2/CO_2	Ref.
	(µm)	(wt%)	condition	(Barrer/GPU)	selectivity	
ZSM-5/	40	20	25 °C,	22.23 / 0.555×10 ⁴	2.57	3
Matrimid			2 bar			
SAPO-34/	-	20	35℃,	12.57 / Null	2.45	4
polyethersulfone			2 bar			
Cu-BPY-HFS/	30	10	25 °C,	16.91 / 0.564×10 ⁴	2.17	5
Matrimid			2 bar			
MOF-5/	50	30	35 ℃,	53.8 / 1.076×10 ⁴	2.66	6
Matrimid			2 bar			
ZIF-8/	-	50	35 ℃,	18.07 / Null	3.8	7
Matrimid			2.6 bar			
ZIF-7/	-	50	35 ℃,	26.2 / Null	14.9	8
Polybenzimidazole			3.5 bar			
CAU-1-NH ₂ /	10	15	25 °C,	1.11×10^4	13	This
PMMA			3 bar	/1.11×10 ⁷		work
Liquid crystalline	-	-	35 ℃,	0.0545 / Null	100.9	9
polyester			5 bar			
Polyaniline	0.8-8.4	-	21°C,	1.753 / 2.191×10 ⁴	23.1	10
			2–2.5 bar			
РММА	-	-	25 ℃, -	4.8 / Null	24	11

References

- T. Ahnfeldt, N. Guillou, D. Gunzelmann, I. Margiolaki, T. Loiseau, G. Férey, J. Senker and N. Stock, *Angew. Chem. Int. Ed.*, 2009, 48, 5163-5166.
- 2. B. Zornoza, C. Tellez, J. Coronas, J. Gascon and F. Kapteijn, Micropor. Mesopor. Mat., 2013, 166,

67-78.

- 3. Y. Zhang, K. J. Balkus, I. H. Musselman and J. P. Ferraris, J. Membr. Sci., 2008, 325, 28-39.
- 4. E. Karatay, H. Kalıpçılar and L. Yılmaz, J. Membr. Sci., 2010, 364, 75-81.
- 5. Y. Zhang, I. H. Musselman, J. P. Ferraris and K. J. Balkus Jr, J. Membr. Sci., 2008, 313, 170-181.
- E. V. Perez, K. J. Balkus Jr, J. P. Ferraris and I. H. Musselman, J. Membr. Sci., 2009, 328, 165-173.
- M. J. C. Ordoñez, K. J. Balkus Jr, J. P. Ferraris and I. H. Musselman, *J. Membr. Sci.*, 2010, 361, 28-37.
- 8. T. Yang, Y. Xiao and T.-S. Chung, Energy & Environ. Sci., 2011, 4, 4171-4180.
- 9. D.H. Weinkauf, D.R. Paul, J. Polym. Sci.: Part B: Polym. Phys., 1992, 30, 837-849.
- G. Illing, K. Hellgardt, M. Schonert, R.J. Wakeman, A. Jungbauer, J. Membr. Sci., 2005, 253, 199-208.
- 11. S. A. Gülmüs, L. Yilmaz, J. Polym. Sci.: Part B: Polym. Phys., 2007, 45, 3025-3033.