Electronic Supplementary Information

Rhodium-Catalyzed Intermolecular C–H Amination of Simple Hydrocarbons Using the Shelf-Stable Nonafluorobutanesulfonyl Azide

José Ramón Suárez,* and Jose Luis Chiara*

Instituto de Química Orgánica General, C.S.I.C., Juan de la Cierva 3, E-28006 Madrid, Spain

General Methods: Proton and carbon-13 nuclear magnetic resonance (¹H NMR, ¹³C NMR) spectra were recorded on a BRUKER AMX-300 (300 and 75 MHz), or Varian INOVA 300 (300 and 75 MHz) spectrometers, ¹⁹F spectra were recorded on a Mercury 400 (375 MHz) spectrometer. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual peaks of the deuterated NMR solvent used for ¹H NMR and ¹³C NMR or to fluorotrichloromethane as an external reference for ¹⁹F NMR. Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, quintet = quintuplet, m = multiplet and/or multiple resonances, br = broad), integration, and coupling constants in hertz (Hz). Thin layer chromatography (TLC) was performed on Merck Silica Gel 60 F254 plates. The chromatograms were viewed under UV light and/or by treatment with a solution of ammonium molybdate (50 g) and cerium(IV) sulphate (1 g) in 5 % aqueous H_2SO_4 (1 L) followed by charring on a hot plate. Column chromatography was performed with Merck silica gel, grade 60, and 230-400 mesh. High resolution mass spectra (APCI or ESI-HRMS) were recorded on an Agilent 6520 Q-TOF instrument. Melting points were measured with a Reichert Jung Thermovar micro-melting apparatus. All solvents were of HPLC grade and were used as provided.

Sulfamination reaction. The reaction was carried out in a Schlenk tube (5 mL) under argon. The hydrocarbon substrate (0.60 mmol), nonafluorobutanesulfonyl azide (0.235 g, 0.72 mmol), 4Å MS (20 mg), and $Rh_2(OAc)_4$ (13 mg, 0.03 mmol, 5 mole%) were added to

dry ClCH₂CH₂Cl (3 mL, in the case of **4**, **9**, **10** and **11**; toluene, cyclohexane, cycloheptane, and cycloctane were used as solvents) and stirred at 90 °C for 12 h. The reaction mixture was filtered through a pad of Celite, rinsing with ClCH₂CH₂Cl, and concentrated. The residue was purified by silica column chromatography (hexane/AcOEt 9:1 v/v) to afford the corresponding sulfamination product.

N-(2,3-dihydro-1*H*-inden-1-yl)-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (1): White powder. Mp: 87–90 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.90-2.02 (m, 1H), 2.56-2.69 (m, 1H), 2.78-2.89 (m, 1H), 2.95-3.04 (m, 1H), 5.05-5.13 (m, 1H), 5.26 (d, J = 9.2 Hz, 1H), 7.22-7.35 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ 29.9 (CH₂), 35.0 (CH₂), 61.1 (CH), 124.3 (CH), 125.2 (CH), 127.4 (CH), 129.2 (CH), 140.6 (C), 143.1 (C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.6 (CF₂), -121.7 (CF₂), -113.1 (CF₂), -81.4 (CF₃). HRMS (APCI) [M+H]⁺ calcd for C₁₃H₉F₉NO₂S: 414.0210, found: 414.0286.

1,1,2,2,3,3,4,4,4-nonafluoro-N-(1,2,3,4-tetrahydronaphthalen-1-yl)butane-1-

sulfonamide (2): White powder. Mp: 98–101 °C. ¹**H NMR** (300 MHz, CDCl₃): δ 1.84-1.92 (m, 2H), 1.98-2.19 (m, 2H), 2.71-2.90 (m, 2H), 4.81-4.87 (m, 1H), 5.18 (d, J = 8.6 Hz, 1H), 7.10-7.14 (m, 1H), 7.20-7.24 (m, 2H), 7.37-7.42 (m, 1H). ¹³**C NMR** (75 MHz, CDCl₃): δ 19.3 (CH₂), 28.9 (CH₂), 31.6 (CH₂), 54.7 (CH), 126.9 (CH), 128.5 (CH), 129.0 (CH), 129.7 (CH), 136.1 (C), 137.8 (C). ¹⁹**F NMR** (375 MHz, CDCl₃): δ -126.4 (CF₂), -121.5 (CF₂), -112.8 (CF₂), -81.2 (CF₃). **HRMS** (APCI) [M+H]⁺ calcd for C₁₄H₁₁F₉NO₂S: 428.0372, found: 428.0398.

1,1,2,2,3,3,4,4,4-nonafluoro-*N*-(isochroman-1-yl)butane-1-sulfonamide (3): White powder. Mp: 154–157 °C. ¹H NMR (300 MHz, CDCl₃): δ 2.71 (dt, *J* = 12.0, 3.3 Hz, 1H), 2.92-3.02 (m, 1H), 3.93-4.07 (m, 2H), 6.02 (d, *J* = 8.5 Hz, 1H), 6.13 (d, *J* = 8.5 Hz, 1H), 7.15 (d, *J* = 6.8 Hz, 1H), 7.23-7.31 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 27.5 (CH₂), 59.7 (CH₂), 80.8 (CH), 126.9 (CH), 127.2 (CH), 129.3 (2 × CH), 131.3 (C), 134.9 (C). ¹⁹F NMR (375 MHz, CDCl₃): δ -128.4– -124.7 (m, CF₂), -121.4 (CF₂), -114.5– -110.8 (m, CF₂), -81.2 (CF₃). HRMS (ESI) [M+NH₄]⁺ calcd for C₁₃H₁₄F₉N₂O₃S: 449.0576, found: 449.0635.

N-benzyl-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (4): White powder. Mp: 85–88 °C. ¹H NMR (300 MHz, CDCl₃): δ 4.48 (d, *J* = 5.8 Hz, 2H), 5.20 (t, *J* = 5.8 Hz, 1H), 7.32-7.43 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ 48.8 (CH₂), 128.1 (2 × CH), 128.9 (CH), 129.3 (2 × CH), 135.3 (C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.8 (CF₂), -121.7 (CF₂), -112.7 (CF₂), -81.2 (CF₃). HRMS (ESI) [M+K]⁺ calcd for C₁₁H₈F₉KNO₂S: 427.9764, found: 427.9744.

1,1,2,2,3,3,4,4,4-Nonafluoro-*N***-(1-phenylethyl)butane-1-sulfonamide** (5): White powder. Mp: 96–99 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.54 (d, *J* = 6.9 Hz, 3H), 4.71-4.80 (m, 1H), 5.62 (d, *J* = 8.6 Hz, 1H), 7.22-7.32 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ 23.6 (CH₃), 55.9 (CH), 126.0 (2 × CH), 128.5 (CH), 129.2 (2 × CH), 141.3 (C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.6 (CF₂), -121.6 (CF₂), -113.2 (CF₂), -81.3 (CF₃). HRMS (ESI)]M+NH₄]⁺ calcd for C₁₂H₁₄F₉N₂O₂S: 421.0627, found: 421.0681.

1,1,2,2,3,3,4,4,4-Nonafluoro-*N***-(1-(4-methoxyphenyl)ethyl)butane-1-sulfonamide** (6): White powder. Mp: 89–92 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.63 (d, *J* = 6.9 Hz, 3H), 3.82 (s, 3H), 4.76-4.86 (m, 1H), 5.44 (d, *J* = 8.3 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 23.5 (CH₃), 55.4 (CH₃ and CH), 114.5 (2 × CH), 127.4 (2 × CH), 133.4 (C), 159.6 (C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.4 (CF₂), -121.6 (CF₂), -113.1 (CF₂), -81.2 (CF₃). **HRMS** (ESI)]M+NH₄]⁺ calcd for C₁₃H₁₆F₉N₂O₃S: 451.0732, found: 451.0741.

N-(1-(4-Chlorophenyl)ethyl)-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (7): White powder. Mp: 93–95 °C ¹H NMR (300 MHz, CDCl₃): δ 1.63 (d, J = 6.9 Hz, 3H), 4.78-4.88 (m, 1H), 5.26 (d, J = 8.3 Hz, 1H), 7.26 (d, J = 8.6 Hz, 2H), 7.37 (d, J = 8.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 23.5 (CH₃), 55.2 (CH), 127.5 (2 × CH), 129.4 (2 × CH), 134.5 (C), 139.7 (C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.4 (CF₂), -121.5 (CF₂), -113.0 (CF₂), -81.1 (CF₃). HRMS (ESI)]M-H]⁺ calcd for C₁₂H₈ClF₉NO₂S: 435.9826, found: 435.9846. **1,1,2,2,3,3,4,4,4-Nonafluoro-***N***-(2-phenylpropan-2-yl)butane-1-sulfonamide (8)**: White powder. Mp: 73–76 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.83 (s, 6H), 5.13 (br s, 1H), 7.31-7.50 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ 29.8 (2 × CH₃), 62.7 (C), 125.1 (2 × CH), 128.2 (CH), 129.0 (2 × CH), 145.4 (C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.3 (CF₂), -121.4 (CF₂), -112.1 (CF₂), -81.1 (CF₃). HRMS (ESI) [M+NH₄]⁺ calcd for C₁₃H₁₆F₉N₂O₂S: 435.0783, found: 435.0787.

N-(9H-Fluoren-9-yl)-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (9): White powder. Mp: 115–118 °C. ¹H NMR (300 MHz, CDCl₃): δ 5.09 (d, *J* = 9.6 Hz, 1H), 5.60 (d, *J* = 9.6 Hz, 1H), 7.34-7.476 (m, 4H), 7.64-7.67 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ 60.3 (CH), 120.4 (2 × CH), 125.4 (2 × CH), 128.5 (2 × CH), 129.9 (2 × CH), 140.4 (2 × C), 141.7 (2 × C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.2 (CF₂), -121.2 (CF₂), -112.2 (CF₂), -81.0 (CF₃). HRMS (APCI) [M+H]⁺ calcd for C₁₇H₉F₉NO₂S: 462.0216, found: 462.0217.

N-Benzhydryl-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (10): White powder. Mp: 118–121 °C. ¹H NMR (300 MHz, CDCl₃): δ 5.56 (d, J = 8.8 Hz, 1H), 5.85 (d, J = 8.8 Hz, 1H), 7.17-7.34 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 63.0 (CH), 127.3 (4 × CH), 128.5 (2 × CH), 129.1 (4 × CH), 139.8 (2 × C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.4 (CF₂), -121.4 (CF₂), -112.7 (CF₂), -81.1 (CF₃). HRMS (ESI) [M+NH₄]⁺ calcd for C₁₇H₁₆F₉N₂O₂S: 483.0783, found: 483.0802.

N-Cyclohexyl-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (11): White powder. M.p.= 58-61 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.15-1.43 (m, 5H), 1.58-1.78 (m. 3H), 2.01-2.04 (m, 2H), 3.47-3.58 (m, 1H), 4.96 (d, J = 8.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 24.9 (2 × CH₂), 25.0 (CH₂), 34.7 (2 × CH₂), 55.4 (CH). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.5 (CF₂), -121.6 (CF₂), -113.4 (CF₂), -81.2 (CF₃). HRMS (APCI) [M+H]⁺ calcd for C₁₀H₁₁F₉NO₂S: 380.2505, found: 380.2563.

N-Cycloheptyl-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (12): White powder. M.p.= 159-162 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.46-1.65 (m, 10H), 2.00-2.08 (m, 2H), 3.67-3.79 (m, 1H), 5.17 (d, J = 8.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 23.5 (2 × CH₂), 27.9 (2 × CH₂), 36.7 (2 × CH₂), 57.7 (CH). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.5 (CF₂), -121.7 (CF₂), -113.5 (CF₂), -81.3 (CF₃). **HRMS** (APCI) [M+H]⁺ calcd for C₁₁H₁₃F₉NO₂S: 394.0529, found: 394.0511.

N-Cyclooctyl-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (13): White powder. M.p.= 75-78 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.54-1.70 (m, 12H), 1.93-2.01 (m, 2H), 3.72-3.83 (m, 1H), 5.14 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 23.3 (2 × CH₂), 25.1 (CH₂), 27.1 (2 × CH₂), 33.6 (2 × CH₂), 56.9 (CH). ¹⁹F NMR (375 MHz, CDCl₃): δ - 126.5 (CF₂), -121.7 (CF₂), -113.5 (CF₂), -82.2 (CF₃). HRMS (APCI) [M+H]⁺ calcd for C₁₂H₁₅F₉NO₂S: 408.0685, found: 408.0680.

N-(Adamantan-1-yl)-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide (14): White powder. M.p.= 94-97 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.67 (s, 6H), 2.00 (s, 6H), 2.14 (s, 3H), 5.01 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 29.9 (3 × CH₂), 35.8 (3 × CH₂), 43.4 (3 × CH), 59.2 (C). ¹⁹F NMR (375 MHz, CDCl₃): δ -126.7 (CF₂), -121.7 (CF₂), -112.8 (CF₂), -82.5 (CF₃). HRMS (ESI) [M+NH₄]⁺ calcd for C₁₄H₂₀F₉N₂O₂S: 451.1096, found: 451.1083.

Compound 15: Mixture of 2 unassigned isomers in 1.0 : 1.4 ratio. White powder. M.p.= 112-115 °C. ¹H NMR (300 MHz, CDCl₃): δ 0.85-1.37 (m, 16H, both isomers), 1.54-1.83 (m, 10H, both isomers), 1.93-2.14 (m, 6H, both isomers), 3.11-3.24 (m, 1H, isomer 1), 3.45-3.56 (m, 1H, isomer 2), 4.89 (d, *J* = 9.3 Hz, 1H, isomer 1), 5.01 (d, *J* = 8.7 Hz, 1H, isomer 2). ¹³C NMR (75 MHz, CDCl₃): δ 24.7, 26.2, 26.5, 29.5, 32.5, 33.2, 33.6, 33.9, 34.9, 35.5, 41.9, 42.0, 42.4, 48.8, 55.7, 60.2. **HRMS** (ESI) [M+NH₄]⁺ calcd for C₁₄H₂₂F₉N₂O₂S: 451.1258, found: 451.1889.

Compound 16: Mixture of 3 unassigned isomers in 3.3 : 1.9 : 1.0 ratio. White powder. ¹H **NMR** (300 MHz, CDCl₃): δ 1.26-2.08 (m, 48H), 3.44-3.54 (m, 1H, one isomer of **16a**), 3.62-3.72 (m, 2H, one isomer of **16a** and **16b**), 5.03 (s, 1H, **16b**), 5.16 (d, J = 8.6 Hz, 1H, one isomer of **16a**), 5.21 (d, J = 9.1 Hz, 1H, one isomer of **16a**). ¹³C NMR (75 MHz, CDCl₃): δ 19.4, 20.8, 21.1, 24.0, 25.1, 25.3, 25.5, 26.2, 26.7, 28.5, 29.4, 30.9, 31.6, 31.7,

34.3, 34.4, 34.9, 35.4, 36.4, 41.1, 42.1, 42.8, 52.2, 56.6, 59.1. **HRMS** (ESI) $[M+NH_4]^+$ calcd for $C_{14}H_{22}F_9N_2O_2S$: 451.1258, found: 451.1882.

Compound 17: Mixture of 2 unassigned isomers in 1.0 : 0.15 ratio. White powder. Spectrum dates for the major isomer **17a**. ¹**H NMR** (300 MHz, CDCl₃): δ 0.92 (d, *J* = 6.5 Hz, 3H), 1.05 (d, *J* = 6.3 Hz, 3H), 1.13-1.26 (m, 2H), 1.36-1.67 (m, 3H), 1.80 (dd, *J* = 13.2, 3.2 Hz, 1H), 1.94-2.09 (m, 2H), 3.13 (ddd, *J* = 13.8, 11.6, 4.1 Hz, 1H), 4.84 (s, 1H isomer **17c**), 4.91 (d, *J* = 9.2 Hz, 1H, isomer **17a**). ¹³**C NMR** (75 MHz, CDCl₃): δ 18.9 (CH₃), 22.1 (CH₃), 32.4 (CH₂), 34.1 (2 × CH₂), 38.6 (CH), 43.8 (CH), 61.9 (CH₂). **HRMS** (ESI) [M-H]⁺ calcd for C₁₂H₁₅F₉NO₂S: 408.0685, found: 408.0690.

Compound 18: Mixture of 3 unassigned isomers in 1.0 : 1.2 : 3.1 ratio. White powder. ¹H **NMR** (300 MHz, CDCl₃): δ 0.90-0.98 (m, 11H), 1.04-1.16 (m, 7H), 1.26-1.44 (m, 11H), 1.55-1.72 (m, 12H), 1.88-1.92 (m, 4H), 3.44 (ddd, J = 11.7, 8.6, 4.0 Hz, 1H, one isomer of **18a/b**), 3.63-3.74 (m, 2H, one isomer of **18a/b** and **18c**), 4.99 (s, 1H, **18c**), 5.15 (d, J = 6.3 Hz, 1H, one isomer of **18a/b**), 5.18 (d, J = 7.9 Hz, 1H, one isomer of **18a/b**). ¹³C **NMR** (75 MHz, CDCl₃): δ 11.2, 18.5, 19.4, 21.7, 22.2, 23.6, 27.6, 27.9, 28.0, 29.7, 31.2, 31.4, 31.7, 32.7, 36.7, 37.3, 38.6, 57.9, 58.1, 61.1.

Amination of isobutylbenzene and 4-ethyltoluene. The reaction was carried out following the general sufamidation conditions described above.

¹H NMR (300 MHz, CDCl₃): δ 0.86 (d, J = 6.7 Hz, 3H, for 19), 1.04 (d, J = 6.7 Hz, 3H, for 19), 1.44 (s, 6H, for 20), 1.99-2.10 (m, 1H, for 19), 2.94 (s, 2H, for 20), 4.34 (dd, J = 9.2, 7.9 Hz, 1H, for 19), 4.72 (s, 1H, for 20), 5.60 (d, J = 9.3 Hz, 1H, for 19), 7.17-7.39 (m, 10H).
¹³C NMR (75 MHz, CDCl₃): δ 18.2, 19.6, 27.9, 35.0, 49.4, 60.1, 66.3, 71.5, 126.6, 127.5, 128.2, 128.8, 128.9, 135.6, 138.8.

¹H NMR (300 MHz, CDCl₃): δ 1.27 (t, *J* = 7.6 Hz, 3H, for 22), 1.65 (d, *J* = 6.9 Hz, 3H, for 21), 2.38 (s, 3H, for 21), 2.69 (q, *J* = 7.6 Hz, 2H, for 22), 4.48 (d, *J* = 5.7 Hz, 2H, for 22), 4.79-4.90 (m, 1H, for 21), 5.33 (t, *J* = 5.0 Hz, 1H, for 22), 5.43 (d, *J* = 8.4 Hz, 1H, for 21), 7.01-7.30 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 15.6 (CH₃, for 22), 21.2 (CH₃, for 21), 23.6 (CH₃, for 21), 28.7 (CH₂, for 22), 48.7 (CH₂, for 22), 55.7 (CH, for 21), 126.0 (2 × CH, for 21), 128.2 (2 × CH, for 22), 128.8 (2 × CH, for 22), 129.8 (2 × CH, for 21), 132.5 (C, for 22), 138.2 (C, for 21), 138.4 (C, for 21), 145.2 (C, for 22).

Determination of Kinetic Deuterium Isotope Effects. To a stirred solution of nonafluorobutanesulfonyl azide (130 mg, 0.4 mmol) in a mixture of cyclohexane (200 μ L) and cyclohexane- d_{12} (200 μ L), was added Rh₂(OAc)₄ (5 mg, 3 mole% with respect to NfN₃) and methyl trichloroacetate (28 μ L, 0.2 mmol), which was used as internal standard. The mixture was heated at 90 °C. Aliquots (10 μ L) of the reaction mixture were taken after 0, 1, 2, 3, 4, 5, 7, 9, 11, and 13 hours. The aliquots were immediately quenched by addition to 20 μ L of a solution of PPh₃ (2M in CH₂Cl₂) and diluted with CH₂Cl₂ to 1.0 mL. The so treated aliquots were analyzed by GC-MS (see graph).

 $k_{\rm H}/k_{\rm D} = 5.03167/2.03452 = 2.47$

Synthesis of *N*-benzyl-*N*-(2,3-dihydro-1*H*-inden-1-yl)-1,1,2,2,3,3,4,4,4nonafluorobutane-1-sulfonamide (23). To a solution of compound 1 (150 mg, 0.36 mmol) in dry DMF (1.0 mL) was added NaH (30 mg, 60% dispersion in mineral oil) at 0 °C. After stirring the reaction mixture at this temperature for 30 min, benzyl bromide (0.05 mL, 0.432 mmol) was added and the reaction mixture was stirred at 90 °C for 12 h. The mixture was concentrated under reduced pressure, Et_2O (5 mL) was added, and the resultant solution was washed with a saturated aqueous solution of NaCl (3×5 mL). The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc 10:1) to afford **23** as a colorless oil (157 mg, 84% yield).

¹**H NMR** (300 MHz, CDCl₃, *T* = 25 °C, mixture of rotamers): δ 1.67 (br s, 1H), 2.01 (br s, 1H), 2.34 (br s, 2H), 2.52 (br s, 2H), 2.93 (br s, 1H), 3.07 (br s, 1H), 3.94 (d, *J* = 16.5 Hz, 1H), 4.57 (s, 2H), 4.83 (d, *J* = 16.5 Hz, 1H), 5.67 (br s, 2H), 6.93-7.38 (m, 18H). ¹³**C NMR** (75 MHz, CDCl₃): δ 28.8, 30.1, 33.0, 50.0, 65.3, 66.0, 72.1, 125.7, 127.1, 127.8, 127.9, 128.3, 128.7, 129.4, 139.0, 137.3, 138.3, 146.0. **HRMS** (ESI) $[M+NH_4]^+$ calcd for C₂₀H₂₀F₉N₂O₂S: 523.1096, found: 523.1091.

N-Benzyl-2,3-dihydro-1*H*-inden-1-amine (24). To a stirred solution of sulfonamide 23 (0.2 mmol) in dry toluene (1.0 mL) was added dropwise a solution of Red-Al (NaAIH₂(OCH₂CH₂OCH₃)₂, 0.3 mL, 5 eq., 65% wt in toluene). The mixture was refluxed for 3 h and then cooled. Excess Red-Al was decomposed by addition of water (3.5 mL), aqueous NaOH (3.5 mL, 15% w/v) and the organic layer was extracted with Et₂O (3×5 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc 6:1) to afford 24 as a colorless oil (41 mg, 91% yield), with ¹H NMR and ¹³C NMR in agreement with those reported in the literature.¹

¹**H NMR** (300 MHz, CDCl₃): δ 1.62 (br s, 1H), 1.78-1.90 (m, 1H), 2.33-2.42 (m, 1H), 2.72-2.82 (m, 1H), 2.93-3.02 (m, 1H), 3.87 (AB system, J = 4.3 Hz, 2H), 4.26 (apparent t, J = 6.6 Hz, 1H), 7.14-7.36 (m, 9H). ¹³**C NMR** (75 MHz, CDCl₃): 30.2 (CH₂), 33.8 (CH₂), 51.3 (CH₂), 62.9 (CH), 124.3 (CH), 124.9 (CH), 126.4 (CH), 127.0 (CH), 127.5 (CH), 128.3 (2 × CH), 128.5 (2 × CH), 140.8 (C), 143.8 (C), 145.5 (C). **HRMS** (ESI) [M+H]⁺ calcd for C₁₆H₁₈N₂: 224.1434, found: 224.1431.

References:

1) Lee, O.-H.; Kaw, K.-L.; Yan, D. Org. Lett. 2009, 11, 3302-3305.

-100 -110 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -150 -160 -170 -180 -190 -200

-100 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190

18

-100 -110 f1 (ppm) -10 -20 -30 -50 -60 -70 -80 -90 -120 -130 -140 -150 -160 -40 -170 -180 -190 -200

22

-10 -20 -100 f1 (ppm) -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190

24

29

-100 -110 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -150 -160 -170 -180 -190 -200

-120 f1 (ppm) -40 -50 -60 -70 -80 -90 -100 -110 -130 -140 -150 -160 -170 -180 -190 -200

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 f1 (ppm) -140 -150 -160 -170 -120 -130 -180 -190 -200 -21

43

46

-100 -110 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -150 -160 -170 -180 -190 -200

56

