Supporting Information

Dimerization of Cyclopropenes to Bifurans with Tandem Metal Relay Catalysis

Chuanling Song, Di Sun, Xianglong Peng, Jing Bai, Rongyi Zhang, Shengzhen Hou, Jianwu Wang and Zhenghu Xu*

School of chemistry and chemical engineering Shandong University, 27 South Shanda Road, Jinan, 250100, China

General	2
Synthesis of Cyclopropenes	2-3
Optimization of reaction conditions	4-5
General procedure of Dimerization	6-12
Datas of UV and fluorescence	13-15
NMR spectra for the products	16-45

General

All NMR spectra were recorded on Bruker-500 or 300 MHz spectrometer. HRMS were measured on the Q-TOF6510 instruments . Routine monitoring of the reaction was performed by TLC using precoated silica gel plates. All the reagents and Solvents used in this reaction such as CH₃CN were purchased from Acros or local company and used directly.

Synthesis of the materials

Diazomalonates and Cyclopropenes

Diazomalonates and cyclopropenes **1a-1g**, **1j-1k**, **1m-1o** were synthesized from the procedures reported in the literature^[1]

(1h) Yield: 44 % ¹H NMR (400 MHz, CDCl₃) δ 0.93 (t, J =7.34 Hz, 2H), 1.17 (t, J

=7.13 Hz, 3H), 1.41-1.46 (m, 2H), 1.61-1.69 (m, 2H), 2.56-2.74 (m, 2H), 4.05-4.13

(m, 2H), 6.52 (s, 1H), 7.52-7.64 (m, 3H), 7.96 (m, 2H);

(1m) Yield: 54 % ¹H NMR (400 MHz, CDCl₃) δ 1.16 (t, *J* =7.13 Hz, 3H), 4.06-4.11 (q, *J* =7.28 Hz, 4H), 5.17-5.30 (m, 2H), 6.79 (s, 1H), 6.96-7.03 (m, 3H), 7.26-7.32(m, 2H), 7.52-7.64 (m, 3H), 7.98-7.99 (m, 2H);

(11) Yield: 40 % ¹H NMR

(400 MHz, CDCl₃) δ 1.16 (t, J

=7.13 Hz, 3H), 4.11-4.17 (q, *J* =7.12 Hz, 2H), 7.01 (s, 1H), 7.42-7.63(m, 8H),

7.96-7.99 (m, 2H);

References

1. C. Song, L.Ju, M. Wang, P. Liu, Y. Zhang, J. Wang, Z. Xu, Chem. Eur. J. 2013, 19,

3584-3589

Entry	Catalyst	Oxidant	Additive	Solvent	Yield/%
1 ^a	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(3 eq.)	CH ₃ CN	68
$2^{a,b}$	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(3 eq.)	CH ₃ CN	67
3 ^{a,c}	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(3 eq.)	CH ₃ CN	42
4 ^a	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(3 eq.)	Toluene	N.R.
$5^{d,e}$	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(3 eq.)	CH ₃ CN	73
6 ^a	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(3 eq.)	CH ₃ CN	34.
7^{a}	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(7 eq.)	CH ₃ CN	86
8^{a}	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(10 eq.)	CH ₃ CN	54
9 ^a	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(14 eq.)	CH ₃ CN	44
10 ^{a,f}	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(7eq.)	CH ₃ CN	43
11 ^a	PdCl ₂	Cu(OAc) ₂	DMSO(7 eq.)	CH ₃ CN	52
12 ^a	$Pd(TFA)_2$	Cu(OAc) ₂	DMSO(7 eq.)	CH ₃ CN	67
13 ^a	PdCl ₂ (CH ₃ CN) ₂	Cu(OAc) ₂	DMSO(7 eq.)	CH ₃ CN	61
14 ^a	PdCl ₂ (PPh ₃) ₂	Cu(OAc) ₂	DMSO(7 eq.)	CH ₃ CN	20
15 ^a	$Pd(OAc)_2$	/	DMSO(7 eq.)	CH ₃ CN	N.R.
16 ^a	/	Cu(OAc) ₂	DMSO(7 eq.)	CH ₃ CN	41 ^g

Reaction conditions: ^a**1a**(0.2 mmol, 42.4 mg), Pd(OAc)₂(5 mol%, 0.01 mmol, 2.24 mg), Cu(OAc)₂(2 eq. 0.4 mmol, 79.6 mg), 1 mL CH₃CN, 80°C; ^b100°C; ^c Cu(OAc)₂(1.2 eq. 0.24 mmol, 47.8 mg); ^d**1**a was slowly injected into the system; ^e KF(1.2 eq., 0.24 mmol, 414 mg) was added into the system; ^f 0.5 ml CH₃CN; ^g the yield of isomerization product.

Table 1. Effects of Solvents and additive

Entry	Catalyst	Oxidant	Additive	Solvent	Yield/%
1	$Pd(OAc)_2$	Cu(OAc) ₂	/	DMSO	<5
2	$Pd(OAc)_2$	$Cu(OAc)_2$	/	CH ₃ CN	29
3	$Pd(OAc)_2$	Cu(OAc) ₂	/	THF	N.D.
4	$Pd(OAc)_2$	Cu(OAc) ₂	/	DMF	Trace
5	$Pd(OAc)_2$	Cu(OAc) ₂	/	DCE	50 ^b
6	$Pd(OAc)_2$	Cu(OAc) ₂	/	DCM	N.D.
7	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(7 eq.)	THF	29
8	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(7 eq.)	DMF	14
9	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(7 eq.)	DCE	23
10	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(7 eq.)	DCM	27
11	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(7 eq.)	Toluene	42
12	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(7 eq.)	CH ₃ CN	86
13	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(3 eq.)	CH ₃ CN	34
14	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(10 eq.)	CH ₃ CN	54
15	$Pd(OAc)_2$	Cu(OAc) ₂	DMSO(14 eq.)	CH ₃ CN	44

Reaction conditions: ^a**1a**(0.2 mmol, 42.4 mg), Pd(OAc)₂(5 mol%, 0.01 mmol, 2.24 mg), Cu(OAc)₂(2 eq. 0.4 mmol, 79.6 mg), 1 mL solvent, 80° C; ^b the yield of isomerization product **4**

2) Oxidant (Table 2)

Entry	Catalyst	Oxidant	Additive	Solvent	Yield/%
1	$Pd(OAc)_2$	BQ	DMSO(7 eq.)	CH ₃ CN	N.R.
2	$Pd(OAc)_2$	DDQ	DMSO(7 eq.)	CH ₃ CN	N.R.
3	$Pd(OAc)_2$	TBHP	DMSO(7 eq.)	CH ₃ CN	N.R
4	$Pd(OAc)_2$	$K_2S_2O_8$	DMSO(7 eq.)	CH ₃ CN	N.R
5	$Pd(OAc)_2$	FeCl ₃	DMSO(7 eq.)	CH ₃ CN	N.R
6 ^a	$Pd(OAc)_2$	Ag ₂ O	DMSO(7 eq.)	CH ₃ CN	N.D.
7 ^a	$Pd(OAc)_2$	Ag ₂ CO ₃	DMSO(7 eq.)	CH ₃ CN	N.D.
8^{b}	$Pd(OAc)_2$	Cu(OAc) ₂ + Ag ₂ O	DMSO(7 eq.)	CH ₃ CN	<5
9	$Pd(OAc)_2$	AgOAc	DMSO(7 eq.)	CH ₃ CN	<5
10 ^b	$Pd(OAc)_2$	Cu(OAc) ₂ +BQ	DMSO(7 eq.)	CH ₃ CN	<5

Reaction conditions: 1a(0.2 mmol, 42.4 mg), $Pd(OAc)_2(5 \text{ mol}\%, 0.01 \text{ mmol}, 2.24 \text{ mg})$, Oxidant(2 eq. 0.4 mmol,), 1 mL CH₃CN, 80°C; ^a another trace amount of unkown product was formed. ^b Cu(OAc)₂ (20 mol%), oxidant(2 eq)

A mixture of $Pd(OAc)_2$ (2.24 mg, 0.01 mmol, 5 mol%) and $Cu(OAc)_2$ (79.6 mg, 0.4 mmol, 2 eq.) was dissolved in 1 mL CH₃CN and DMSO (106.4 mg, 1.4 mmol, 7 eq.), **1a** (42.4 mg, 0.2 mmol) was added to the reaction system. The resulting mixture was stirred at 80°C or room temperature until the reaction was completed (monitored by TLC, < 3h). The reaction mixture was filtered and evaporated under reduced pressure and purified by column chromatography (silica gel) to give the pure product **2a**.

(2a) Yield: 86 % ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 7.36 Hz, 6H), 1.25-1.36 (m, 4H), 1.48-1.56 (m, 4H), 2.64 (t, *J* = 7.76 Hz, 4H), 3.82 (s, 6H), 4.10 (s, 6H); ¹³C NMR (100MHz, CDCl₃) δ 13.88, 22.68, 24.56, 32.44, 51.02, 57.51, 91.55, 127.47, 130.62, 162.31, 163.69; HRMS exact mass calcd for (C₂₂H₃₀O₈+H) requires m/z 423.2013, found m/z 423.2024.

(2b) Yield: 70 % ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, *J* = 10.0 Hz, 6H), 1.26-1.38 (m, 10H), 1.44-1.61 (m, 10H), 2.62 (t, *J* = 12.4 Hz, 4H), 4.28 (q, *J* = 9.60 Hz, 4H), 4.43 (q, *J* = 9.60 Hz, 4H); ¹³C NMR (100MHz, CDCl₃) δ 13.94, 14.34, 14.98, 22.77, 24.73, 32.61, 59.65, 67.25, 92.51, 126.65, 130.72, 162.16, 163.43; HRMS exact mass calcd for (C₂₆H₃₈O₈+H) requires m/z 479.2639, found m/z 479.2639.

(2c) Yield: 65 % ¹H NMR (400 MHz, CDCl₃) δ 0.84 (m, 6H), 1.25 (m, 12H), 1.51 (m, 4H), 2.61 (m, 4H), 3.82 (s, 6H), 4.10 (s, 6H); ¹³C NMR (100MHz, CDCl₃) 14.07, 22.66, 24.90, 29.36, 30.29, 31.68, 51.02, 57.51, 91.56, 127.63, 130.59, 162.33, 163.68; HRMS exact mass calcd for (C₂₆H₃₈O₈+H) requires m/z 479.2639, found m/z 479.2642.

(2d) Yield: 89 % ¹H NMR (400 MHz, CDCl₃) δ 1.16 (t, *J* = 7.12 Hz, 6H), 1.33 (t, *J* = 7.04 Hz, 6H), 4.19-4.24 (q, *J* = 7.16 Hz, 4H), 4.25-4.30 (q, *J* = 7.08 Hz, 4H), 6.87-6.96 (m, 6H), 7.23-7.27 (m, 4H); ¹³C NMR (100MHz, CDCl₃) δ 14.12, 14.87, 60.01, 60.45, 67.97, 92.54, 114.43, 120.52, 120.74, 129.32, 132.72, 158.75, 162.34, 162.74; HRMS exact mass calcd for (C₃₂H₃₄O₁₀+H) requires m/z 601.2044, found m/z 601.2043.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

(2e) Yield: 86 % ¹H NMR (400 MHz, CDCl₃) δ 1.85-1.91 (m, 4H), 2.63 (t, *J* = 7.58 Hz, 4H), 2.96 (t, *J* = 7.68 Hz, 4H), 3.78 (s, 6H), 3.97 (s, 6H), 7.10-7.25 (m, 10H); ¹³C NMR (100MHz, CDCl₃) δ 24.47, 31.79, 35.84, 51.03, 57.52, 91.58, 125.73, 126.49, 128.26, 128.39, 130.80, 142.17, 162.29, 163.60; HRMS exact mass calcd for (C₃₂H₃₄O₈+H) requires m/z 547.2326, found m/z 547.2317.

(2f) Yield: 47 % ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, *J* = 7.20 Hz, 6H), 1.25-1.40 (m, 10H), 1.46-1.57 (m, 4H), 2.58 (s, 6H), 2.72 (t, *J* = 7.50 Hz, 4H), 4.28-4.35 (q, *J* = 7.20 Hz, 4H); ¹³C NMR (100MHz, CDCl₃) δ 13.88, 14.30, 14.57, 22.66, 24.03, 32.75, 59.97, 114.04, 124.84, 139.81, 159.32, 164.42; HRMS exact mass calcd for (C₂₄H₃₄O₈+H) requires m/z 419.2428, found m/z 419.2442.

(2g) Yield: 63 % ¹H NMR (400 MHz, CDCl₃) δ 0.90 (t, J = 7.32 Hz, 6H),
1.31-1.37 (m, 4H), 1.47 (t, J = 7.04 Hz, 6H), 1.56-1.60 (m, 4H), 2.48 (t, J = 7.31 Hz, 4H), 4.46-4.51 (q, J = 7.04 Hz, 4H); ¹³C NMR (100MHz, CDCl₃) δ 13.73, 14.79,

22.36, 24.32, 31.44, 68.36, 73.32, 113.29, 126.17, 130.12, 163.73; HRMS exact mass calcd for ($C_{22}H_{28}N_2O_4$ +H) requires m/z 385.2122, found m/z 385.2131.

(2h) Yield: 72 % ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, *J* = 7.28 Hz, 6H), 1.25-1.31 (m, 4H), 1.38-1.44 (m, 10H), 2.59 (t, *J* = 7.06 Hz, 4H), 4.35-4.40 (q, *J* = 7.08 Hz, 4H), 7.48-7.57 (m, 6H), 7.96-7.98 (m, 4H); ¹³C NMR (100MHz, CDCl₃) δ 13.77, 14.82, 22.74, 23.85, 32.70, 68.24, 101.21, 125.70, 126.90, 128.86, 130.58, 132.85, 143.30, 159.13; HRMS exact mass calcd for (C₃₂H₃₈S₂O₈+H) requires m/z 615.2081, found m/z 615.2078.

(2i) Yield: 68 % ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, *J* = 7.40 Hz, 6H), 4.18-4.23 (q, *J* = 7.04 Hz, 4H), 5.11(s, 4H), 6.71-7.95 (m, 20H); ¹³C NMR (100MHz, CDCl₃) δ 14.73, 59.06, 68.86, 101.20, 114.34, 120.24, 121.13, 127.15, 128.84, 129.44, 132.10, 133.00, 142.81, 158.06, 159.66; HRMS exact mass calcd for (C₃₈H₃₄O₁₀S₂+Na) requires m/z 737.1486, found m/z 737.1481.

9

(2j) Yield: 51 % ¹H NMR (400 MHz, CDCl₃) δ 3.60 (s, 6H), 3.73 (s, 6H),
7.19-7.29 (m, 10H); ¹³C NMR (100MHz, CDCl₃) δ 51.00, 57.49, 91.90, 125.48,
127.40, 128.42, 130.05, 131.06, 131.91, 161.84, 163.06; HRMS exact mass calcd for (C₂₆H₂₂O₈+H) requires m/z 463.1387, found m/z 463.1389.

(2k) Yield: 55 % ¹H NMR (400 MHz, CDCl₃) δ 1.41 (t, *J* = 7.08 Hz, 6H), 4.38-4.43 (q, *J* = 7.08 Hz, 4H), 7.23-7.29 (m, 10H); ¹³C NMR (100MHz, CDCl₃) δ 14.72, 68.64, 73.29, 113.00, 127.67, 128.23, 128.58, 128.67, 129.12, 129.18, 164.42; HRMS exact mass calcd for (C₂₆H₂₀N₂O₄+H) requires m/z 425.1496, found m/z 425.1502.

(21) Yield: 57 % ¹H NMR (400 MHz, CDCl₃) δ 1.18 (t, *J* = 7.00 Hz, 6H), 4.38-4.43 (q, *J* = 7.08 Hz, 4H), 7.25-7.49 (m, 16H), 8.14-8.17 (m, 4H); ¹³C NMR (100MHz, CDCl₃) δ 13.98, 62.31, 91.60, 112.74, 123.03, 128.28, 128.84, 128.99, 129.77, 131.92, 132.14, 133.48, 139.63, 166.17; HRMS exact mass calcd for (C₃₆H₃₀S₂O₈+Na) requires m/z 677.1274, found m/z 677.1279.

(**2m**) Yield: 46 % ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 6H), 3.62 (s, 6H), 3.79 (s, 6H), 7.06-7.26 (m, 8H); ¹³C NMR (100MHz, CDCl₃) δ 21.28, 51.01, 57.48, 91.87, 126.19, 128.05, 128.72, 129.84, 131.03, 136.97, 161.85, 163.14; HRMS exact mass calcd for (C₂₈H₂₆O₈+H) requires m/z 491.1700, found m/z 491.1705.

(2n) Yield: 54 % ¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 6H), 3.90 (s, 6H), 6.93 (d, J = 8.44 Hz, 4H), 7.36 (d, J = 8.36 Hz, 4H); ¹³C NMR (100MHz, CDCl₃) δ 51.02, 57.62, 92.02, 114.27, 114.48, 125.31, 127.57, 127.61, 130.88, 131.57, 131.65, 161.03, 162.05, 162.89, 163.48; HRMS exact mass calcd for (C₂₆H₂₀O₈F₂+H) requires m/z 499.1199, found m/z 499.1205.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

(20) Yield: 65 % ¹H NMR (400 MHz, CDCl₃) δ 3.62 (s, 6H), 3.86 (s, 6H), 6.93-7.10 (m, 8H); ¹³C NMR (100MHz, CDCl₃) δ 51.12, 57.72, 121.71, 125.38, 128.85, 130.51, 130.59, 130.65, 131.54, 162.18, 162.81; HRMS exact mass calcd for (C₂₆H₂₀O₈Br₂+H) requires m/z 618.9598, found m/z 419.2442.

Datas of UV and Fluorescence

Normalized spectra of UV and fluorescence of 2a, 2g, 2k, 2m

Solution fluorescence in different concentration (in DCM, upon irradiation at 365nm.)

2a $\Phi_f = 0.019$ in DCM (340nm) 2m $\Phi_f = 0.26$ in DCM (300nm) 2k $\Phi_f = 0.97$ in DCM (300nm) Standard Solution: quinine sulfate in 0.1N sulfuric acid Solid state fluorescene (2g) (upon irradiation at 365nm).

No solid fluorescene for compounds 2k and 2m

10⁻⁵mol/L fluorecense: 2k,2m>>2a,2g

10⁻³mol/L fluorecense: 2a,2g>2k,2m

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

HRMS exact mass calcd for (C $_{22}H_{30}O_8\text{+}H)$ requires m/z 423.2013, found m/z 423.2024

HRMS exact mass calcd for ($C_{24}H_{48}O_8$ +H) requires m/z 479.2639, found m/z

479.2639.

HRMS exact mass calcd for ($C_{26}H_{38}O_8$ +H) requires m/z 479.2639, found m/z

479.2642.

nj Vol Jata Filename	2013-0109-513 -1 2013-0109-513.d	Position InjPosition ACQ Method	0319-1.m 479.2639	Instrument Name SampleType Comment	Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Success 1/9/2013 2:08:58 P
x10 1 +E	SI Scan (0.467	min) Frag=138	5.0V 2013-0109	-s13.d			
2.8	- main la maria interna	479.2642					
2.7						and the second s	
2.6							
2.5							
2.4							
2.3			a manufactor a secondar manufactor				
2.2						in a second of the second second second second second	
2.1		ne francisco and francisco					
2	for a provide some						
1.9							mine and service particular
1.8							man in the second second
1.7							
1.6							
1.5					the second se		
1.4							
1.3				for a second			
1.2	formation from	.f					
1.1		501.2	455				
1						hand the second second second second	
0.9							
0.8	1			have a started		the second se	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.7							
0.6				1			
0.5							
0.4	1						
0.3			1				
0.2							
0.1			1				
			line in the second	. No. 1			

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

HRMS exact mass calcd for (C $_{26}H_{38}O_8$ +H) requires m/z 601.2044, found m/z 601.2043.

HRMS exact mass calcd for (C $_{32}H_{34}O_8$ +H) requires m/z 547.2326, found m/z

547.2317.

HRMS exact mass calcd for (C₂₄H₃₄O₈+H) requires m/z 419.2428, found m/z

419.2442.

HRMS exact mass calcd for (C_{22}H_{28}N_2O_4+H) requires m/z 385.2122, found m/z 385.2131

HRMS exact mass calcd for (C $_{32}H_{38}S_2O_8\text{+}H)$ requires m/z 615.2081, found m/z

615.2078.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

HRMS exact mass calcd

for (C₃₈H₃₄O₁₀S₂+Na)

requires m/z 737.1486, found m/z 737.1481.

HRMS exact mass calcd for ($C_{26}H_{22}O_8$ +H) requires m/z 463.1387, found m/z

463.1389.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

HRMS exact mass calcd for ($C_{26}H_{20}N_2O_4$ +H) requires m/z 425.1496, found m/z

425.1502.

HRMS exact mass calcd for ($C_{36}H_{30}S_2O_8$ +Na) requires m/z 677.1274, found m/z 677.1279.

HRMS exact mass calcd for ($C_{28}H_{26}O_8$ +H) requires m/z 491.1700, found m/z 491.1705.

42

HRMS exact mass calcd for ($C_{26}H_{20}O_8F_2$ +H) requires m/z 499.1199, found m/z 499.1205

HRMS exact mass calcd for (C₂₆H₂₀O₈Br₂+H) requires m/z 618.9598, found m/z

618.9614.

