Electronic Supplementary Information

P-Chirogenic organocatalysts: Application to the aza-Morita-Baylis-Hillman (aza-MBH) reaction of ketimines

Shinobu Takizawa,¹ Emmanuelle Rémond,^{1,2} Fernando Arteaga Arteaga,¹ Yasushi Yoshida,¹ Vellaisamy Sridharan,¹ Jérôme Bayardon,² Sylvain Jugé,^{*2} and Hiroaki Sasai^{*1}

¹The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.

²Université de Bourgogne, ICMUB-StéréochIM-9 av. A. Savary, BP 47870-21078 Dijon Cedex, France Fax 81(6)68798469

E-mail Sylvain.Juge@u-bourgogne.fr, sasai@sanken.osaka-u.ac.jp

Table of Contents

General information	S2
Preparation of functional phosphines 1a, 1b and 1d	S2 to S4
Preparation of (S)-ferrocenyl(2-hydroxypheny)phenylphosphine (1e)	
Preparation of α-keto ester SM-e	
Preparation of ketimines 4	
Table S1 and S2	
General procedure for enantioselective aza-MBH reaction of 3 and 4	
Transformations of α,α-disubstituted amino acid derivatives (<i>R</i>)-5	S14 to S16
References	S16
NMR Spectra	S17 to S60
HPLC Spectra	S61 to S70
Crystal data	

General information

¹H-, ¹³C-, ¹⁹F-, and ³¹P-NMR spectra were recorded either with JEOL JMN ECS400 FT NMR, JNM ECA600 FT NMR (¹H-NMR 600 or 400 MHz, ¹³C-NMR 150 or 100 MHz, ¹⁹F-NMR 376 MHz, ³¹P-NMR 255 MHz), or BRUKER 300, 500 and 600 Avance. ¹H-NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CHCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, q = quartet, t = triplet, m = multiplet), and coupling constants (Hz). ¹³C-NMR spectra reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77 ppm. CF₃CO₂H or H₃PO₄ used as external standards for ¹⁹F- or ³¹P-NMR, respectively. FT-MS spectra were obtained with LTQ Orbitrap XL (Thermo Fisher Scientific). ESI-MS spectra were obtained with JMS-T100LC (JEOL). FAB-MS spectra were obtained with JMS-700 (JEOL). Optical rotations were measured either with JASCO P-1030 or PerkinElmer 341 polarimeter. HPLC analyses were performed either on a JASCO HPLC system (JASCO PU 980 pump and UV-975 UV/Vis detector), or on a SHIMADZHU 10A chromatograph equipped with a UV detector at $\lambda = 210$ nm and $\lambda = 254$ nm. The eluent used were mixture of hexane and iPrOH or EtOH as eluents. FT-IR spectra were recorded either on a JASCO FT-IR system (FT/IR4100) or BRUKER ATR Vector 22. Melting point (Mp) was measured with SHIMADZU DSC-60, or on an electrothermal 9100 melting point apparatus. Column chromatography on SiO₂ was performed either with Kishida Silica Gel (63-200 µm) or ACROS Silica Gel 60 (35-70 µm). Commercially available organic and inorganic compounds were used without further purification except for the solvent, which was distilled from sodium/benzophenone or CaH₂. The (S)-ferrocenyl[(2-hydroxymethyl)phenylphenylphosphine borane 1a-BH₃, (S_{p}, R) -[2-(ferrocenylphenylphosphino)phenyl]phenyl methanol $(S_{\rm D},S)$ and (**1f**), and (R_{p},S) and $(R_{\rm p},R)$ -[2-(o-anisylphenylphosphino)phenyl]phenyl methanol (2) were prepared according to the published procedure.¹ (S)-Ferrocenyl(2-methylphenylphosphine (1c) was also prepared according to the published procedure and the characterization data are identical to previously described.²

Preparation of functional phosphines 1a, 1b and 1d

Scheme SI-1

Preparation of (S)-ferrocenyl[(2-hydroxymethyl)phenyl]phenylphosphine (1a)

The P-chirogenic functional organocatalyst (*S*)-**1a** was obtained by decomplexation of the borane complex **1a-BH**₃, according to published procedure using DABCO [Scheme SI-1, eq. (a)].^{1 31}P-NMR (toluene): δ -27.4 (s).

Preparation of (S)-ferrocenyl(2-ethylphenyl)phenylphosphine (1b).

The phosphine **1b** was obtained by methylation of the (S)-ferrocenyl[2-(bromomethyl)phenyl] phenylphosphine borane (17), previously prepared from (S)-1a-BH₃,¹ followed by decomplexation [Scheme SI-1, eq. (b)]. To a solution of phosphine borane (S)-1a-BH₃ (248 mg, 0.60 mmol) in dichloromethane (2 mL) was added triphenylphosphine (199 mg, 1.2 mmol) and CBr₄ (358 mg, 1.08 mmol). The reaction mixture was stirred during 1 h and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether/dichloromethane (2:1) as eluent, to afford the phosphine (S)-17. Orange solid; 78% yield (222 mg); Mp 166-168 °C; Rf 0.73 (dichloromethane); Enantiomeric excess: 99 % by HPLC analysis (Chiralcel OD-H, 0.6 mL/min, hexane/2-propanol 98:2, $t_R(R) = 12.8 \text{ min}, t_R(S) = 14.6 \text{ min}$); $[\alpha]_D^{20} = +206$ (c 0.2, CHCl₃); IR (neat): v 3053, 2921, 2852, 2401, 1473, 1436, 1410, 1386, 1304, 1170, 1106, 1064, 1027, 999, 821, 743, 695 cm⁻¹; ¹H-NMR (CDCl₃): δ 7.85-7.78 (m, 2H), 7.60-7.53 (m, 4H), 7.45 (tt, 1H, J = 1.4, 7.7 Hz), 7.22 (tt, 1H, J = 1.4, 7.4 Hz), 7.06 (ddd, 1H, J = 1.2, 7.8, 11.7 Hz), 4.77-4.75 (m, 1H), 4.63-4.62 (m, 1H), 4.55-4.53 (m, 1H), 4.51 (s, 2H), 4.15-4.13 (m, 1H), 4.08 (s, 5H); 13 C-NMR (CDCl₃): δ 140.8 (d, J = 9.8 Hz), 133.0 (d, J = 7.1 Hz), 132.9 (d, J = 8.3 Hz), 131.6 (d, J = 2.5 Hz), 131.4 (d, J = 1.9 Hz), 130.9 (d, J = 51.7 Hz), 129.4 (d, J = 59.0 Hz), 129.0 (d, J = 11.8 Hz), 127.8 (d, J = 8.9 Hz), 74.6 (d, J = 14.5 Hz), 72.3 (d, J = 7.9 Hz), 72.2 (d, J = 10.5 Hz), 71.7 (d, J = 3.9 Hz), 69.9, 69.0 (d, J = 72.3 Hz), 31.8; ³¹P-NMR (CDCl₃): δ +16.2 (br.s); HRMS (ESI-Q-TOF) calcd for C₂₃H₂₃PBBrFeNa [M+Na⁺] : 499.0061, found : 499.0064. To a solution of (S)-17 (267 mg, 0.56 mmol) in dry THF (4 mL) was added dropwise at -78 °C MeLi (1.6 M in pentane, 1.11 mmol). The reaction mixture was stirred during 1.5 h and warmed to room temperature, then quenched with water (5 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic phases were dried over MgSO₄ and the solvent removed under vacuum to give a residue, which was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (9:1) as eluent, to afford the phosphine (S)-1b-BH₃. Orange solid; 58% yield (125 mg); Mp 156-158 °C; R_f 0.61 (petroleum ether/ethyl acetate 9:1); Enantiomeric excess: 99 % by HPLC analysis (Chiralcel OD-H, 0.6 mL/min, hexane/2-propanol 98:2, $t_R(R) = 10.8$ min, $t_R(S) = 12.4$ min); $[\alpha]_{D^{20}} = +172$ (c 0.15, CHCl₃); IRFT (neat): v 3107, 3057, 2977, 2918, 2850, 2662, 2381, 2339, 2246, 1964, 1929, 1903, 1776, 1710, 1776, 1710, 1589, 1469, 1437, 1386, 1311, 1170, 1130, 1106, 1058, 1027, 1001, 890, 873, 820, 785, 740, 699 cm⁻¹; ¹H-NMR (CDCl₃) : δ 7.81-7.76 (m, 2H), 7.58-7.49 (m, 3H), 7.41-7.38 (m, 1H), 7.28-7.25 (m, 1H), 7.14-7.07 (m, 2H), 4.76 (s, 1H), 4.60 (s, 1H), 4.51 (s, 1H), 4.11 (s, 1H), 4.08 (s, 5H), 2.72-2.64 (m, 1H), 2.46-2.39 (m, 1H), 1.34-1.14 (m), 0.86 (t, 3H, J = 4.5 Hz). ¹³C-NMR (75 MHz, CDCl₃) : δ 147.7 (d, J = 10.6 Hz), 133.2 (d, J = 10.6 Hz), 132.7 (d, J = 12.7 Hz), 131.2 (d, J = 61.2 Hz), 131.0 (d, J = 16.9Hz), 130.2 (d, J = 57.0 Hz), 129.6 (d, J = 8.5 Hz), 128.6 (d, J = 35.9 Hz), 128.5 (d, J = 12.7 Hz), 125.4 (d, J = 12.7 Hz), 12 12.7 Hz), 74.6 (d, J = 15.2 Hz), 71.9 (d, J = 6.16 Hz), 71.8, 71.7 (d, J = 5.2 Hz), 70.3 (d, J = 71.8 Hz), 69.8, 27.6, 14.6; ³¹P-NMR (CDCl₃): δ +16.5 (br.s); HRMS (ESI-Q-TOF) calcd for C₂₄H₂₆BFePNa [M+Na⁺] : 435,1112, found : 435.1114. Finally, the P-chirogenic functional organocatalyst (S)-1b was obtained by decomplexation of

the borane complex **1b-BH**₃, according to published procedure using DABCO [Scheme SI-1, eq. (b)].¹³¹P-NMR (toluene): δ -26.7 (s).

Preparation of (S)-ferrocenyl[2-(methoxymethyl)phenylphosphine (1d).

The P-chirogenic functional organocatalyst (S)-1d was prepared by O-methylation of the (S)-ferrocenyl [2-(hydroxymethyl)phenylphenylphosphine borane) (1a-BH₃),¹ followed by decomplexation [Scheme SI-1, eq. (c)]. A solution of compound 1a-BH₃, (100 mg, 0.24 mmol) in dry THF (4 mL) was added dropwise at 0 °C to a suspension of NaH (50 mg, 1.2 mmol), in dry THF (1 mL). After 1 h stirring at 0 °C, CH₃I (0.04 mL, 0.6 mmol) was added dropwise. The resulting solution was warmed to room temperature for 2 h, quenched with water (5 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic phases were dried over MgSO₄ and the solvent removed under vacuum to give a residue which was purified by column chromatography on silica gel using dichloromethane as eluent, to afford the (S)-ferrocenyl [(2-methoxymethyl)phenyl]phenylphosphine borane (1d-BH₃). Orange solid; 86% yield (89 mg); Mp 152-154 °C; Rf 0.48 (CH₂Cl₂); Enantiomeric excess: 99% by HPLC analysis (Chiralcel OD-H, 0.5 mL/min, hexane/2-propanol 97:3, $t_R(R) = 13.4$ min, $t_R(S) = 14.9$ min); $[\alpha]_{D^{20}} = +136$ (c 0.5, CHCl₃); IR (neat): v 3087, 3058, 2931, 2882, 2829, 2420, 2392, 2335, 2258, 2203, 2110, 2075, 1979, 1791, 1693, 1660, 1590, 1567, 1434, 1388, 1312, 1261, 1196, 1169, 1126, 1106, 1066, 1026, 1106, 1066, 1026, 1002, 975, 828, 746, 720, 702 cm⁻¹; ¹H-NMR (CDCl₃): δ 7.74-7.67 (m, 2H), 7.51-7.33 (m, 5H), 7.19-7.10 (m, 1H), 7.05-7.00 (m, 1H), 4.67 (m, 1H), 4.51 (m, 1H), 4.42 (m, 1H), 4.37 (d, 1H, J = 13.7 Hz), 4.02 (m, 1H), 4.00 (s, 5H), 3.97 (d, 1H, J = 13.7 Hz), 2.90 (s), 1.62-1.05 (m). ¹³C-NMR (75 MHz, CDCl₃) : δ 141.8 (d, J = 8.8 Hz), 133.0 (d, J = 7.5 Hz), 132.7 (d, J = 10.1 Hz), 131.3 (d, J = 1.2 Hz), 131.0 (d, J = 2.5 Hz), 130.8, 130.0, 129.6, 128.6 (d, J = 8.8 Hz), 128.5 (d, J = 10.1 Hz), 127.0 (d, J = 2.5 Hz), 111.5, 74.5 (d, J = 15.1 Hz), 72.1 (d, J = 6.3 Hz), 71.9 (d, J = 7.5 Hz), 71.8 (d, J = 5.0 Hz), 71.7 (d, J = 5.0 Hz), 69.9, 58.0; ³¹P-NMR $(CDCl_3): \delta + 16.4$ (br.s); HRMS (ESI-Q-TOF) calcd for $C_{24}H_{26}B_1POFeNa$ [M+Na⁺]: 451.1061, found: 451.1049. The P-chirogenic functional organocatalyst (S)-1d was obtained by decomplexation of the borane complex **1d-BH**₃, according to published procedure using DABCO (Scheme 1b).¹³¹P-NMR (toluene): δ -26.9 (s).

Preparation of (S)-ferrocenyl(2-hydroxypheny)phenylphosphine (1e).

The P-chirogenic functional organocatalyst (*S*)-**1e** was prepared according a described procedure,³ by Fries like rearrangement of (*R*)-ferrocenyl[2-(hydroxy)phenyl]phenylphosphine borane (**19**), followed by decomplexation. To a toluene solution of chloroferrocenylphenylphosphine borane (*S*)-**18** (2 mmol), prepared according the described procedure,⁴ was added under stirring at -78°C, alcoolate (4 mmol) previously obtained by reaction of 2-bromophenol (692 mg, 4 mmol) with NaH (106 mg, 4.4 mmol) in THF (3 mL). After stirring 1 h at room temperature, then hydrolysis with water (10 mL), the mixture was extracted with methylene chloride (3 x10 mL) and the combined organic phases were dried over MgSO₄. The solvent was removed under vacuum and the

resulting crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (4:1) as eluent, to afford the 2-bromophenyl ferrocenylphenylphosphinite borane (R)-19 in 53 % yield (507 mg). The phosphinite (R)-19 (222 mg, 0.45 mmol) was dissolved in 5 mL THF and 0.8 mL of t-BuLi (1.2 mmol) was added at -78°C. The mixture was warmed to 0 °C for 1 h, then hydrolyzed with water (10 mL). After extraction with ethyl acetate (3 x 10 mL), the combined organic layers were dried over MgSO₄, and the solvent removed under vacuum. The crude product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (4:1) as eluent, to afford the ferrocenyl(2-hydroxyphenyl)phenylphosphine borane [(S)-1e-BH₃]. Orange solid; 61% yield (108 mg); Mp 165-167 °C; R_f 0.46 ether/ethyl acetate (4:1); Enantiomeric excess: 99 % by HPLC analysis (Phenomenex Lux 5 μ cellulose 2, 0.8 mL/min, hexane/2-propanol 95:5, t_R(S) = 17.9 min, $t_R(R) = 21.3$ min); $[\alpha]_{D^{20}} = +185$ (c 0.2, CHCl₃); IR (neat): v 3528, 2890, 2856, 2215, 1345, 1211, 1160, 1086, 1012, 968, 894, 856, 766, 748 cm⁻¹; ¹H-NMR (CDCl₃) : δ 7.80 (s, 1H), 7.53-7.39 (m, 6H), 7.08-7.02 (m, 2H), 6.93-6.88 (m, 1H), 4.58-4.55 (m, 3H), 4.36-4.28 (m, 1H), 4.18 (s, 5H), 1.93-1.16 (m, 3H); ¹³C-NMR $(CDCl_3): \delta 160.1 (d, J = 9.1 Hz), 134.2 (d, J = 2.3 Hz), 133.6 (d, J = 2.3 Hz), 130.9 (d, J = 2.3 Hz), 128.5 (d$ 10.6 Hz), 120.2 (d, J = 7.5 Hz), 118.2 (d, J = 6.0 Hz), 113.4 (d, J = 60.4 Hz), 73.5 (d, J = 12.8 Hz), 72.3 (d, J 5.3 Hz), 72.0 (d, J = 9.0 Hz), 69.9, 68.0 (d, J = 75.0 Hz); ³¹P-NMR (CDCl₃) : δ +9.2 (br.s); HRMS (ESI-Q-TOF) calcd for $C_{22}H_{22}POBFeNa$ [M+Na⁺] : 423.0747, found : 423.0746. Crystal of (S)-1e-BH₃ was grown from methylene chloride/hexane as solvent and its drawing is shown on Figure S1. The (S)-absolute configuration is supported by refinement of the Flack parameters (Table S3). Finally, the P-chirogenic functional organocatalyst (S)-1e was obtained by decomplexation of the borane complex 1e-BH₃, according to published procedure using DABCO.^{3 31}P-NMR (toluene): δ -32.3 (s)

Preparation of α-keto ester SM-e

To a solution of 2-oxo-2-phenylacetic acid (0.5g, 1 equiv) and 2,2,2-trifluoroethanol (1.0g, 3 equiv) in cyclohexane (7 mL), was added H₂SO₄ (20 mol%) at ambient temperature and heated at reflux for 3 h. The cooled mixture, to

room temperature, was extracted three times with CH_2Cl_2 . The combined organic phases were washed with brine, dried over Na_2SO_4 , and concentrated. The resulting residue was purified by SiO_2 column chromatography with hexane and EtOAc as eluents to give the corresponding α -keto ester **SM-e**.

SM-e: colorless oil (82% yield); ¹H-NMR (CDCl₃) δ 7.97 (d, 2H, *J* = 8.2 Hz), 7.67-7.62 (m, 1H), 7.51-7.47 (m, 2H), 4.76 (q, 2H, *J* = 8.2 Hz); ¹³C-NMR (CDCl₃) δ 184.3, 161.7, 135.3, 131.8, 129.9, 129.0, 122.5 (q, *J* = 277.0 Hz), 60.9 (q, *J* = 37.4 Hz); ¹⁹F-NMR (CDCl₃): δ -73.3; HRMS (ESI) calcd for C₁₀H₇F₃O₃Na, m/z = 255.0239 [(M+Na)⁺], found m/z = 255.0237; IR (KBr): v 3069, 1760, 1690, 1274, 1166 cm⁻¹.

Preparation of ketimines 4

A solution of the corresponding keto ester (1.25 equiv), *p*-toluenesulfonamide (1.0 equiv), and triethylamine (1.0 equiv) in CH_2Cl_2 was cooled to 0 °C. To this mixture was added a solution of $TiCl_4$ (1.0 equiv) in CH_2Cl_2 under N₂. The mixture was stirred at 0 °C for 30 min and then warmed to ambient temperature and stirred for 1 h. The mixture was then quenched with sat. NaHCO₃ and extracted three times with CH_2Cl_2 . The combined organic

phases were washed with brine, dried over Na_2SO_4 , and concentrated. The resulting residue was purified by SiO_2 column chromatography (15% EtOAc/hexane) or GPC (CHCl₃ only) to afford **4**. Spectral data of **4a**,⁵ **4**,⁶ and **4m**⁷ agreed with those reported previously.

4b: yellow oil (63% yield); ¹H-NMR (CDCl₃) δ 7.92 (d, 2H, J = 8.2 Hz), 7.73 (d, 2H, J = 8.2 Hz), 7.32 (d, 2H, J = 8.2 Hz), 7.23 (d, 2H, J = 8.2 Hz), 4.56 (q, 2H, J = 7.3 Hz), 2.41 (s, 3H), 2.39 (s, 3H), 1.47 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 167.1, 164.9, 146.3, 144.6, 135.8, 130.0, 129.7, 129.6, 128.6, 128.0, 63.0, 21.8, 21.6, 13.9; HRMS (ESI) calcd for C₁₈H₁₉NO₄SNa, m/z = 368.0932 [(M+Na)⁺], found m/z

= 368.0928; IR (KBr): v 3453, 2984, 1740, 1590, 1328, 1214, 1161 cm⁻¹.

4c: yellow oil (71% yield); ¹H-NMR (CDCl₃) δ 7.90 (d, 2H, J = 8.7 Hz), 7.79 (d, 2H, J = 9.2 Hz), 7.30 (d, 2H, J = 8.7 Hz), 6.89 (d, 2H, J = 9.2 Hz) 4.54 (q, 2H, 7.3 Hz), 3.82 (s, 3H), 2.39 (s, 3H), 1.46 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 166.4, 165.1, 165.0, 144.4, 136.0, 132.3, 129.5, 127.7, 123.6, 114.4, 62.9, 55.6, 21.5, 13.9; HRMS (ESI) calcd for C₁₈H₁₉NO₅SNa, m/z = 384.0881 [(M+Na)⁺],

found m/z = 384.0881; IR (KBr): v 3277, 2981, 1739, 1583, 1324, 1270, 1219, 1120 cm⁻¹.

4d: pale yellow oil (80% yield); ¹H-NMR (CDCl₃) δ 7.92 (d, 2H, *J* = 8.2 Hz), 7.77 (d, 2H, *J* = 8.7 Hz), 7.41 (d, 2H, *J* = 8.7 Hz), 7.34 (d, 2H, *J* = 7.8 Hz), 4.56 (q, 2H, *J* = 7.3 Hz), 2.43 (s, 3H), 1.48 (t, 3H, *J* = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 165.9, 164.4, 144.9, 141.4, 135.3, 131.0, 129.8, 129.7, 129.4, 128.1, 63.3, 21.6, 13.9; HRMS (ESI) calcd for C₁₇H₁₆ClNO₄SNa, m/z = 388.0386 [(M+Na)⁺], found m/z = 388.0384; IR

(KBr): v 3077, 2984, 1740, 1585, 1558, 1333, 1302, 1211, 1163 cm⁻¹.

4e: colorless oil (72% yield); ¹H-NMR (CDCl₃) δ 7.91 (d, 2H, J = 8.2 Hz), 7.83 (dd, 2H, J = 8.2, 1.4 Hz), 7.65-7.61 (m, 1H), 7.49-7.45 (m, 2H), 7.36 (d, 2H, J = 8.2 Hz), 4.87 (q, 2H, J = 8.3 Hz), 2.44 (s, 3H); ¹³C-NMR (CDCl₃) δ 165.1, 163.4, 145.2, 135.3, 134.9, 130.5, 129.83, 129.76, 129.2, 128.1, 122.5 (q, J = 277 Hz), 61.9 (q, J = 37.2 Hz), 21.6; ¹⁹F-NMR (CDCl₃): δ -72.9; HRMS (ESI) calcd for

 $C_{17}H_{14}F_3NO_4SNa$, m/z = 408.0493 [(M+Na)⁺], found m/z = 408.0485; IR (KBr): v 3067, 2977, 1765, 1597, 1332, 1278, 1164 cm⁻¹.

4f: yellow solid (65% yield); ¹H-NMR (CDCl₃) δ 7.90 (d, 2H, *J* = 8.2 Hz), 7.77 (d, 2H, *J* = 7.3 Hz), 7.57 (t, 1H, *J* = 7.3 Hz), 7.52 (d, 1H, *J* = 2.3 Hz), 7.50 (d, 1H, *J* = 1.4 Hz), 7.44-7.37 (m, 5H), 7.31 (d, 2H, *J* = 8.2 Hz), 5.52 (s, 2H), 2.43 (s, 3H); ¹³C-NMR (CDCl₃) δ 166.8, 164.7, 144.8, 135.5, 134.8, 134.2, 131.3, 129.9, 129.7, 129.1, 129.0, 128.9, 128.7, 128.2, 68.9, 21.7; HRMS (ESI) calcd for C₂₂H₁₉NO₄SNa, m/z = 416.0932

 $[(M+Na)^+]$, found m/z = 416.0927; IR (KBr): v 3061, 2952, 1741, 1594, 1332, 1158 cm⁻¹.

4g: yellow oil (58% yield); ¹H-NMR (CDCl₃) δ 7.91 (d, 2H, J = 8.2 Hz), 7.39 (d, 1H, J = 1.4 Hz), 7.35-7.32 (m, 3H), 6.83 (d, 1H, J = 8.2 Hz), 6.06 (s, 2H), 4.55 (q, 2H, J = 7.3 Hz), 2.43 (s, 3H), 1.48 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 166.2, 164.9, 153.7, 148.6, 144.5, 136.0, 129.7, 127.8, 127.9, 125.8, 108.5, 102.4, 63.2, 21.7, 14.0; HRMS (ESI) calcd for C₁₈H₁₇NO₆SNa 398.0674 [(M+Na)⁺], found m/z

= 398.0670; IR (KBr): v 3086, 2987, 1743, 1600, 1318, 1248, 1155 cm⁻¹.

4h: yellow oil (85% yield); ¹H-NMR (CDCl₃) δ 7.92 (d, 2H, *J* = 8.7 Hz), 7.69 (d, 2H, *J* = 9.2 Hz), 7.58 (d, 2H, *J* = 8.7 Hz), 7.35 (d, 2H, *J* = 7.8 Hz), 4.56 (q, 2H, *J* = 7.3 Hz), 2.44 (s, 3H), 1.48 (t, 3H, *J* = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 166.1, 164.4, 145.0, 135.3, 132.4, 131.1, 130.2, 129.8, 129.0, 128.1, 63.3, 21.7, 13.9; HRMS (ESI) calcd for C₁₇H₁₆BrNO₄SNa, 431.9880 [(M+Na)⁺], found m/z = 431.9879; IR (KBr): v

2982, 1734, 1581, 1302, 1165 cm⁻¹.

4i: yellow oil (60% yield); ¹H-NMR (CDCl₃) δ 7.79 (d, 2H, *J* = 8.7 Hz), 7.64 (d, 1H, *J* = 1.4 Hz), 7.49 (d, 1H, *J* = 0.9 Hz) 7.21 (d, 2H, *J* = 8.2 Hz), 7.03 (m, 1H), 4.45 (q, 2H, *J* = 7.3 Hz), 2.30 (s, 3H), 1.37 (t, 3H, *J* = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 163.8, 161.1, 144.5, 137.4, 137.3, 137.1, 135.6, 129.5, 128.9, 127.7, 63.3, 21.4, 13.8; HRMS (ESI) calcd for C₁₅H₁₅NO₄S₂Na, m/z = 360.0339 [(M+Na)⁺], found m/z = 360.0339; IR (KBr): v 3103,

2984, 1740, 1562, 1311, 1214, 1160 cm⁻¹.

4j: yellow oil (45% yield); ¹H-NMR (CDCl₃) δ 8.27 (s, 1H), 7.98-7.95 (m, 3H), 7.88 (d, 1H, *J* = 8.2 Hz), 7.83 (d, 2H, *J* = 8.7 Hz), 7.63-7.52 (m, 2H), 7.35 (d, 2H, *J* = 7.8 Hz), 4.65 (q, 2H, *J* = 7.3 Hz), 2.44 (s, 3H), 1.52 (t, 3H, *J* = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 167.2, 164.9, 144.8, 136.3, 135.8, 133.3, 132.4, 129.8, 129.7, 129.6, 129.0, 128.8, 128.1, 127.9, 127.2, 124.0, 63.3, 21.7, 14.0; HRMS (ESI) calcd for

 $C_{21}H_{19}NO_4SNa$, m/z = 404.0932 [(M+Na)⁺], found m/z = 404.0932; IR (KBr): v 3064, 2979, 1733, 1573, 1307, 1251, 1161 cm⁻¹.

4k: colorless oil (40% yield); ¹H-NMR (CDCl₃) δ 7.93 (d, 2H, *J* = 7.6 Hz), 7.67 (s, 1H), 7.61 (d, 1H, *J* = 7.6 Hz), 7.40 (d, 1H, *J* = 7.6 Hz), 7.35-7.31 (m, 3H), 4.57 (q, 2H, *J* = 7.3 Hz), 2.43 (s, 3H), 2.36 (s, 3H), 1.48 (t, 3H, *J* = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 167.5, 164.9, 144.7, 139.0, 135.7, 135.6, 131.3, 130.1, 129.7, 128.9, 128.1, 127.3, 63.1, 21.7, 21.2, 14.0; HRMS (ESI) calcd for C₁₈H₁₉NO₄SNa, m/z = 368.0932 [(M+Na)⁺], found m/z =

368.0928; IR (KBr): v 3281, 2983, 1739, 1578, 1331, 1235, 1163 cm⁻¹.

4n: colorless oil (40% yield); ¹H-NMR (CDCl₃) δ 7.84 (d, 2H, J = 8.2 Hz), 7.45 (d, 1H, J = 8.2 Hz), 7.33 (m, 1H), 7.26 (d, 2H, J = 8.2 Hz), 7.18 (m, 2H), 4.45 (q, 2H, J = 7.3 Hz), 2.37 (s, 3H), 2.36 (s, 3H), 1.39 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 168.6, 164.8, 144.7, 140.9, 136.0, 133.0, 132.6, 131.2, 130.5, 129.7, 128.0, 126.2, 63.1, 22.2, 21.7, 13.9; HRMS (ESI) calcd for C₁₈H₁₉NO₄SNa, m/z = 368.0927 [(M+Na)⁺], found m/z =

368.0931; IR (KBr): v 3081, 2967, 2930, 1735, 1603, 1330, 1216, 1162 cm⁻¹.

40: colorless oil (45%); *E*:*Z* mixture (42:58) (assigned to the major isomer from mixture); ¹H-NMR (CDCl₃) δ 7.94 (d, 2H, *J* = 8.2 Hz), 7.63 (d, 1H, *J* = 6.9 Hz), 7.59 (d, 1H, *J* = 6.9 Hz), 7.37-7.34 (m, 4H), 4.03 (s, 3H), 2.45 (s, 3H); ¹³C-NMR (CDCl₃) δ 166.6, 163.8, 145.0, 135.4, 134.8, 133.5, 132.1, 131.6, 130.3, 129.7, 128.2, 127.6, 53.7, 21.7; HRMS (ESI) calcd for C₁₆H₁₄BrNO₄SNa, m/z = 417.9719 [(M+Na)⁺], found m/z =

417.9716.; IR (KBr): v 3050, 1743, 1612, 1446, 1322, 1171 cm⁻¹.

4p: white solid (62%), M.p. (89-92 °C); ¹H-NMR (CDCl₃) δ 7.83 (d, 2H, *J* = 8.2 Hz), 7.31 (d, 2H, *J* = 8.2 Hz), 4.41 (q, 2H, *J* = 7.3 Hz), 2.42 (s, 3H), 1.40 (t, 3H, *J* = 7.3 Hz), 1.19 (s, 9H); ¹³C-NMR (CDCl₃) δ 181.8, 164.6, 144.6, 135.4, 129.6, 127.9, 62.4, 40.1, 27.2, 21.6, 13.9; HRMS (ESI) calcd for C₁₅H₂₁NO₄SNa, m/z = 334.1083 [(M+Na)⁺], found m/z = 334.1078; IR (KBr): v 2962, 1729, 1587, 1464, 1317, 1097 cm⁻¹.

	NTs 、 + ↓	Achiral LB catalyst (10 mol%)	O NHTs ↓ CO₂Et	
we	EtO ₂ C Ph	10 °C, 2d	Me´ 🍸 `Ph	
3a	4a		5a	
entry	achiral LB catalyst	solvent	yield (%)	
1	DMAP	CH_2Cl_2	10	
2	DABCO	CH_2Cl_2	7	
3	DBU	CH_2Cl_2	trace	
4	2-phenyl-2-imidazoline	e CH ₂ Cl ₂	trace	
5	PPh ₃	CH_2Cl_2	74	
6	PPh ₃	$(CH_2Cl)_2$	70	
7	PPh ₃	CHCl ₃	54	
8	PPh ₃	toluene	80	
9	PPh ₃	THF	34	
10	PPh ₃	Et_2O	50	
11	PPh ₃	TBME	96	

Table S1. Achiral LB catalyzed aza-MBH reaction of 3a with 4a^a

^aConditions: **3a** (0.12 mmol), **4a** (0.040 mmol), achiral catalyst (10 mol%) in solvent (0.2 mL).

Ν	0 1e + 3a	NTs EtO ₂ C Ph -	HO Fe (S)-1a (10 mol%) TBME	6) O Me	NHTs CO ₂ Et Ph 5a
entry	solvent	temp. (°C)	time (day)	yield (%)	ee (%)
1	TBME	0	1	trace	ND
2	TBME	10	2	87	96
3	TBME	30	2	90	79
4	toluene	10	2	68	64
5	CH_2Cl_2	10	2	52	94

Table S2. Effects of temperature and solvents on the reaction.

^aConditions: 3a (0.12 mmol), 4a (0.040 mmol), catalyst (S)-1a (0.012 mmol) in solvent (0.2 mL).

General procedure for enantioselective aza-MBH reaction of 3 and 4.

To a solution of organocatalyst (*S*)-1 (10-20 mol%), *N*-tosylketimine (0.040 mmol) in TBME (0.2 mL) was added enone (0.12 mmol, 3.0 equiv). The reaction mixture was stirred at 5 or 10 °C, and was stirred until the reaction reached completion determined by TLC analysis. After purification via column chromatography, product **5** was obtained. Since the catalyst 1 is air sensitive, **1** is readily utilized for the reaction after the borane decomplexation of the pre-catalyst with DABCO and then purification by SiO₂ column chromatography.^{4,5} The adducts **50** was identical in all respects with reported by Shi and Li.⁸

5a: pale yellow oil (87% yield, 96% ee); ¹H-NMR (CDCl₃) δ 7.75-7.73 (m, 2H), 7.51 (d, 2H, J = 6.4 Hz), 7.39-7.32 (m, 3H), 7.20 (d, 2H, J = 8.4 Hz), 6.49 (s, 1H), 6.41 (s, 1H), 6.27 (s, 1H), 4.34 (qd, 1H, J = 9.6, 7.3 Hz), 4.04 (qd, 1H, J = 9.6, 7.3 Hz), 2.39 (s, 3H), 1.74 (s, 3H), 1.08 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.8, 170.5, 144.3, 142.9, 138.6, 136.9, 135.6, 129.0, 128.9, 128.3, 127.8, 127.7, 67.6, 62.6, 24.6, 21.4, 13.6; HRMS (APCI) calcd for C₂₁H₂₃NO₅SH, m/z = 402.1375 [(M+H)⁺], found 402.1370;

Enantiomeric excess determined by HPLC (Chiralpak IC, hexane/2-propanol = 65/35, flow rate 1.0 mL/min, 25 °C, 254 nm) minor peak: $t_R = 13.8$ min, major peak: $t_R = 17.6$ min; $[\alpha]_D^{21} = +38.7$ (*c* 0.15, CHCl₃); IR (KBr): v 3284, 1735, 1685, 1599, 1329, 1230, 1166, 1096, 1040, 969 cm⁻¹.

5b: pale yellow oil (87% yield, 96% ee); ¹H-NMR (CDCl₃) δ 7.60 (d, 2H, J = 8.7 Hz,), 7.49 (d, 2H, J = 8.2 Hz), 7.18 (d, 2H, J = 7.8 Hz), 7.15 (d, 2H, J = 7.8 Hz), 6.48 (s, 1H), 6.39 (s,1H), 6.27 (s, 1H), 4.05 (qd, 1H, J = 11.2, 7.3 Hz), 4.04 (qd, 1H, J = 11.2, 7.3 Hz), 2.38 (s, 3H), 2.34 (s, 3H), 1.72 (s, 3H), 1.07 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.9, 170.5, 144.3, 142.7, 138.7,138.0, 135.3, 133.9, 129.0, 128.7, 128.4, 127.8, 67.4, 62.5, 24.6, 21.4, 20.9, 13.6; HRMS (APCI) calcd for C₂₂H₂₅NO₅SH, m/z = 416.1531[(M+H)⁺], found m/z = 416.1521; Enantiomeric excess determined by HPLC (Chiralpak AS, hexane/EtOH = 4/1, flow rate 1.0 mL/min, 25 °C, 230 nm) minor peak: $t_R = 8.5$ min, major peak: $t_R = 18.2$ min; $[\alpha]_{D^{22}} = +99.7$ (*c* 0.53, CHCl₃); IR (KBr): v 3279, 1736, 1686, 1508, 1330, 1167, 1096, 1040 cm⁻¹.

5c: pale yellow oil (92% yield, 94% ee); ¹H-NMR (CDCl₃) δ 7.64 (d, 2H, J = 8.7 Hz), 7.50 (d, 2H, J = 8.2 Hz), 7.20 (d, 2H, J = 8.2 Hz), 6.88 (d, 2H, J = 9.2 Hz), 6.47 (s, 1H), 6.39 (s, 1H), 6.28 (s, 1H), 4.06 (qd, 1H, J = 10.0, 7.3 Hz), 4.03 (qd, 1H, J = 10.0, 7.3 Hz), 3.82 (s, 3H), 2.39 (s, 3H), 1.73 (s, 3H), 1.08 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.9, 170.6, 159.5, 144.4, 142.8, 138.6, 135.4, 130.2, 129.0, 128.6, 127.9, 113.1, 67.1, 62.5, 55.3, 24.6, 21.4, 13.7; HRMS (APCI) calcd for C₂₂H₂₅NO₆SNa, m/z = 454.1300 [(M+Na)⁺], found m/z = 454.1295; Enantiomeric excess determined by HPLC

(Chiralpak IB, hexane/2-propanol = 9/1, flow rate 1.0 mL/min, 25 °C, 240 nm) minor peak: $t_R = 23.3$ min, major peak: $t_R = 16.7$ min; $[\alpha]_D^{21} = +15.5$ (*c* 0.05, CHCl₃); IR (KBr): v 3369, 1775, 1655, 1510, 1399, 1051 cm⁻¹.

5d: pale yellow oil (95% yield, 88% ee); ¹H-NMR (CDCl₃) δ 7.68 (d, 2H, *J* = 8.7 Hz), 7.48 (d, 2H, *J* = 8.2 Hz), 7.33 (d, 2H, *J* = 8.7 Hz), 7.20 (d, 2H, *J* = 7.8 Hz), 6.48 (s, 1H), 6.41 (s, 1H), 6.23 (s, 1H), 4.07 (qd, 1H, *J* = 10.8, 7.3 Hz), 4.04 (qd, 1H, *J* = 10.8, 7.3 Hz), 2.39 (s, 3H), 1.72 (s, 3H), 1.09 (t, 3H, *J* = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.7, 170.1, 144.1, 143.0, 138.4, 135.6, 135.4, 134.5, 130.4, 129.1, 127.9, 127.8, 67.2, 62.8, 24.6, 21.4, 13.6; HRMS (APCI) calcd for C₂₁H₂₂ClNO₅SH, m/z = 436.0985 [(M+H)⁺],

found m/z = 436.0980; Enantiomeric excess determined by HPLC (Chiralpak IA, hexane/2-propanol = 65/35, flow rate 1.0 mL/min, 25 °C, 240 nm) minor peak: $t_R = 27.2$ min, major peak: $t_R = 24.9$ min; $[\alpha]_D^{24} = +78.5$ (*c* 0.61, CHCl₃); IR (KBr): v 3341, 1728, 1683, 1464, 1379, 1159, 953 cm⁻¹.

5e: pale yellow oil (89% yield, 97% ee); ¹H-NMR (CDCl₃) δ 7.74-7.72 (m, 2H), 7.50 (d, 2H, *J* = 6.4 Hz), 7.42-7.35 (m, 3H), 7.22 (d, 2H, 7.79 Hz), 6.48 (s, 1H), 6.41 (s, 1H), 6.35 (s, 1H), 4.29 (qd, 1H, *J* = 12.4, 8.2 Hz), 4.28 (qd, 1H, *J* = 12.4, 8.2 Hz), 2.40 (s, 3H), 1.74 (s, 3H); ¹³C-NMR (CDCl₃) δ 197.1, 169.4, 143.6, 143.1, 138.4, 136.2, 135.8, 129.2, 128.8, 128.7, 128.1, 127.8, 125.2, 123.3, 121.5, 119.7,

67.4, 61.8 (q, J = 23.9 Hz), 24.3, 21.5; ¹⁹F-NMR (CDCl₃): δ -73.6; HRMS (APCI) calcd for C₂₁H₂₀F₃NO₅SNa, m/z = 478.0911 [(M+Na)⁺], found m/z = 478.0901; Enantiomeric excess determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 1/1, flow rate 0.5 mL/min, 25 °C, 254 nm) minor peak: t_R = 11.7 min, major peak: t_R = 15.9 min; [α]_{D²¹} = -8.1 (*c* 0.16, CHCl₃); IR (KBr): v 3204, 1766, 1678, 1406, 1327, 1213, 1168 cm⁻¹.

5f: pale yellow oil (98% yield, 41% ee); ¹H-NMR (CDCl₃) δ 7.73-7.71 (m, 2H), 7.50 (d, 2H, J = 8.4 Hz), 7.35-7.33 (m, 3H), 7.27-7.26 (m, 3H), 7.20 (d, 2H, J = 8.8 Hz), 7.07-7.05 (m, 2H), 6.53 (s, 1H), 6.39 (s, 1H), 6.28 (s, 1H), 5.00 (d, 1H, J = 12.4 Hz), 4.96 (d, 1H, J = 11.9 Hz), 2.39 (s, 3H), 1.70 (s, 3H); ¹³C-NMR (CDCl₃) δ 197.0, 170.4, **5f**

144.1, 142.9, 138.6, 136.6, 135.7, 134.6, 129.1, 128.9, 128.4, 128.3, 128.2, 127.8, 127.8, 68.3, 67.6, 24.5, 21.4; HRMS (APCI) calcd for $C_{26}H_{25}NO_5SH$, m/z = 464.1531 [(M+H)⁺], found m/z = 464.1529; Enantiomeric excess determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 mL/min, 25 °C, 219 nm) minor peak: $t_R = 28.9$ min, major peak: $t_R = 19.0$ min; $[\alpha]_D^{21} = +3.1$ (*c* 3.2, CHCl₃); IR (KBr): v 3289, 1737, 1681, 1448, 1330, 1225, 1164 cm⁻¹.

5g: pale yellow oil (86% yield, 96% ee); ¹H-NMR (CDCl₃) δ 7.50 (d, 2H, J = 8.2 Hz), 7.28 (dd, 1H, J = 2.3, 1.8 Hz), 7.20 (d, 2H, J = 7.8 Hz), 7.15 (d, 1H, J = 1.8 Hz), 6.79 (d, 1H, J = 8.2 Hz), 6.45 (s, 1H), 6.41 (s, 1H), 6.33 (s, 1H), 5.97 (d, 1H, J = 1.8 Hz), 5.96 (d, 1H, J = 1.4 Hz), 4.07 (qd, 1H, J = 12.4, 7.3 Hz), 4.04 (qd, 1H, J = 12.4, 7.3 Hz), 2.39 (s, 3H), 1.74 (s, 3H), 1.10 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.8, 170.4, 147.6, 147.2, 144.2, 142.9, 138.5, 135.6, 130.5, 129.0, 127.8, 122.9, 109.4, 107.4, 101.4, 67.3, 62.6, 24.6, 21.4, 13.7; HRMS (ESI) calcd for C₂₂H₂₃NO₇SNa, m/z =

468.1092 [(M+Na)⁺], found m/z = 468.1080; Enantiomeric excess determined by HPLC (Chiralcel OD-H, hexane/2-propanol = 10/1, flow rate 1.0 mL/min, 25 °C, 230 nm) minor peak: t_R = 32.2 min, major peak: t_R = 22.4 min; [α] p^{21} = +47.6 (*c* 0.21, CHCl₃); IR (KBr): v 3328, 1733, 1680, 1503, 1393, 1228, 1161 cm⁻¹.

5h: pale yellow oil (91% yield, 96% ee); ¹H-NMR (CDCl₃) δ 7.62 (d, 2H, J = 8.7 Hz), 7.50-7.47 (m, 4H), 7.20 (d, 2H, J = 8.2 Hz,), 6.48 (s, 1H), 6.40 (s, 1H), 6.22 (s, 1H), 4.06 (qd, 1H, J = 10.4, 7.3 Hz), 4.03 (qd, 1H, J = 10.4, 7.3 Hz), 2.39 (s, 3H), 1.73 (s, 3H), 1.09 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.7, 170.0, 143.9, 143.0, 138.3, 136.1, 135.4, 130.9, 130.7, 129.1, 127.8, 122.7, 67.3, 62.8, 24.5, 21.4, 13.6; HRMS (APCI) calcd for C₂₁H₂₂BrNO₅SH, m/z = 480.0480 [(M+H)⁺], found m/z = 480.0476;

Enantiomeric excess determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 230 nm) minor peak: $t_R = 23.7$ min, major peak: $t_R = 11.1$ min; $[\alpha]_D^{21} = +47.6$ (*c* 0.60, CHCl₃); IR (KBr): v 3277, 1735, 1597, 1334, 1164, 1092, 1010, 972 cm⁻¹.

5i: pale yellow oil (81% yield, 76% ee); ¹H-NMR (CDCl₃) δ 7.55 (d, 2H, J = 8.7 Hz), 7.31 (d, 1H, J = 1.4 Hz), 7.29 (d, 1H, J = 1.4 Hz), 7.22 (d, 2H, 8.7 Hz), 6.99 (m, 1H), 6.62 (s, 1H), 6.50 (s, 1H), 6.47 (s, 1H), 4.11 (qd, 1H, J = 7.3, 3.6 Hz), 4.09 (qd, 1H, J = 7.3, 3.6 Hz), 2.40 (s, 3H), 1.80 (s, 3H), 1.13 (t, 3H, 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.4, 169.7, 144.4, 143.1, 142.1, 138.3, 135.3, 129.1, 129.0, 128.0, 126.7, 126.6, 65.6, 62.9,

24.7, 21.4, 13.6; HRMS (APCI) calcd for $C_{19}H_{21}NO_5S_2Na$, m/z = 430.0758 [(M+Na)⁺], found m/z = 430.0752; Enantiomeric excess determined by HPLC (Chiralpak AS, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 230 nm) minor peak: $t_R = 18.0$ min, major peak: $t_R = 11.9$ min; $[\alpha]_D^{21} = +90.5$ (*c* 0.46, CHCl₃); IR (KBr): v 3356, 3261, 1737, 1681, 1598, 1388, 1162, 1097, 1018 cm⁻¹.

5j: pale yellow oil (83% yield, 85% ee); ¹H-NMR (CDCl₃) δ 7.74 (dd, 2H, J = 8.2, 1.4 Hz), 7.49 (d, 2H, J = 8.2 Hz), 7.39-7.32 (m, 3H), 7.18 (d, 2H, 8.2 Hz), 6.52 (s, 1H), 6.42 (s, 1H), 6.23 (s, 1H), 4.08 (qd, 1H, J = 10.8, 7.3 Hz), 4.01 (qd, 1H, J = 10.8, 7.3 Hz), 2.42 (qd, 1H, J = 7.3 Hz), 2.37 (s, 3H), 1.79 (qd, 1H, J = 7.3 Hz), 1.07 (t, 3H, J = 7.3 Hz), 0.73 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 199.2, 170.5, 143.9, 142.7, 138.7, 137.0, 134.3, 129.0, 128.9, 128.2, 127.8, 127.7, 67.9, 62.5, 29.8, 21.3, 13.6, 7.3; HRMS

(APCI) calcd for C₂₂H₂₅NO₅SNa, m/z = 438.1350 [(M+Na)⁺], found m/z = 438.1342; Enantiomeric excess determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 mL/min, 25°C, 230 nm) minor peak: $t_R = 23.0$ min, major peak: $t_R = 12.4$ min; $[\alpha]_D^{22} = -23.3$ (*c* 0.21, CHCl₃); IR (KBr): v 3283, 1737, 1683, 1380, 1330, 1235, 1163, 1093, 1039 cm⁻¹.

5k: pale yellow oil (93% yield, 93% ee); ¹H-NMR (CDCl₃) δ 8.35 (d, 1H, J = 1.8 Hz), 7.93-7.90 (m, 1H), 7.83-7.81 (m, 1H), 7.78 (d, 1H, J = 9.2 Hz), 7.68 (d, 1H, J = 1.8 Hz), 7.54-7.48 (m, 4H), 7.21 (d, 2H, J = 7.8 Hz), 6.62 (s, 1H), 6.46 (s, 1H), 6.29 (s, 1H), 4.07 (qd, 1H, J = 10.8, 7.3 Hz), 4.04 (qd, 1H, J = 10.8, 7.3 Hz), 2.39 (s, 3H), 1.78 (s, 3H), 1.09 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.8, 170.4, 144.3, 142.9, 138.6, 135.7, 134.2, 132.9, 132.7, 129.1, 128.9, 128.7, 127.9, 127.2, 127.1, 126.7, 126.2, 126.1, 67.8, 62.7, 24.6, 21.4, 13.7; HRMS (APCI) calcd for C₂₅H₂₅NO₅SH, m/z =

452.1531 [(M+H)⁺], found m/z = 452.1520; Enantiomeric excess determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 mL/min, 25 °C, 230 nm) minor peak: $t_R = 45.3$ min, major peak: $t_R = 17.3$ min; $[\alpha]_D^{23} = +32.9$ (*c* 0.17, CHCl₃); IR (KBr): v 3370, 1736, 1681, 1380, 1267, 1161, 1129 cm⁻¹.

51: pale yellow oil (70% yield, 64% ee); ¹H-NMR (CDCl₃) δ 7.56-7.50 (m, 4H), 7.27-7.11 (m, 4H), 6.48 (s, 1H), 6.41 (s, 1H), 6.29 (s, 1H) 4.06 (q, 1H, J = 7.3 Hz), 4.04 (q, 1H, J = 7.3 Hz), 2.39 (s, 3H), 2.37 (s, 3H), 1.75 (s, 3H), 1.08 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.9, 170.6, 144.3, 142.8, 138.7, 137.3, 136.8, 135.5, 129.4, 129.0, 127.8, 127.5, 126.0, 67.6, 62.5, 24.6, 21.6, 21.4, 13.6; HRMS (ESI) calcd for C₂₂H₂₅NO₅SNa, m/z = 438.1351 [(M+Na)⁺], found m/z = 438.1351; Enantiomeric

excess determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 mL/min, 25 °C, 230 nm) minor peak: $t_R = 24.5$ min, major peak: $t_R = 13.3$ min; $[\alpha]_D^{24} = +12.2$ (*c* 0.34, CHCl₃); IR (KBr): v 3257, 1749, 1676, 1330, 1045 cm⁻¹.

5m: pale yellow oil (67% yield, 72% ee); ¹H-NMR (CDCl₃) δ 7.57 (d, 2H, J = 8.2 Hz), 7.37-7.27 (m, 5H), 7.19 (d, 2H, J = 7.8 Hz), 6.92 (d, 1H, J = 16 Hz), 6.39 (s, 1H), 6.34 (s, 1H), 6.33 (d, 1H, J = 16 Hz), 6.27 (s, 1H), 4.18 (qd, 1H, J = 7.3, 5.6 Hz), 4.16 (qd, 1H, J = 7.3, 5.6 Hz), 2.37 (s, 3H), 1.83 (s, 3H), 1.18 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 196.8, 169.7, 144.8, 143.0, 138.7, 135.8, 134.3, 132.8, 129.2, 128.6, 128.3, 127.9, 126.9, 125.6, 116.1, 65.2, 62.7, 24.8, 21.4, 13.9; HRMS (APCI) calcd for

 $C_{23}H_{25}NO_5SH$, m/z = 428.1531 [(M+H)⁺], found m/z = 428.1525; Enantiomeric excess determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 mL/min, 25 °C, 254 nm) minor peak: t_R = 40.6 min, major peak: t_R = 17.4 min; [α] p^{23} = +7.2 (*c* 0.07, CHCl₃); IR (KBr): v 3284, 1735, 1681, 1384, 1234, 1164 cm⁻¹.

5n: pale yellow oil (90% yield, 93% ee); ¹H-NMR (CDCl₃) δ 7.73 (d, 2H, *J* = 6.9 Hz), 7.50 (d, 2H, *J* = 8.2 Hz), 7.38-7.33 (m, 3H), 7.21 (d, 2H, *J* = 8.2 Hz), 6.51 (s, 1H), 6.42 (s, 1H), 6.28 (s, 1H), 3.59 (s, 3H), 2.39 (s, 3H), 1.00 (s, 3H); ¹³C-NMR (CDCl₃) δ 197.0, 171.0, 144.2, 142.9, 138.6, 136.8, 135.6, 129.1, 128.8, 128.3, 127.8, 127.7, 67.5, 53.4, 24.6, 21.4; HRMS (APCI) calcd for C₂₀H₂₁NO₅SH, m/z = 388.1218 [(M+H)⁺], found

m/z = 388.1209; Enantiomeric excess determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 mL/min, 25 °C, 230 nm) minor peak: $t_R = 20.2$ min, major peak: $t_R = 27.2$ min; $[\alpha]_D^{21} = +1.24$ (*c* 0.33, CHCl₃); IR (KBr): v 3363, 1730, 1682, 1492, 1159, 1093 cm⁻¹.

50: pale yellow oil (quant, 90% ee); ¹H-NMR (CDCl₃) δ 7.43-7.39 (m, 3H), 7.33 (t, 2H, *J* = 7.3 Hz), 7.28-7.27 (m, 1H), 7.16 (dt, 1H, *J* = 7.3, 1.4 Hz), 6.98 (dt, 1H, *J* = 7.8, 0.9 Hz), 6.69 (d, 1H, *J* = 7.8 Hz), 6.20 (d, 1H, *J* = 0.9 Hz), 6.10 (d, 2H, *J* = 0.9 Hz), 5.12 (d, 1H, *J* = 16.0 Hz), 4.87 (d, 1H, *J* = 16.0 Hz), 2.34 (s, 3H), 1.34 (s, 9H); Enantiomeric excess determined by HPLC (Chiralcel OD-3, hexane/2-propanol = 9/1, flow rate 0.5 mL/min, 25 °C, 250 nm) minor peak: t_R = 12.8 min, major peak: t_R = 10.4 min; $[\alpha]_D^{23} = -84.6$ (*c* 3.5,

 CH_2Cl_2) [lit.,⁸ [α]_D²⁰ = -90.9 (c 1.85, CH_2Cl_2) for 93% ee].

5p: white solid (75% yield, 53% ee); Mp 187-189 °C; ¹H-NMR (CDCl₃) δ 7.86-7.82 (m, 3H), 7.79-7.74 (m, 2H), 7.65 (d, 2H, J = 8.2 Hz), 7.51 (td, 1H, J = 7.3, 1.8 Hz), 7.47 (td, 1H, J = 7.3, 1.8 Hz) 7.44-7.37 (m, 3H), 7.21-7.19 (m, 3H), 7.0 (s, 1H), 6.83 (dd, 1H, J = 8.7, 2.3 Hz), 6.58 (s, 1H), 6.34 (s, 1H), 4.14 (qd, 1H, J = 10.4, 7.3 Hz), 4.08 (qd, 1H, J = 10.4, 7.3 Hz), 2.29 (s, 3H), 1.12 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 170.1, 163.5, 147.7, 143.0, 139.1, 136.8, 136.6, 136.3, 133.4, 131.3,

129.3, 129.1, 128.8, 128.5, 127.9, 127.8, 127.6, 127.5, 126.7, 125.9, 120.3, 117.9, 68.6, 63.1, 21.5, 13.7; HRMS (ESI) calcd for $C_{30}H_{27}NO_6SNa$, $m/z = 552.1457 [(M+Na)^+]$, found m/z = 552.1443; IR (KBr): 3370, 3297, 3060, 2928, 1737, 1241, 1164 cm⁻¹; Enantiomeric excess determined by HPLC (Chiralcel OD-H, hexane/2-propanol = 9/1, flow rate 0.5 mL/min, 25 °C, 250 nm) minor peak: $t_R = 15.0$ min, major peak: $t_R = 25.7$ min; $[\alpha]_D^{23} = + 67.3$ (*c* 1.6, CHCl₃).

Transformations of α , α -disubstituted amino acid derivatives (R)-5

Conditions: a) 10% Pd/C, MeOH, H₂ (1 atm), RT, 2 h; b) BuLi (2.2 equiv.), CuI (2.2 equiv.), THF, -78° C, overnight; c) diethyl malonate (1.2 equiv.), K₂CO₃ (2.5 equiv.), DMSO, RT, 2.5 h; d) LiOH (1.5 equiv) in H₂O/THF (1:1), RT, 10 h; d.r. = diastereomeric ratio determined by ¹H-NMR or HPLC.

Preparation of 12

To a solution of compound 5a (96% ee, 60 mg) in methanol (3 mL) was added 7.5 mg of 10% Pd/C and the mixture was stirred at room temperature under hydrogen atmosphere (H₂ balloon). After completion of the reaction, as indicated by TLC (2 h), the mixture was filtered through celite and solvent was evaporated. The mixture of diastereomers was separated through silica column using 9:1 hexane/EtOAc mixture. Ratio of 12a:12b = 79:21 (determined by crude ¹H-NMR). Isolated yield of diastereomer 12a: 67% and 12b: 15% (total yield: 82%). 12a: colorless solid; IR (neat): 3238, 3067, 2931, 1737, 1600, 1497, 1362, 1246, 1163, 1093 cm⁻¹; ¹H-NMR (CDCl₃) δ7.17 (d, J = 8.3 Hz, 2H), 7.02-7.18 (m, 5H), 6.95 (d, J = 8.3 Hz, 2H), 6.44 (s, 1H), 4.41 (q, J = 7.3 Hz, 1H), 4.27-4.33 (m, 1H), 4.12-4.18 (m, 1H), 2.33 (s, 3H), 2.30 (s, 3H), 1.34 (d, J = 7.3 Hz, 3H), 1.16 (t, 1.34) *J* = 6.9 Hz, 3H); ¹³C-NMR (CDCl₃) δ 211.0, 171.7, 142.1, 139.2, 134.4, 128.9, 128.3, 128.1, 128.0, 126.3, 68.7, 62.7, 52.1, 31.1, 21.4, 14.7, 13.8, HRMS (ESI) calcd for $C_{21}H_{25}NO_5S$, m/z = 426.1351 [(M+Na)⁺], found m/z = 100426.1350; Enantiomeric excess: 96%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 10/1, flow rate 1.0 mL/min, 25 °C, 230 nm) major peak: $t_R = 33.4$ min, minor peak: $t_R = 71.0$ min; $[\alpha]_{D^{22}} = -17.5$ (c 1.5, CHCl₃). 12b: colorless solid; Mp. 94-95 °C; IR (neat): 3289, 3062, 2981, 2932, 1724, 1598, 1497, 1338, 1245, 1160, 1093 cm⁻¹; ¹H-NMR (CDCl₃) δ 7.59 (d, J = 8.2 Hz, 2H), 7.21-7.30 (m, 7H), 6.95 (s, 1H), 3.92-3.96 (m, 1H), 3.66-3.71 (m, 1H), 3.41 (q, J = 7.3 Hz, 1H), 2.40 (s, 3H), 2.25 (s, 3H), 1.19 (d, J = 7.3 Hz, 3H), 1.07 (t, J = 6.9 Hz, 3H); ¹³C-NMR (CDCl₃) δ 213.3, 171.6, 142.7, 140.0, 135.8, 129.3, 128.3, 127.9, 127.6, 126.6, 71.4, 62.3, 52.4, 30.0, 21.6, 13.7, 12.8; HRMS (ESI) calcd for $C_{21}H_{25}NO_5S$, $m/z = 426.1351 [(M+Na)^+]$, found m/z = 1000426.1351; Enantiomeric excess: 96%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 10/1, flow rate 1.0 mL/min, 25 °C, 230 nm) major peak: $t_R = 35.4$ min, minor peak: $t_R = 38.5$ min; $[\alpha]_D^{23} = -59.3$ (c 0.6, CHCl₃).

Hydrolysis of compound 12a

To a solution of compound 12a (96% ee, 50 mg, 0.124 mmol) in 2 mL of 1:1 THF/H₂O mixture was added LiOH.H₂O (1.5 equiv, 7.8 mg, 0.186 mmol) and stirred at room temperature for 10 h. After completion of the reaction (TLC) the mixture was diluted with CH₂Cl₂, acidified with 1N HCl, extracted with CH₂Cl₂, dried (Na₂SO₄) and evaporated. Products 15 and 16 were separated through silica column using hexane/EtOAc mixture (9:1 to 1:1 ratio). Isolated yield of diastereomer 15: 67%, d.r. 83:17 and 16: 18% (total yield: 85%). 15 (major): colorless solid; Mp. 201-203 °C; IR (neat): 3434, 3207, 3065, 2935, 2546, 2360, 1769, 1597, 1450, 1287, 1150, 1056 cm⁻¹; ¹H-NMR (methanol-d₄) δ 0.49 (d, J = 6.8 Hz, 3H), 1.50 (s, 3H), 2.44 (s, 3H), 3.19 (q, J = 0.48 Hz, 3H), 1.50 (s, 3H), 2.44 (s, 3H), 3.19 (q, J = 0.48 Hz, 3H), 3.19 (q, J = 0.48 H 6.8 Hz, 1H), 7.21-7.41 (m, 9H, Ar-H, NH, OH), 7.83 (d, J = 7.8 Hz, 2H); ¹³C-NMR (methanol-d₄) δ 10.2, 21.5, 26.7, 46.5, 71.8, 107.8, 128.1, 128.6, 129.3, 129.5, 130.7, 137.4, 141.2, 145.0, 178.5. HRMS (ESI) calcd for $C_{19}H_{21}NNaO_5S$, m/z = 398.1038 [(M+Na-H₂O)⁺], found m/z = 398.1034; [α]_{D²¹} = +27.4 (c 0.6, MeOH). **16**: colorless solid; Mp. 184-185 °C; IR (neat): 3237, 3066, 2927, 2378, 1803, 1719, 1595, 1494, 1333, 1207, 1153, 1049 cm^{-1} ; ¹H-NMR (CDCl₃) δ 1.41 (br q, J = 1.0 Hz, 3H), 1.99 (br q, J = 1.0 Hz, 3H), 2.45 (s, 3H), 5.21 (s, 1H), 7.31-7.37 (m, 7H), 7.78 (d, J = 8.2 Hz, 2H); ¹³C-NMR (CDCl₃) δ 8.3, 11.7, 21.8, 69.1, 112.6, 125.8, 128.0, 129.3, 129.4, 129.7, 136.3, 137.1, 144.4, 148.5, 175.5; HRMS (ESI) calcd for C₁₉H₁₉NO₄S, m/z = 380.0932 [(M+Na)⁺], found m/z = 380.0927; Enantiomeric excess: 96%, determined by HPLC (Chiralpak AD, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 230 nm) major peak: $t_{R} = 18.7$ min, minor peak: $t_{R} = 12.0$ min; $[\alpha]_{D^{22}} = +13.0$ (*c* 0.6, CHCl₃).

Preparation of 13

To a solution of CuI (28.8 mg, 0.15 mmol, 2.2 equiv) in THF (20 mL) were added BuLi (2.69 M solution in hexane, 60 µl, 0.15 mmol, 2.2 equiv) at -50 °C. The resulting mixture was stirred for 0.5 h at the same temperature, and compound **5d** (88% ee, 30.0 mg, 0.069 mmol, 1.0 equiv) in THF (5 mL) were added to the reaction mixture. The resulting mixture was stirred for overnight at -50 °C. The reaction was quenched with saturated NH₄Cl aq., extracted with ethyl acetate, dried over Na₂SO₄ and the resulting organic phase was evaporated. The residue was purified by column chromatography (SiO₂, hexane:EtOAc = 4:1) to afford the compound **13** (31.5 mg, 0.070 mmol, quantitative yield). IR (KBr) v (cm⁻¹) 3439, 3315, 2930, 2862, 1797, 1408, 1331, 1162, 1084, 973, 758; ¹H-NMR (CDCl₃): δ 7.75 (d, 2H, *J* = 8.2 Hz), 7.34-7.31 (m, 4H), 7.25 (d, 2H, *J* = 8.2 Hz), 5.30 (s, 1H), 2.45 (s, 3H), 2.00 (s, 3H), 1.82 (t, 2H, *J* = 8.9 Hz), 1.13-0.93 (m, 6H), 0.74 (t, 3H, *J* = 6.9 Hz); ¹³C-NMR (CDCl₃): δ 175.4, 149.2, 144.4, 136.7, 135.3, 135.2, 129.5, 129.3, 127.9, 127.0, 117.1, 68.9, 31.7, 28.5, 23.6, 22.0, 21.7, 13.8, 12.2; HRMS (ESI) calcd for C₂₃H₂₆CINNaO₄S, m/z = 470.1166 [(M+Na)⁺]; found m/z = 470.1163; Enantiomeric excess: 88%, determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 mL/min, 25 °C, 227 nm) major peak: t_R = 13.8 min, minor peak: t_R = 76.7 min; [α]p²¹ = +14.4 (*c* 0.8, CHCl₃).

Preparation of 14

To a solution of **5d** (88% ee, 20.0 mg, 0.046 mmol, 88% ee, 1.0 equiv), K_2CO_3 (16.6 mg, 0.12 mmol, 2.5 equiv) in DMSO (2 mL) were added diethylmalonate (8.8 mg, 0.055 mmol, 1.2 equiv). The reaction mixture was stirred for 0.5 h at room temperature. Then reaction temperature was increased to 50 °C. The mixture was stirred for 2.5

h. The reaction was quenched with saturated NH₄Cl aq., extracted with ethyl acetate, washed with brine, dried over Na₂SO₄ and the obtaining organic phase was evaporated. The resulting residue was purified by column chromatography (SiO₂, hexane:EtOAc = 7:3) to afford the compound **14** (21.4 mg, 0.039 mmol, 85% yield). IR (KBr): v 3247, 2983, 1809, 1735, 1486, 1335, 1251, 1159, 1085, 1066, 1023, 875, 821 cm⁻¹; ¹H-NMR (CDCl₃): δ 7.81 (d, 2H, *J* = 8.2 Hz), 7.33 (d, 2H, *J* = 8.2 Hz), 7.31 (d, 2H, *J* = 8.2 Hz), 7.24 (d, 2H, *J* = 8.2 H), 5.82 (s, 1H), 4.07 (q, 2H, *J* = 7.6 Hz), 3.99 (qd, 1H, *J* = 10.3, 7.6 Hz), 3.84 (qd, 1H, *J* = 10.3, 7.6 Hz), 2.97 (t, 1H, *J* = 6.9 Hz), 2.71 (dd, 1H, *J* = 15.8, 6.9 Hz), 2.62 (dd, 1H, *J* = 15.8, 6.9 Hz), 2.44 (s, 3H), 2.11 (s, 3H), 1.19 (t, 3H, *J* = 7.6 Hz), 1.14 (t, 3H, *J* = 6.9 Hz); ¹³C-NMR (CDCl₃): δ 173.9, 168.9, 168.8, 152.1, 144.2, 137.3, 135.3, 134.9, 129.6, 129.5, 127.6, 126.9, 113.5, 68.5, 61.81, 61.76, 50.5, 22.8, 21.6, 13.9, 13.8, 12.0; HRMS (ESI) calcd for C₂₆H₂₈CINNaO₈S, m/z = 572.1116 [(M+Na)⁺], found m/z = 572.1116; Enantiomeric excess: 88%, determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 mL/min, 25 °C, 200 nm) minor peak: t_R = 15.5 min, major peak: t_R = 81.3 min; [α]_{D²⁰} = +157.9 (*c* 0.15, CHCl₃).

References

- 1. E. Rémond, J. Bayardon, S. Takizawa, Y. Rousselin, H. Sasai, and S. Jugé, Org. Lett. 2013, 15, 1870.
- 2. E. A. Colby, and T. F. Jamison, J. Org. Chem. 2003, 68, 15.
- 3. D. Moulin, S. Bago, C. Bauduin, C. Darcel, and S. Jugé, Tetrahedron : Asymmetry 2000, 11, 3939.
- F. Chaux, S. Frynas, H. Laureano, C. Salomon, G. Morata, M. L. Auclair, M. Stephan, R. Merdès, P. Richard, M. J. Ondel-Eymin, J. C. Henry, J. Bayardon, C. Darcel, and S. Jugé, *C. R. Chimie* 2010, *12*, 1213.
- 5. J. Y. Ying, N. Erathodiyil, H. Gu, H. Shao, and J. Jiang, PCT Int. Appl. WO 2010114490 A1 20101007, 2010.
- 6. D. L. Boger, and W. L. Corbett, J. Org. Chem. 1992, 57, 4777.
- 7. M. Hojo, M. Hojo, Y. Inoue, and S. Tanimoto, Bull. Chem. Soc. Jpn. 1990, 2588.
- 8. F.-L. Hu, Y. Wei, M. Shi, S. Pindi, and G. Li, Org. Biomol. Chem. 2013, 11, 1921.

NMR

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

(S)-**1b-BH**₃

³¹P-NMR (toluene)

³¹P-NMR (toluene)

³¹P-NMR (toluene)

¹H-NMR (CDCl₃)

¹H-NMR (CDCl₃)

¹H-NMR (CDCl₃)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

¹H-NMR (CDCl₃)

¹H-NMR (CDCl₃)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

HPLC

65

Figure S1: OLEX2 view of the (*S*)-ferrocenyl(2-hydroxypheny)phenylphosphine **1e-BH**₃ showing thermal ellipsoids at the 50 % probability level. [Crystallographic data (**1e-BH**₃) for structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 945143. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB21EZ, UK (fax: (+44) 1223-336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u> or www: <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>)].

	5		
Identification code	10er966p		
Empirical formula	C22 H22 B Fe O P		
Formula weight	400.03		
Temperature	115(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21		
Unit cell dimensions	a = 7.3100(2) Å	a = 90°.	
	b = 15.1078(5) Å	b = 110.282(2)°.	
	c = 9.1520(3) Å	$g = 90^{\circ}.$	
Volume	948.06(5) Å ³		
Z	2		
Density (calculated)	1.401 Mg/m ³		
Absorption coefficient	0.887 mm ⁻¹		
F(000)	416		
Crystal size	0.25 x 0.20 x 0.17 mm ³		
Theta range for data collection	2.70 to 27.49°.		

Table 55. Crystal uata and subclute termement for re-Di	Table S3.	Crystal	data and	structure	refinement	for	1e-BH ₃
---	-----------	---------	----------	-----------	------------	-----	--------------------

Index ranges	-9<=h<=9, -19<=k<=19, -11<=l<=11			
Reflections collected	4251			
Independent reflections	4251 [R(int) = 0.0000]			
Completeness to theta = 27.49°	99.4 %			
Absorption correction	None			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4251 / 1 / 238			
Goodness-of-fit on F^2	1.079			
Final R indices [I>2sigma(I)]	R1 = 0.0289, wR2 = 0.0628			
R indices (all data)	R1 = 0.0299, wR2 = 0.0638			
Absolute structure parameter	0.056(12)			
Largest diff. peak and hole	0.227 and -0.220 e.Å ⁻³			
	х	У	Z	U(eq)
-------	---------	---------	----------	-------
C(1)	2841(3)	5196(2)	2473(2)	16(1)
C(2)	3288(4)	4406(2)	1889(3)	24(1)
C(3)	2484(4)	3615(2)	2163(3)	29(1)
C(4)	1273(4)	3616(2)	3040(3)	30(1)
C(5)	811(4)	4398(2)	3599(3)	25(1)
C(6)	1594(3)	5198(2)	3322(3)	19(1)
C(7)	3256(3)	6296(1)	67(2)	17(1)
C(8)	4516(3)	6511(2)	-731(3)	21(1)
C(9)	3759(4)	6653(2)	-2345(3)	27(1)
C(10)	1794(4)	6563(2)	-3151(3)	29(1)
C(11)	532(4)	6314(2)	-2389(3)	26(1)
C(12)	1264(3)	6185(2)	-789(2)	21(1)
C(13)	2994(3)	7109(1)	2845(3)	16(1)
C(14)	4046(4)	7614(2)	4217(3)	21(1)
C(15)	2797(4)	8295(2)	4396(3)	27(1)
C(16)	984(4)	8224(2)	3145(3)	27(1)
C(17)	1097(3)	7499(2)	2191(3)	21(1)
C(18)	5219(4)	8569(2)	1208(3)	24(1)
C(19)	5477(4)	9228(2)	2372(3)	26(1)
C(20)	3707(4)	9712(2)	1998(3)	29(1)
C(21)	2361(4)	9356(2)	600(3)	28(1)
C(22)	3281(4)	8650(2)	110(3)	24(1)
0	6483(3)	6622(1)	-41(2)	28(1)
Р	4039(1)	6199(1)	2170(1)	14(1)
Fe	3211(1)	8403(1)	2296(1)	16(1)
В	6804(4)	6083(2)	3262(3)	28(1)

Table S4. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **1e-BH₃**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S5. Bond lengths [Å] and angles $[\circ]$ for $1e-BH_3$

1.388(3) 1.392(3) 1.820(2) 1.392(3) 0.9500 1.386(4) 0.9500 1.375(4) 0.9500
1.392(3) 1.820(2) 1.392(3) 0.9500 1.386(4) 0.9500 1.375(4) 0.9500
1.820(2) 1.392(3) 0.9500 1.386(4) 0.9500 1.375(4) 0.9500
1.392(3) 0.9500 1.386(4) 0.9500 1.375(4) 0.9500
0.9500 1.386(4) 0.9500 1.375(4) 0.9500
1.386(4) 0.9500 1.375(4) 0.9500
).9500 1.375(4)).9500
1.375(4) 0.9500
0.9500
1.398(3)
0.9500
0.9500
1.398(3)
1.404(3)
1.813(2)
1.366(3)
1.403(3)
1.375(4)
0.9500
1.388(4)
0.9500
1.387(3)
0.9500
0.9500
1.433(3)
1.442(3)
1.784(2)
2.038(2)
1.422(4)
2.035(2)
0.9500
1.423(4)
2.053(2)
0.9500
1.420(3)
2.050(2)

C(16)-H(16)	0.9500
C(17)-Fe	2.039(2)
C(17)-H(17)	0.9500
C(18)-C(19)	1.423(3)
C(18)-C(22)	1.430(3)
C(18)-Fe	2.055(2)
C(18)-H(18)	0.9500
C(19)-C(20)	1.421(4)
C(19)-Fe	2.055(2)
C(19)-H(19)	0.9500
C(20)-C(21)	1.422(4)
C(20)-Fe	2.046(3)
C(20)-H(20)	0.9500
C(21)-C(22)	1.415(4)
C(21)-Fe	2.049(2)
C(21)-H(21)	0.9500
C(22)-Fe	2.053(2)
C(22)-H(22)	0.9500
O-H(0)	0.8400
P-B	1.927(3)
B-H(0A)	0.9800
B-H(0B)	0.9800
B-H(0C)	0.9800
C(6)-C(1)-C(2)	120.3(2)
C(6)-C(1)-P	121.86(18)
C(2)-C(1)-P	117.80(18)
C(3)-C(2)-C(1)	119.8(2)
C(3)-C(2)-H(2)	120.1
C(1)-C(2)-H(2)	120.1
C(4)-C(3)-C(2)	119.8(2)
C(4)-C(3)-H(3)	120.1
C(2)-C(3)-H(3)	120.1
C(5)-C(4)-C(3)	120.3(2)
C(5)-C(4)-H(4)	119.8
C(3)-C(4)-H(4)	119.8
C(4)-C(5)-C(6)	120.4(2)
C(4)-C(5)-H(5)	119.8

C(6)-C(5)-H(5)	119.8
C(1)-C(6)-C(5)	119.3(2)
C(1)-C(6)-H(6)	120.4
C(5)-C(6)-H(6)	120.4
C(8)-C(7)-C(12)	118.7(2)
C(8)-C(7)-P	123.37(17)
C(12)-C(7)-P	117.89(16)
O-C(8)-C(7)	124.5(2)
O-C(8)-C(9)	115.8(2)
C(7)-C(8)-C(9)	119.7(2)
C(10)-C(9)-C(8)	120.5(2)
C(10)-C(9)-H(9)	119.8
C(8)-C(9)-H(9)	119.8
C(9)-C(10)-C(11)	120.7(2)
C(9)-C(10)-H(10)	119.7
C(11)-C(10)-H(10)	119.7
C(12)-C(11)-C(10)	119.2(2)
C(12)-C(11)-H(11)	120.4
C(10)-C(11)-H(11)	120.4
C(11)-C(12)-C(7)	121.3(2)
C(11)-C(12)-H(12)	119.4
C(7)-C(12)-H(12)	119.4
C(17)-C(13)-C(14)	107.0(2)
С(17)-С(13)-Р	129.85(17)
C(14)-C(13)-P	123.09(18)
C(17)-C(13)-Fe	69.48(13)
C(14)-C(13)-Fe	69.15(12)
P-C(13)-Fe	125.05(12)
C(15)-C(14)-C(13)	108.2(2)
C(15)-C(14)-Fe	70.33(14)
C(13)-C(14)-Fe	69.37(12)
C(15)-C(14)-H(14)	125.9
C(13)-C(14)-H(14)	125.9
Fe-C(14)-H(14)	126.0
C(14)-C(15)-C(16)	108.0(2)
C(14)-C(15)-Fe	68.96(12)
C(16)-C(15)-Fe	69.61(13)
C(14)-C(15)-H(15)	126.0

C(16)-C(15)-H(15)	126.0
Fe-C(15)-H(15)	127.0
C(17)-C(16)-C(15)	108.4(2)
C(17)-C(16)-Fe	69.25(13)
C(15)-C(16)-Fe	69.79(13)
C(17)-C(16)-H(16)	125.8
C(15)-C(16)-H(16)	125.8
Fe-C(16)-H(16)	126.8
C(16)-C(17)-C(13)	108.3(2)
C(16)-C(17)-Fe	70.10(14)
C(13)-C(17)-Fe	69.37(13)
C(16)-C(17)-H(17)	125.9
C(13)-C(17)-H(17)	125.9
Fe-C(17)-H(17)	126.3
C(19)-C(18)-C(22)	107.9(2)
C(19)-C(18)-Fe	69.75(13)
C(22)-C(18)-Fe	69.54(14)
C(19)-C(18)-H(18)	126.0
C(22)-C(18)-H(18)	126.0
Fe-C(18)-H(18)	126.2
C(20)-C(19)-C(18)	107.9(2)
C(20)-C(19)-Fe	69.39(14)
C(18)-C(19)-Fe	69.75(13)
C(20)-C(19)-H(19)	126.1
C(18)-C(19)-H(19)	126.1
Fe-C(19)-H(19)	126.4
C(19)-C(20)-C(21)	108.1(2)
C(19)-C(20)-Fe	70.07(15)
C(21)-C(20)-Fe	69.80(14)
C(19)-C(20)-H(20)	126.0
C(21)-C(20)-H(20)	126.0
Fe-C(20)-H(20)	125.7
C(22)-C(21)-C(20)	108.3(2)
C(22)-C(21)-Fe	69.95(13)
C(20)-C(21)-Fe	69.57(15)
C(22)-C(21)-H(21)	125.8
C(20)-C(21)-H(21)	125.8
Fe-C(21)-H(21)	126.2

C(21)-C(22)-C(18)	107.8(2)
C(21)-C(22)-Fe	69.70(14)
C(18)-C(22)-Fe	69.72(13)
C(21)-C(22)-H(22)	126.1
C(18)-C(22)-H(22)	126.1
Fe-C(22)-H(22)	126.1
C(8)-O-H(0)	109.5
C(13)-P-C(7)	106.87(10)
C(13)-P-C(1)	107.62(10)
C(7)-P-C(1)	103.73(10)
С(13)-Р-В	112.86(12)
C(7)-P-B	116.51(11)
C(1)-P-B	108.57(12)
C(14)-Fe-C(13)	41.48(9)
C(14)-Fe-C(17)	69.14(10)
C(13)-Fe-C(17)	41.15(9)
C(14)-Fe-C(20)	131.87(11)
C(13)-Fe-C(20)	172.98(11)
C(17)-Fe-C(20)	143.83(11)
C(14)-Fe-C(21)	170.88(10)
C(13)-Fe-C(21)	146.27(10)
C(17)-Fe-C(21)	114.15(11)
C(20)-Fe-C(21)	40.63(11)
C(14)-Fe-C(16)	68.58(10)
C(13)-Fe-C(16)	68.90(9)
C(17)-Fe-C(16)	40.64(9)
C(20)-Fe-C(16)	112.26(11)
C(21)-Fe-C(16)	107.94(11)
C(14)-Fe-C(22)	147.88(10)
C(13)-Fe-C(22)	116.41(9)
C(17)-Fe-C(22)	110.51(10)
C(20)-Fe-C(22)	68.24(11)
C(21)-Fe-C(22)	40.35(10)
C(16)-Fe-C(22)	133.22(11)
C(14)-Fe-C(15)	40.71(10)
C(13)-Fe-C(15)	69.12(10)
C(17)-Fe-C(15)	68.64(10)
C(20)-Fe-C(15)	106.97(11)

C(21)-Fe-C(15)	131.34(11)
C(16)-Fe-C(15)	40.60(10)
C(22)-Fe-C(15)	171.19(11)
C(14)-Fe-C(18)	116.07(10)
C(13)-Fe-C(18)	111.48(10)
C(17)-Fe-C(18)	135.72(10)
C(20)-Fe-C(18)	68.17(11)
C(21)-Fe-C(18)	68.11(10)
C(16)-Fe-C(18)	173.80(11)
C(22)-Fe-C(18)	40.74(10)
C(15)-Fe-C(18)	145.59(10)
C(14)-Fe-C(19)	109.23(10)
C(13)-Fe-C(19)	134.78(10)
C(17)-Fe-C(19)	175.25(11)
C(20)-Fe-C(19)	40.53(11)
C(21)-Fe-C(19)	68.18(11)
C(16)-Fe-C(19)	143.48(10)
C(22)-Fe-C(19)	68.33(10)
C(15)-Fe-C(19)	113.27(10)
C(18)-Fe-C(19)	40.50(10)
P-B-H(0A)	109.5
P-B-H(0B)	109.5
H(0A)-B-H(0B)	109.5
P-B-H(0C)	109.5
H(0A)-B-H(0C)	109.5
H(0B)-B-H(0C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	15(1)	17(1)	15(1)	1(1)	3(1)	-1(1)
C(2)	25(1)	20(1)	26(1)	-1(1)	9(1)	3(1)
C(3)	34(1)	15(1)	34(1)	-1(1)	5(1)	6(1)
C(4)	27(1)	21(1)	32(1)	10(1)	-2(1)	-4(1)
C(5)	23(1)	26(1)	27(1)	8(1)	8(1)	-4(1)
C(6)	21(1)	19(1)	18(1)	1(1)	7(1)	1(1)
C(7)	22(1)	14(1)	15(1)	-1(1)	7(1)	-1(1)
C(8)	28(1)	15(1)	23(1)	0(1)	13(1)	1(1)
C(9)	46(2)	20(1)	23(1)	1(1)	22(1)	2(1)
C(10)	52(2)	19(1)	14(1)	0(1)	8(1)	6(1)
C(11)	32(1)	22(1)	18(1)	0(1)	-1(1)	-1(1)
C(12)	25(1)	19(1)	18(1)	2(1)	5(1)	0(1)
C(13)	18(1)	14(1)	17(1)	1(1)	7(1)	-2(1)
C(14)	28(1)	22(1)	14(1)	1(1)	8(1)	-5(1)
C(15)	38(1)	25(1)	23(1)	-4(1)	19(1)	-4(1)
C(16)	26(1)	25(2)	37(1)	-4(1)	19(1)	-1(1)
C(17)	17(1)	20(1)	28(1)	-1(1)	10(1)	-3(1)
C(18)	25(1)	26(2)	26(1)	5(1)	13(1)	-2(1)
C(19)	23(1)	23(1)	31(1)	2(1)	6(1)	-11(1)
C(20)	34(1)	16(1)	37(1)	-2(1)	13(1)	-6(1)
C(21)	29(1)	20(1)	33(1)	11(1)	7(1)	5(1)
C(22)	28(1)	26(1)	18(1)	7(1)	5(1)	-2(1)
0	27(1)	34(1)	29(1)	0(1)	17(1)	-5(1)
Р	13(1)	17(1)	13(1)	1(1)	4(1)	-1(1)
Fe	16(1)	15(1)	17(1)	-1(1)	5(1)	-2(1)
В	14(1)	36(2)	26(1)	3(1)	0(1)	-2(1)

Table S6. Anisotropic displacement parameters (Å²x 10³) for 1e-BH₃. The anisotropic displacement factorexponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$