Supporting Information

Palladium-Catalyzed Oxidative Direct C-H/C-H Cross Coupling of Anilides with β-Keto Esters

Wai-Wing Chan, Zhongyuan Zhou and Wing-Yiu Yu*

State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Email: <u>wing-yiu.yu@polyu.edu.hk</u>

Table of Content

		Page
1	General Experimental Section	S2
2	General Procedure and Physical Characterization	S2
3	Procedure for Cyclization Reaction of $2g$ and $2h$	S11
4	KIE Experiment	S12
5	Synthesis of Cyclopalladated Complex Pd-1r	S13
6	Stoichiometric Reaction of Pd-1r and Dimethyl Malonate	S13
7	References	S14
8	¹ H and ¹³ C NMR Spectra	S15
9	X-ray Crystallographic Data of 2c	S36

1. <u>General Experimental Section</u>

All the reactions were performed under a nitrogen atmosphere. All the solvents were freshly distilled and dried according to the standard methods prior to use. Anilines, 1,3-dicarbonyl compounds, $Pd(OAc)_2$, $Mn(OAc)_3 \cdot 2H_2O$ and trifluoroacetic acid (TFA) were obtained from commercial source. *N*-pivalanilides and *N*-acetanilides were prepared by the coupling reaction of corresponding anilines with pivaloyl or acetyl chlorides.¹

Thin layer chromatography was performed on silica gel plates. Flash column chromatography was performed on silica gel (Merck, 230-400 mesh). ¹H and ¹³C NMR spectra were recorded on a Bruker DPX-400 MHz spectrometer. The chemical shift (δ) values are given in ppm and are referenced to residual solvent peaks, carbon multiplicities were determined by DEPT-135 and DEPT-90 experiments. Coupling constants (*J*) were reported in hertz (Hz). Multiplicity abbreviations are: s = singlet, d= doublet, t = triplet, q = quartet, m = multiplet, dt = doublet of triplets, td = triplet of doublets, and br = broad. Mass spectra and high resolution mass spectra (HRMS) were obtained on a VG MICROMASS Fison VG platform, a Finnigan Model Mat 95 ST instrument, or a Bruker APEX 47e FT-ICR mass spectrometer. Infra-red spectra were obtained by a Bruker Vector 22 FT-IR spectrometer. Optical rotations were measured on a BUCHI Melting Point B-545 machine. X-ray crystallographic study was preformed by a Brüker CCD area detector diffractometer.

2. General Procedure and Physical Characterization

A 10 mL Schlenk test-tube (with a Quick-fit stopper and side arm) equipped with a magnetic stir bar was charged with the anilides (0.2 mmol), Pd(OAc)₂ (4.5 mg, 10 mol%) and Mn(OAc)₃·2H₂O (0.0268 g, 50 mol%). The Schlenk tube was evacuated and refilled with nitrogen for three times. Then the glass stopper was replaced by rubber septa. Dry toluene (1.5 mL), 1,3-dicarbonyl compound (0.6 mmol) and TFA (46.1 μ L, 0.6 mmol) was added under a flow of nitrogen. The reaction mixture was stirred at room temperature. After 4 h, a batch of reagents [Mn(OAc)₃·2H₂O (50 mol%), 1,3-dicarbonyl compound (0.6 mmol)] was added to the

mixture. The batchwise addition was preformed again after further 4 h. The reaction was subsequently allowed to stir for overnight. Then the reaction mixture was filtered over a plug of Celite® and then concentrated. The residue was purified by flash chromatography to give the desired product.

Dimethyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)malonate (2a). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as colorless oil (85% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.85 (s, 1H, NH), 7.55 (s, 1H, ArH), 6.96 (s, 1H, ArH), 4.58 (s, 1H, CH), 3.73 (s, 6H, 2CH₃), 2.24 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 1.29 (s, 9H, 3 CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 177.6 (C=O), 170.0 (C=O), 138.3 (C), 134.7 (C), 134.2 (C), 132.8 (CH), 128.0 (CH), 123.5 (C), 56.8 (CH₃), 53.4 (CH₃), 39.8 (C), 27.9 (CH), 19.9 (CH₃), 19.5 (CH₃). IR (neat, cm⁻¹): 3348.2, 2971.1, 2864.3, 1739.6, 1634.5, 1571.3, 1526.7, 1150.0. HRMS (ESI): calcd. for C₁₈H₂₅NO₅H⁺: 336.1811, found: 336.1802.

Diethyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)malonate (2b). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as colorless oil (75% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.91 (s, 1H, NH), 7.56 (s, 1H, ArH), 6.95 (s, 1H, ArH), 4.53 (s, 1H, CH), 4.27 – 4.19 (m, 2H, CH₂), 4.17 – 4.09 (m, 2H, CH₂), 2.23 (s, 3H, CH₃), 2.20 (s, 3H, CH₃), 1.28 (s, 9H, 3CH₃), 1.24 – 1.21 (m, 6H, 2CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 177.5 (C=O), 169.6 (C=O), 138.0 (C), 134.8 (C), 133.8 (C), 132.9 (CH), 127.8 (CH), 123.5 (C), 62.5 (CH₂), 57.2 (CH₃), 39.8 (C), 27.8 (CH₃), 19.9 (CH₃), 19.5 (CH₃), 14.3 (CH₃). IR (neat, cm⁻¹): 3353.2, 2965.9, 2869.7, 1738.6, 1721.3, 1680.8, 1579.12, 1518.5, 1152.2. HRMS (ESI): calcd. for C₂₀H₂₉NO₅H⁺: 364.2124, found: 364.2137.

Di-*tert*-**butyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)malonate (2c)**. Eluent: 80% *n*-hexane / 20% acetone. The product was obtained as white solid (81% yield), mp

130 – 131 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.96 (s, 1H, NH), 7.64 (s, 1H, ArH), 6.93 (s, 1H, ArH), 4.39 (s, 1H, CH), 2.22 (s, 3H, CH₃), 2.20 (s, 3H, CH₃), 1.43 (s, 18H, 2 x 3CH₃), 1.29 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 177.4 (C=O), 168.7 (C=O), 137.5 (C), 134.9 (C), 133.3 (CH), 132.9 (C), 126.8 (CH), 123.6 (C), 83.0 (C), 58.9 (CH), 39.9 (C), 28.2 (CH₃), 27.9 (CH₃), 19.9 (CH₃), 19.5 (CH₃). IR (neat, cm⁻¹): 3362.3, 2964.5, 2850.5, 1742.5, 1646.5, 1529.3, 1433.3, 1151.2. HRMS (ESI): calcd. for C₂₄H₃₇NO₅Na⁺: 442.2569, found: 442.2562.

Dibenzyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)malonate (2d). Eluent: 50% *n*-hexane / 50% diethyl ether. The product was obtained as colorless oil (94% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.79 (s, 1H, NH), 7.58 (s, 1H, ArH), 7.33 – 7.29 (m, 10H), 6.96 (s, 1H, ArH), 5.26 – 5.23 (d, *J* = 12.0 Hz, 2H, CH₂Ph), 5.09 – 5.06 (d, *J* = 12.0 Hz, 2H, CH₂Ph), 4.66 (s, 1H, CH), 2.54 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 1.27 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 177.8 (C=O), 169.2 (C=O), 138.2 (C), 135.3 (C), 134.7 (C), 134.2 (C), 132.9 (CH), 128.9 (CH), 128.8 (CH), 128.7 (CH), 127.9 (CH), 123.4 (C), 68.2 (CH₂), 56.9 (CH), 39.8 (C), 27.8 (CH₃), 19.9 (CH₃), 19.5 (CH₃). IR (neat, cm⁻¹): 3361.2, 2961.3, 2866.5, 1739.1, 1676.5, 1517.7, 1455.6, 1148.0. HRMS (ESI): calcd. for C₃₀H₃₃NO₅H⁺: 488.2437, found: 488.2461.

1-(3-Chlorobenzyl) 3-methyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)malonate (2e). Eluent: 50% *n*-hexane / 50% diethyl ether. The product was obtained as colorless oil (93% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.74 (s, 1H, NH), 7.54 (s, 1H, ArH), 7.28 – 7.26 (m, 3H, ArH), 7.18 – 7.16 (m, 1H, ArH), 6.97 (s, 1H, ArH), 5.23 – 5.20 (d, J = 12.0 Hz, 1H, CH₂Ph), 5.05 – 5.02 (d, J = 12.0 Hz, 1H, CH₂Ph), 4.63 (s, 1H, CH), 3.72 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 1.27 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 177.6 (C=O), 169.7 (C=O), 169.3 (C=O), 138.3 (C), 137.3 (C), 134.8 (C), 134.7 (C), 134.3 (C), 132.8 (CH), 130.3 (CH), 129.0 (CH), 128.6 (CH), 128.1 (CH), 126.7 (CH), 123.4, 67.2 (CH₂), 56.7 (CH), 53.4 (CH₃), 39.8 (C), 27.8 (CH₃), 19.9 (CH₃), 19.5 (CH₃). IR (neat, cm⁻¹): 3367.3, 2958.4, 2866.5, 1742.5, 1676.7, 1578.5, 1517.5, 1150.8. HRMS (ESI): calcd. for C₂₄H₂₈NO₅ClH⁺: 446.1734, found: 446.1727.

Diethyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)-2-phenylmalonate (**2f**). Eluent: 70% *n*-hexane / 30% diethyl ether. The product was obtained as colorless oil (52% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.62 (s, 1H, ArH), 7.42 – 7.40 (m, 3H, ArH & NH), 7.31 – 7.30 (m, 3H, ArH), 7.23 (s, 1H, ArH), 4.26 – 4.19 (m, 4H, 2CH₂), 2.26 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 1.20 – 1.17 (m, 2 x 3H, 2CH₃), 0.90 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 176.5 (C=O), 170.4 (C=O), 137.6 (C), 136.9 (C), 134.4 (C), 133.4 (C), 131.2 (CH), 129.6 (CH), 128.4 (CH), 127.7 (CH), 126.8 (CH), 67.8 (C), 62.6 (CH₂), 39.6 (C), 27.3 (CH₃), 20.0 (CH₃), 19.8 (CH₃), 14.1 (CH₃). IR (neat, cm⁻¹): 3421.4, 2977.3, 2866.5, 1729.32, 1685.3, 1517.0, 1448.3, 1242.2, 1161.8. HRMS (ESI): calcd. for C₂₆H₃₃NO₅H⁺: 440.2437, found: 440.2444.

Benzyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)-3-oxobutanoate (2g). The crude was purified by column chromatography twice. Eluent for the 1st: 70% *n*-hexane / 30% ethyl acetate. Eluent for the 2nd: 50% *n*-hexane / 50% diethyl ether. The product was obtained as colorless oil (69% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.22 (s, 1H, NH), 7.58 (s, 1H, ArH), 7.37 (m, 5H, ArH), 6.98 (s, 1H, ArH), 5.32 (s, 2H, CH₂Ph), 4.57 (s, 1H, CH), 2.24 (s, 3H, CH₃), 2.13 (s, 3H, CH₃), 2.09 (s, 3H, CH₃), 1.15 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 205.3 (C=O), 177.4 (C=O), 170.3 (C=O), 138.9 (C), 134.6 (C), 134.1 (C), 133.8 (C), 129.4 (CH), 129.2 (CH), 128.5 (CH), 127.5 (CH), 126.1 (C), 84.8 (C), 69.1 (CH₂), 39.7 (C), 27.5 (CH₃), 25.9 (CH₃), 19.9 (CH₃), 19.7 (CH₃). IR (neat, cm⁻¹): 3372.3, 3293.9, 2961.5, 2917.1, 1725.4, 1655.1, 1571.5, 1260.5. HRMS (ESI): calcd. for C₂₄H₂₉NO₄H⁺: 396.2175, found: 396.2171.

Ethyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)-3-oxobutanoate (2h). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as colorless oil (61% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.36 (s, 1H, NH), 7.59 (s, 1H, ArH), 7.23 (s, 1H, ArH), 4.57 (s, 1H, CH), 4.40 – 4.33 (m, 2H, CO₂CH₂), 2.25 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.11 (s, 3H, COCH₃), 1.36 – 1.33 (t, *J* = 7.2 Hz, 3H, CH₃), 1.23 (s, 9H, 3CH₃).

¹³C NMR (100 MHz, CDCl₃): δ_{C} 205.3 (C=O), 177.4 (C=O), 170.5 (C=O), 138.8 (C), 134.1 (C), 133.8 (C), 128.3 (CH), 127.5 (CH), 126.2 (C), 84.7 (C), 63.7 (CH₂), 39.8 (CH), 27.6 (CH₃), 25.7 (CH₃), 19.9 (CH₃), 19.8 (CH₃), 14.4 (CH₃). IR (neat, cm⁻¹): 3345.3, 3221.1, 2961.5, 2900.3, 1608.4, 1634.1, 1491.5, 1232.5. HRMS (ESI): calcd. for C₁₉H₂₇NO₄H⁺: 333.4256, found: 333.4260.

Ethyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)-3-oxo-3-phenylpropanoate (2i). Eluent: 50% *n*-hexane / 50% diethyl ether. The product was obtained as white solid (48% yield), mp 157 – 159 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 13.9 (s, 0.01, enol OH), 8.60 (s, 1H, NH), 7.87 – 7.85 (d, J = 8.0 Hz, 2H, ArH), 7.53 – 7.48 (m, 2H, ArH), 7.39 – 7.35 (m, 2H, ArH), 7.04 (s, 1H, ArH), 5.47 (s, 1H, CH), 4.31 – 4.21 (m, 2H, CH₂), 2.21 (s, 3H, CH₃), 2.20 (s, 3H, CH₃), 1.28 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 195.3 (C=O), 177.4 (C=O), 170.5 (C=O), 138.1 (C), 135.8 (C), 135.1 (C), 134.4 (C), 134.0 (CH), 132.7 (CH), 129.3 (CH), 129.0 (CH), 127.9 (CH), 124.4 (C), 62.4 (CH₂), 60.3 (CH₃), 39.8 (C), 27.7 (CH₃), 19.9 (CH₃), 19.6 (CH₃), 14.4 (CH₃). IR (neat, cm⁻¹): 3379.3, 2977.5, 2866.5, 1725.0, 1676.2, 1578.0, 1518.2, 1182.7. HRMS (ESI): calcd. for C₂₄H₂₉NO₄H⁺: 396.2175, found: 396.2177.

Methyl 3-(4-bromophenyl)-2-(4,5-dimethyl-2-(pivalamido)phenyl)-3-oxopropanoate (2j). Eluent: 50% *n*-hexane / 50% diethyl ether. The product was obtained as white solid (51% yield), mp 165 – 167 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.42 (s, 1H, NH), 7.71 – 7.69 (d, *J* = 8 Hz, 2H, ArH), 7.65 (s, 1H, ArH), 7.44 – 7.42 (d, *J* = 8 Hz, 2H, ArH), 7.18 (s, 1H, ArH), 4.88 (s, 1H, CH), 3.87 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.20 (s, 3H, CH₃), 1.18 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 194.9 (C=O), 176.7 (C=O), 172.3 (C=O), 138.9 (C), 134.2 (C), 133.7 (C), 132.4 (CH), 131.9 (CH), 131.8 (C), 129.6 (C), 128.1 (CH), 126.9 (CH), 126.1 (C), 84.6 (C), 54.5 (CH₃), 39.8 (C), 27.6 (CH₃), 20.0 (CH₃), 19.8 (CH₃). IR (neat, cm⁻¹): 3401.9, 3251.6, 2958.8, 2917.2, 1745.8, 1717.9, 1686.8, 1661.1, 1584.5, 1518.4, 1248.9, 1177.9. HRMS (ESI): calcd. for C₂₃H₂₅BrNO₄H⁺: 459.1045, found: 459.1041.

Methyl 3-(3-(Trifluoromethyl)phenyl)-2-(4,5-dimethyl-2-(pivalamido)phenyl)-

3-oxopropanoate (**2k**). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as colorless oil (42% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.35 (s, 1H, NH), 8.16 (s, 1H, ArH), 7.92 – 7.90 (d, *J* = 8.0 Hz, 1H, ArH), 7.72 – 7.70 (d, *J* = 8.0 Hz, 1H, ArH), 7.58 (s, 1H, ArH), 7.41 – 7.37 (t, *J* = 8.0 Hz, 1H, ArH), 4.82 (s, 1H, CH), 3.92 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 1.17 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 194.6 (C=O), 176.7 (C=O), 172.1 (C=O), 139.1 (C), 134.1 (CH), 134.0 (C), 133.6 (CH), 130.7 (q, CF₃), 129.0 (CH), 127.8 (C), 127.6 (CH), 127.5 (CH), 127.2 (CH), 126.2 (C), 125.2 (C), 122.5 (C), 84.4 (CH), 54.6 (CH₃), 39.8 (C), 27.6 (CH₃), 19.9 (CH₃), 19.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): -63.1 (CF₃). IR (neat, cm⁻¹): 3366.9, 2960.1, 2920.3, 1745.1, 1686.4, 1515.5, 1453.5, 1332.0, 1227.9, 1130.5. HRMS (ESI): calcd. for C₂₄H₂₄NO₄F₃H⁺: 448.1736, found: 448.1739.

Methyl 3-(4-methoxyphenyl)-2-(4,5-dimethyl-2-(pivalamido)phenyl)-3-oxopropanoate (2l). The crude was purified by column chromatography twice. Eluent for the 1st: 70% *n*-hexane / 30% ethyl acetate. Eluent for the 2nd: 70% *n*-hexane / 30% acetone. The product was obtained as colorless oil (34% yield) and existed in keto:enol (~3:1) form at room temperature, which could not be separated by the column. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 13.87 (s, 0.04, enol OH), 8.64 (s, 1H, NH, keto- form), 8.47 (s, 0.34H, NH, enol- form), 7.87 – 7.84 (m, 2.93H, ArH, mix of keto- and enol- form) 7.71 (s, 1H, ArH, enol- form), 7.53 (s, 1H, ArH, keto- form), 7.18 (s, 1H, ArH, enol- form), 7.02 (s, 1H, ArH, keto- form), 6.85 – 6.83 (d, *J* = 8.0 Hz, 2.15H, ArH, keto- form), 6.78 – 6.76 (d, *J* = 8.0 Hz, 0.78H, ArH, enol- form), 5.46 (s, 1H, CH, keto-form), 3.79 (s, 1.13H, OCH₃, enol- form), 3.76 (s, 3H, OCH₃, keto- form), 2.24 (s, 1.10H, CH₃, enol- form), 2.20 (s, 6H, 2CH₃, keto- form), 2.19 (s, 1.16H, CH₃, enol- form), 1.28 (s, 9H, 3CH₃, keto- form), 1.19 (s, 3.34H, 3CH₃, keto- form). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 194.5, 193.8, 177.6, 176.7, 172.6,

170.9, 164.4, 164.3, 138.6, 138.0, 135.1, 134.4, 134.3, 133.6, 133.3, 132.6, 131.8, 131.0, 128.6, 128.4, 127.9, 126.6, 126.5, 125.9, 124.8, 114.3, 113.8, 84.7, 59.6, 55.8, 55.7, 54.3, 53.2, 39.8, 27.8, 27.6, 20.0, 19.9, 19.8, 19.6. Totally 40 peaks were found in ¹³C NMR analysis; however due to the high complexity of spectrum the signal cannot be assigned. IR (neat, cm⁻¹): 3369.1, 2958.3, 2866.5, 1736.3, 1672.3, 1600.2, 1513.2, 1259.7, 1171.6. HRMS (ESI): calcd. for $C_{24}H_{28}NO_5Na^+$: 434.1943, found: 434.1942.

Methyl 2-(4,5-dimethyl-2-(pivalamido)phenyl)-3-oxo-3-(thiophen-2-yl)propaneate (2m). The crude was purified by column chromatography twice. Eluent for the 1st: 70% *n*-hexane / 30% ethyl acetate. Eluent for the 2^{nd} : 70% *n*-hexane / 30% acetone. The product was obtained as white solid (20% yield), mp 163 - 165 °C, and existed in keto:enol (~4:1) form at room temperature, which could not be separated by the column..¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 13.76 (s, 0.21H, enol OH), 8.78 (s, 1H, NH, keto- from), 8.15 (s, 1H, NH, enol- form), 7.61 - 7.60 (d, J = 4.0 Hz, 1H, thiophen-H, keto- form), 7.57 (s, 1H, ArH, keto- form), 7.55 - 7.54 (d, J = 4.0 Hz, 1H, thiophen-H, keto- form), 7.38 – 7.36 (m, 0.44H, thiophen-H & ArH, enol- form), 7.11 – 7.10 (d, J = 4.0 Hz, 0.23H, thiophen-H, enol- form), 7.06 (s, 1H, ArH, keto- form), 7.03 – 7.01 (t, J = 4.0 Hz, 1H, thiophen-H, keto- form), 6.93 (s, 0.22 H, ArH, enol- form), 6.91 -6.89 (t, J = 4.0 Hz, 0.23H, thiophen-H, enol- form), 5.28 (s, 1H, CH, keto- form), 3.78 (s, 3H, CH₃, keto- form), 3.74 (s, 0.74H, CH₃, enol- form), 2.33 (s, 0.69H, CH₃, enolform), 2.24 (s, 6H, 2CH₃, keto- form), 2.22 (s, 0.78H, CH₃, enol- form), 1.26 (s, 9H, 3CH₃, keto- form), 1.10 (s, 2.09H, 3CH₃, enol- form). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 188.0 (C=O), 177.6 (C=O), 170.5 (C=O), 142.3 (C), 138.4 (C), 135.5 (CH), 135.2 (C), 134.4 (CH), 134.3 (C), 132.8 (CH), 128.7 (CH), 128.1 (CH), 124.4 (C), 61.1 (CH), 53.3 (CH₃), 39.8 (C), 27.8 (CH₃), 19.9 (CH₃), 19.6 (CH₃). In the ¹³C NMR analysis, 19 peaks were identified and assigned for the keto- form. Due to the low concentration of product with enol- form, its ¹³C NMR could not be clarified. IR (neat, cm⁻¹): 3347.8, 2967.8, 2913.9, 1735.5, 1655.1, 1516.9, 1416.9, 1173.0. HRMS (ESI): calcd. for C₂₁H₂₅NO₄SH⁺: 388.1583, found: 388.1570.

Dimethyl 2-(2-(pivalamido)phenyl)malonate (**2n**). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as yellow oil (47% yield). ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.01 (s, 1H, NH), 7.81 – 7.79 (d, *J* = 8.0 Hz, 1H, ArH), 7.38 – 7.34 (t, *J* = 8.0 Hz, 1H, ArH), 7.22 – 7.20 (d, *J* = 8.0 Hz, 1H, ArH), 7.15 – 7.11 (t, *J* = 8.0 Hz, 1H, ArH), 4.65 (s, 1H, CH), 3.74 (s, 6H, 2CH₃), 1.30 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 177.7 (C=O), 169.8 (C=O), 137.4 (C), 131.9 (CH), 129.6 (CH), 126.9 (CH), 126.1 (C), 125.6 (CH), 57.2 (CH₃), 53.4 (CH₃), 39.9 (CH₃), 27.8 (CH₃). IR (neat, cm⁻¹): 3350.2, 2960.4, 1742.5, 1721.9, 1677.9, 1566.2, 1526.8, 1477.9, 1305.7, 1150.5. HRMS (ESI): calcd. for C₁₆H₂₁NO₅H⁺: 308.1498, found: 308.1483.

Dimethyl 2-(4-phenyl-2-(pivalamido)phenyl)malonate (**2o**). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as white solid (63% yield), mp 135 – 136 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.11 (s, 1H, NH), 8.10 (s, 1H, ArH), 7.62 – 7.60 (d, *J* = 8.0 Hz, 2H, ArH), 7.43 – 7.39 (t, *J* = 8.0 Hz, 2H, ArH), 7.37 – 7.33 (t, *J* = 8.0 Hz, 1H, ArH), 7.28 – 7.26 (d, *J* = 8.0 Hz, 2H, ArH), 4.70 (s, 1H, CH), 3.78 (s, 6H, 2CH₃), 1.33 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 177.8 (C=O), 169.8 (C=O), 142.8 (C), 140.4 (C), 137.7 (C), 132.3 (CH), 129.0 (CH), 128.0 (CH), 127.7 (CH), 125.5 (CH), 124.7 (C), 124.1 (CH), 56.9 (CH), 53.6 (CH₃), 40.0 (CH₃), 27.9 (CH₃). IR (neat, cm⁻¹): 3369.9, 2961.5, 2875.9, 1735.9, 1723.7, 1682.8, 1592.0, 1517.2, 1480.2, 1167.2. HRMS (ESI): calcd. for C₂₂H₂₅NO₅H⁺: 384.1811, found: 384.1796.

Dimethyl 2-(2-(pivalamido)-4-(pivaloyloxy)phenyl)malonate (2p). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as white solid (25% yield), mp 126 – 128 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 9,18 (s, 1H, NH), 7.66 (s, 1H, ArH), 7.20 – 7.18 (d, *J* = 8.0 Hz, 1H, ArH), 6.88 – 6.86 (d, *J* = 8.0 Hz, 1H, ArH), 4.64 (s, 1H, CH), 3.74 (s, 6H, 2CH₃), 1.33 (s, 9H, 3CH₃), 1.29 (s, 9H, 3CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 177.7 (C=O), 177.1 (C=O), 169.6 (CH), 151.9 (C), 138.6 (C),

132.6 (CH), 122.7 (C), 119.4 (CH), 118.6 (CH), 56.8 (CH), 53.5 (CH₃), 40.0 (C), 39.5 (C), 27.8 (CH₃), 27.5 (CH₃). IR (neat, cm⁻¹): 3320.3, 2953.2, 2912.2, 1740.5, 1710.2, 1670.2, 1541.4, 1482.3, 1146.3. HRMS (ESI): calcd. for $C_{21}H_{28}NO_7H^+$: 430.1842, found: 430.1833.

Dimethyl 2-(2-(benzamido)-4-methylphenyl)malonate (2q). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as white solid (60% yield), mp 133 – 135 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.69 (s, 1H, NH), 8.00 – 7.98 (d, *J* = 8.0 Hz, 2H, ArH), 7.54 (m, 3H, ArH), 7.16 – 7.14 (d, *J* = 8.0 Hz, 1H, ArH), 7.02 – 7.00 (d, *J* = 8.0 Hz, 1H, ArH), 4.68 (s, 1H, CH), 3.68 (s, 6H, 2CH₃), 2.39 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.2 (C=O), 165.8 (C=O), 140.0 (C), 136.8 (C), 134.4 (C), 132.2 (CH), 131.7 (CH), 129.1 (CH), 127.8 (CH), 127.6 (CH), 126.9 (CH), 123.8 (C), 56.9 (CH), 53.6 (CH₃), 21.6 (CH₃). IR (neat, cm⁻¹): 3325.6, 2948.8, 2926.7, 1741.4, 1713.2, 1663.3, 1534.5, 1479.3, 1156.3. HRMS (ESI): calcd. for C₁₉H₁₉NO₅H⁺: 342.1341, found: 342.1330.

Dimethyl 2-(2-acetamido-4-methylphenyl)malonate (2r). Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as brown solid (51% yield), mp 139 – 140 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.7 (s, 1H, NH), 7.51 (s, 1H, ArH), 7.11 – 7.09 (d, J = 8.0 Hz, 1H, ArH), 6.98 – 6.96 (d, J = 8.0 Hz, 1H, ArH), 4.61 (s, 1H, CH), 3.74 (s, 6H, 2CH₃), 2.34 (s, 3H, CH₃), 2.12 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.1 (C=O), 169.2 (C=O), 140.0 (C), 136.5 (C), 131.6 (CH), 127.8 (CH), 127.0 (CH), 123.7 (C), 56.6 (CH), 53.5 (CH₃), 24.3 (CH₃), 21.6 (CH₃). IR (neat, cm⁻¹): 3235.5, 2955.2, 1760.9, 1744.2, 1661.3, 1582.3, 1298.4, 1149.7. HRMS (ESI): calcd. for C₁₄H₁₇NO₅H⁺: 280.1185, found: 280.1175.

Dimethyl 2-(2-acetamido-4-ethoxyphenyl)malonate (2s). Eluent: 50% *n*-hexane / 50% ethyl acetate. The product was obtained as pale yellow solid (48% yield), mp 121 – 122 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.9 (s, 1H, NH), 7.32 (s, 1H, ArH),

7.10 – 7.08 (d, J = 8.0 Hz, 1H, ArH), 6.70 – 6.68 (d, J = 8.0 Hz, 1H, ArH), 4.58 (s, 1H, CH), 4.05 – 4.00 (q, J = 6.8 Hz, 2H, OCH₂), 3.75 (s, 6H, 2CH₃), 2.14 (s, 3H, CH₃), 1.41 – 1.37 (t, J = 6.8 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 170.3 (C=O), 160.0 (C=O), 137.7 (C), 132.5 (CH), 117.9 (C), 112.8 (CH), 112.4 (CH), 64.0 (CH₂), 56.4 (CH), 53.5 (CH₃), 24.3 (CH₃), 15.0 (CH₃). IR (neat, cm⁻¹): 3183.1, 3135.6, 3002.6, 1749.5, 1734.2, 1653.9, 1501.8, 1195.8, 1157.5. HRMS (ESI): calcd. for C₁₅H₁₉NO₆H⁺: 310.1291, found: 310.1283.

3. Procedure for Cyclization Reaction of 2g and 2h

To a solution of 2g or 2h (0.2 mmol) in EtOH (5 mL), conc. HCl solution (0.1 mL) was added and the mixture was stirred at reflux for 0.5 h. Then the reaction was cooled to room temperature and concentrated. The residue was diluted with ethyl acetate (10 mL). The mixture was washed with saturated sodium bicarbonate solution, dried with Na₂SO₄ and concentrated under reduced pressure. The residue was then purified by flash column chromatography to give the free indole **3**.

Benzyl 2-(ethoxymethyl)-5,6-dimethyl-1H-indole-3-carboxylate (3g). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as pale yellow solid (73% yield), mp 120 – 123 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.98 (br, s, 1H, NH), 7.91 (s, 1H, ArH), 7.52 – 7.50 (d, *J* = 8.0 Hz, 2H, ArH), 7.43 – 7.33 (m, 3H, ArH), 7.16 (s, 1H, ArH), 5.42 (s, 2H, CH₂), 5.05 (s, 2H, CH₂), 3.71 – 3.66 (q, *J* = 6.8 Hz, 2H, OCH₂), 2.37 (s, 6H, 3CH₃), 1.33 – 1.29 (t, *J* = 6.8 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 165.8 (C=O), 144.7 (C), 137.4 (C), 133.8 (C), 131.9 (C), 131.0 (C), 128.9 (CH), 128.3 (CH), 125.7 (C), 121.9 (CH), 111.9 (CH), 102.5 (C), 67.3 (CH₂), 66.5 (CH₂), 65.7 (CH₂), 20.7 (CH₃), 20.6 (CH₃), 15.6 (CH₃). IR (KBr, cm⁻¹): 3102.1, 2891.6, 1782.3, 1646.1, 1598.2, 1390.2. HRMS (ESI): calcd. for C₂₁H₂₃NO₃Na⁺: 360.1576, found: 360.1570.

Ethyl 2-(ethoxymethyl)-5,6-dimethyl-1H-indole-3-carboxylate (3h). Eluent: 70% *n*-hexane / 30% ethyl acetate. The product was obtained as white solid (69% yield), mp 113 – 115 °C. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.90 (br, s, 1H, NH), 7.87 (s, 1H,

ArH), 7.15 (s, 1H, ArH), 5.05 (s, 2H, CH₂), 4.42 – 4.36 (q, J = 6.8 Hz, 2H, OCH₂), 3.72 – 3.67 (q, J = 6.8 Hz, 2H, OCH₂), 2.38 (s, 3H, CH₃), 2.36 (s, 3H, CH₃), 1.46 – 1.43 (t, J = 6.8 Hz, 3H, CH₃), 1.33 – 1.30 (t, J = 6.8 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 166.2 (C=O), 144.3 (C), 133.8 (C), 131.9 (C), 130.9 (C), 125.7 (C), 121.8 (CH), 111.8 (CH), 102.8 (C), 67.3 (CH₂), 66.4 (CH₂), 59.9 (CH₂), 20.7 (CH₃), 20.6 (CH₃), 15.6 (CH₃), 15.0 (CH₃). IR (neat, cm⁻¹): 3012.1, 2953.6, 1713.4, 1604.1, 1451.2, 1392.1. HRMS (ESI): calcd. for C₁₆H₂₁NO₃Na⁺: 298.1419, found: 298.1414.

4. KIE Experiment

Intermolecular competitive experiment was designed to determine the primary KIE $(k_{\rm H}/k_{\rm D})$ value of the Pd-catalyzed arene C-H functionalizations.

To a mixture of **1n** (0.1 mmol), **1n**- d_5 (0.1 mmol), Pd(OAc)₂ (4.5 mg, 10 mol%) and Mn(OAc)₃·2H₂O (0.0268 g, 50 mol%), dry toluene (1.5 mL), dimethyl malonate (0.6 mmol) and TFA (46.1 µL, 0.6 mmol) was added under a N₂ atmosphere. The mixture was stirred at room temperature. After 4 h, a batch of reagents [Mn(OAc)₃·2H₂O (50 mol%), dimethyl malonate (0.6 mmol), TFA (0.6 mmol)] was added to the mixture and the reaction was stirred for further 4 h. Then the reaction mixture was filtered over a plug of Celite® and then concentrated. The substrate conversion of **1n** and **1n**- d_5 was determined by ¹H NMR analysis using CH₂Br₂ as the internal standard. The KIE values were calculated by the ratio of substrate conversions of **1n** and **1n**- d_5 . The KIE experiment was repeated three times and the average value ($k_{\rm H}/k_{\rm D} = 3.3$) was obtained.

Calculation of KIE value:

k	$TF - \frac{k_H}{k_H} -$	% conv. of 1n
1	k_D	% conv. of $(1n - d_5)$
	run	KIE value
	1	3.43
	2	3.21
	3	3.28
	Average	3.31

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

5. <u>Synthesis of Cyclopalladated Complex Pd-1r</u>

The cyclopalladated complex was prepared according to the literature.² A 25 mL Schlenk test-tube (with a Quick-fit stopper and side arm) was charged with $[Pd(OAc)_2]$ (0.0224g, 0.1 mmol), *N*-(*m*-tolyl)acetamide (**1r**, 0.0149 g, 0.1 mmol), TFA (0.0137g, 0.12 mmol). The Schlenk tube was evacuated and refilled with nitrogen for three times. Then the glass stopper was replaced by rubber septa. Dry DCM (5 mL), and TFA (0.0137g, 0.12 mmol) was added under a flow of nitrogen. The mixture was stirred at 40 °C for 3 h. The solution was then concentrated under reduced pressure and the residue was suspended in *n*-hexanes (5 mL). The suspension was filtered through Celite® and washed with *n*-hexanes (3 × 2 mL). The residue was then washed with DCM (5 mL), and the filtrate solution was collected and concentrated under reduced pressure to afford the cyclopalladated complex **Pd-1r** as a yellow solid (61% yield).

6. Stoichiometric Reaction of Pd-1r and Dimethyl Malonate

A 10 mL Schlenk test-tube was charged with **Pd-1r** (0.05 mmol) and $Mn(OAc)_3 \cdot 2H_2O$ (0.0268 g, 50 mol%). The Schlenk tube was evacuated and refilled with nitrogen for three times. Then the glass stopper was replaced by rubber septa. Dry toluene (1.5 mL), dimethyl malonate (0.6 mmol) and TFA (46.1 µL, 0.6 mmol) was added under a flow of nitrogen. The reaction mixture was stirred at room temperature. After 4 h, a batch of reagents [Mn(OAc)_3 \cdot 2H_2O (50 mol%), 1,3-dicarbonyl compound (0.6 mmol), TFA (0.6 mmol)] was added to the mixture. The batchwise addition was preformed again after further 4 h. The reaction was

subsequently allowed to stir for overnight. Then the reaction mixture was filtered over a plug of Celite[®] and then concentrated. The residue was purified by flash chromatography to give the desired product 2r in 44% yield.

7. <u>References</u>

- 1. C.-W. Chan, Z. Zhou and W.-Y. Yu, Adv. Synth. Catal., 2011, 353, 2999.
- 2. C. S. Yeung, X. Zhao, N. Borduas and V. M. Dong, Chem. Sci., 2010, 1, 331.

Figure S2. ¹³C NMR spectrum of 2a

Figure S4. ¹³C NMR spectrum of 2b

Figure S6. ¹³C NMR spectrum of 2c

Figure S8. ¹³C NMR spectrum of 2d

Figure S10. ¹³C NMR spectrum of 2e

Figure S12. ¹³C NMR spectrum of 2f

Figure S14. ¹³C NMR spectrum of 2g

Figure S16. ¹³C NMR spectrum of 2h

Figure S18. ¹³C NMR spectrum of 2i

Figure S20. ¹³C NMR spectrum of 2j

Figure S22. ¹³C NMR spectrum of 2k

Figure S23. ¹⁹F NMR spectrum of 2k

Figure S25. ¹³C NMR spectrum of 2l

Figure S27. ¹³C NMR spectrum of 2m

Figure S29. ¹³C NMR spectrum of 2n

Figure S31. ¹³C NMR spectrum of 20

Figure S33. ¹³C NMR spectrum of **2p**

Figure S35. ¹³C NMR spectrum of 2q

Figure S37. ¹³C NMR spectrum of 2r

Figure S39. ¹³C NMR spectrum of 2s

Figure S41. ¹³C NMR spectrum of 3g

Figure S43. ¹³C NMR spectrum of 3h

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

9. <u>X-ray Crystallographic Data of 2c</u>

Figure S44. Molecular Structure of 2c

Table S1. Crystal data and structure refinement for 2c.

Identification code	cww6		
Empirical formula	C ₂₄ H ₃₇ N O ₅		
Formula weight	419.55		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)		
Unit cell dimensions	a = 9.8535(3) Å	= 90°.	
	b = 12.5734(4) Å	= 103.496(2)°.	
	c = 10.7133(3) Å	= 90°.	
Volume	1290.64(7) Å ³		
Z	2		
Density (calculated)	1.080 Mg/m ³		
Absorption coefficient	0.075 mm ⁻¹		

456
0.46 x 0.30 x 0.28 mm ³
1.95 to 27.51°.
-12<=h<=12, -16<=k<=16, -13<=l<=13
16024
5730 [R(int) = 0.0363]
99.9 %
Semi-empirical from equivalents
0.745 and 0.628
Full-matrix least-squares on F ²
5730 / 13 / 294
1.003
R1 = 0.0515, wR2 = 0.1232
R1 = 0.0931, $wR2 = 0.1471$
1.2(12)
0.216 and -0.175 e.Å ⁻³

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **2c**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(1)	1953(2)	5775(1)	8321(1)	91(1)
O(2)	5122(1)	5688(1)	5370(1)	89(1)
O(3)	5662(1)	4396(1)	6855(1)	67(1)
O(4)	2061(1)	5086(1)	3737(1)	79(1)
O(5)	3624(1)	4268(1)	2835(1)	64(1)
N(1)	2109(1)	5268(1)	6349(1)	50(1)
C(1)	2182(1)	4155(1)	6531(1)	43(1)
C(2)	1445(2)	3649(1)	7313(2)	50(1)
C(3)	1465(2)	2554(1)	7473(2)	54(1)
C(4)	2271(2)	1934(1)	6829(2)	61(1)
C(5)	3013(2)	2450(1)	6061(2)	55(1)
C(6)	2995(2)	3542(1)	5884(1)	46(1)
C(7)	3892(2)	4014(1)	5051(1)	52(1)
C(8)	4959(2)	4815(2)	5762(2)	59(1)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

C(9)	6798(2)	4961(2)	7743(2)	74(1)
C(10)	6223(3)	5942(3)	8227(3)	125(1)
C(11)	7222(3)	4163(2)	8816(2)	112(1)
C(12)	7957(2)	5175(3)	7082(3)	134(1)
C(13)	3071(2)	4520(2)	3815(1)	58(1)
C(14)	3069(2)	4725(2)	1529(1)	62(1)
C(15)	3270(2)	5913(2)	1591(2)	81(1)
C(16)	3981(2)	4202(2)	757(2)	93(1)
C(17)	1567(2)	4393(2)	1032(2)	82(1)
C(18)	1956(2)	6017(1)	7224(2)	53(1)
C(19)	1776(2)	7164(1)	6768(2)	58(1)
C(20)	334(4)	7519(4)	6734(5)	89(1)
C(21)	2854(6)	7793(6)	7672(6)	127(2)
C(22)	1980(6)	7333(4)	5393(5)	100(2)
C(20')	571(7)	7229(5)	5635(5)	168(3)
C(21')	1560(10)	7809(5)	7892(6)	262(4)
C(22')	3038(5)	7549(4)	6338(8)	215(4)
C(23)	626(2)	2045(2)	8318(2)	79(1)
C(24)	2304(3)	747(2)	6941(3)	93(1)

O(1)-C(18)	1.2155(19)
O(2)-C(8)	1.199(2)
O(3)-C(8)	1.3228(19)
O(3)-C(9)	1.472(2)
O(4)-C(13)	1.210(2)
O(5)-C(13)	1.3284(19)
O(5)-C(14)	1.4933(18)
N(1)-C(18)	1.362(2)
N(1)-C(1)	1.412(2)
N(1)-H(1A)	0.8600
C(1)-C(2)	1.386(2)
C(1)-C(6)	1.405(2)
C(2)-C(3)	1.387(2)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.402(3)
C(3)-C(23)	1.505(3)
C(4)-C(5)	1.384(3)
C(4)-C(24)	1.497(3)
C(5)-C(6)	1.385(2)
C(5)-H(5A)	0.9300
C(6)-C(7)	1.516(2)
C(7)-C(13)	1.521(2)
C(7)-C(8)	1.525(2)
C(7)-H(7A)	0.9800
C(9)-C(10)	1.499(4)
C(9)-C(12)	1.503(3)
C(9)-C(11)	1.509(3)
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600
C(10)-H(10C)	0.9600
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600

Table S3.	Bond lengths	[Å] and	angles [°] for 2c.
-----------	--------------	---------	----------	------------

C(14)-C(15)	1.506(3)
C(14)-C(16)	1.507(3)
C(14)-C(17)	1.510(3)
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(17)-H(17A)	0.9600
C(17)-H(17B)	0.9600
C(17)-H(17C)	0.9600
C(18)-C(19)	1.520(2)
C(19)-C(20)	1.482(5)
C(19)-C(21)	1.487(6)
C(19)-C(20')	1.489(5)
C(19)-C(22')	1.503(5)
C(19)-C(21')	1.507(6)
C(19)-C(22)	1.547(5)
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600
C(20')-H(20D)	0.9600
C(20')-H(20E)	0.9600
C(20')-H(20F)	0.9600
C(21')-H(21D)	0.9600
C(21')-H(21E)	0.9600
C(21')-H(21F)	0.9600
C(22')-H(22D)	0.9600
C(22')-H(22E)	0.9600
C(22')-H(22F)	0.9600
C(23)-H(23A)	0.9600

C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
C(8)-O(3)-C(9)	122.81(15)
C(13)-O(5)-C(14)	121.35(13)
C(18)-N(1)-C(1)	126.92(13)
C(18)-N(1)-H(1A)	116.5
C(1)-N(1)-H(1A)	116.5
C(2)-C(1)-C(6)	119.09(14)
C(2)-C(1)-N(1)	121.43(14)
C(6)-C(1)-N(1)	119.46(13)
C(1)-C(2)-C(3)	122.40(15)
C(1)-C(2)-H(2A)	118.8
C(3)-C(2)-H(2A)	118.8
C(2)-C(3)-C(4)	118.99(16)
C(2)-C(3)-C(23)	120.12(17)
C(4)-C(3)-C(23)	120.88(17)
C(5)-C(4)-C(3)	118.05(16)
C(5)-C(4)-C(24)	120.67(18)
C(3)-C(4)-C(24)	121.26(18)
C(4)-C(5)-C(6)	123.67(16)
C(4)-C(5)-H(5A)	118.2
C(6)-C(5)-H(5A)	118.2
C(5)-C(6)-C(1)	117.79(15)
C(5)-C(6)-C(7)	118.57(14)
C(1)-C(6)-C(7)	123.60(14)
C(6)-C(7)-C(13)	114.31(13)
C(6)-C(7)-C(8)	113.13(12)
C(13)-C(7)-C(8)	108.90(15)
C(6)-C(7)-H(7A)	106.7
C(13)-C(7)-H(7A)	106.7
C(8)-C(7)-H(7A)	106.7
O(2)-C(8)-O(3)	126.12(16)
O(2)-C(8)-C(7)	124.22(14)
O(3)-C(8)-C(7)	109.66(16)

O(3)-C(9)-C(10)	109.24(16)
O(3)-C(9)-C(12)	109.17(18)
C(10)-C(9)-C(12)	113.9(2)
O(3)-C(9)-C(11)	101.86(18)
C(10)-C(9)-C(11)	110.1(2)
C(12)-C(9)-C(11)	111.8(2)
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(9)-C(11)-H(11A)	109.5
C(9)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(9)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(9)-C(12)-H(12A)	109.5
C(9)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(9)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
O(4)-C(13)-O(5)	124.63(14)
O(4)-C(13)-C(7)	124.58(15)
O(5)-C(13)-C(7)	110.79(14)
O(5)-C(14)-C(15)	108.95(14)
O(5)-C(14)-C(16)	102.23(14)
C(15)-C(14)-C(16)	111.53(18)
O(5)-C(14)-C(17)	109.79(15)
C(15)-C(14)-C(17)	113.47(17)
C(16)-C(14)-C(17)	110.26(16)
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5

H(15B)-C(15)-H(15C)	109.5
C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
С(14)-С(16)-Н(16С)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(14)-C(17)-H(17A)	109.5
C(14)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
С(14)-С(17)-Н(17С)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
O(1)-C(18)-N(1)	121.21(16)
O(1)-C(18)-C(19)	121.47(16)
N(1)-C(18)-C(19)	117.32(14)
C(20)-C(19)-C(21)	113.0(4)
C(20)-C(19)-C(20')	52.1(3)
C(21)-C(19)-C(20')	144.5(4)
C(20)-C(19)-C(22')	138.8(3)
C(21)-C(19)-C(22')	60.8(4)
C(20')-C(19)-C(22')	107.0(4)
C(20)-C(19)-C(21')	62.9(4)
C(21)-C(19)-C(21')	53.6(4)
C(20')-C(19)-C(21')	112.8(4)
C(22')-C(19)-C(21')	110.6(4)
C(20)-C(19)-C(18)	109.5(2)
C(21)-C(19)-C(18)	106.4(3)
C(20')-C(19)-C(18)	109.0(2)
C(22')-C(19)-C(18)	111.1(2)
C(21')-C(19)-C(18)	106.3(3)
C(20)-C(19)-C(22)	105.8(3)
C(21)-C(19)-C(22)	108.4(4)
C(20')-C(19)-C(22)	58.2(3)
C(22')-C(19)-C(22)	50.5(3)
C(21')-C(19)-C(22)	139.5(3)
C(18)-C(19)-C(22)	113.9(2)
C(19)-C(20)-H(20A)	109.5

C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(19)-C(21)-H(21A)	109.5
C(19)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(19)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(19)-C(22)-H(22A)	109.5
C(19)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(19)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(19)-C(20')-H(20D)	109.4
C(19)-C(20')-H(20E)	109.5
H(20D)-C(20')-H(20E)	109.5
C(19)-C(20')-H(20F)	109.5
H(20D)-C(20')-H(20F)	109.5
H(20E)-C(20')-H(20F)	109.5
C(19)-C(21')-H(21D)	109.5
C(19)-C(21')-H(21E)	109.5
H(21D)-C(21')-H(21E)	109.5
C(19)-C(21')-H(21F)	109.4
H(21D)-C(21')-H(21F)	109.5
H(21E)-C(21')-H(21F)	109.5
C(19)-C(22')-H(22D)	109.5
C(19)-C(22')-H(22E)	109.5
H(22D)-C(22')-H(22E)	109.5
C(19)-C(22')-H(22F)	109.5
H(22D)-C(22')-H(22F)	109.5
H(22E)-C(22')-H(22F)	109.5
C(3)-C(23)-H(23A)	109.5
C(3)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5

C(3)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(4)-C(24)-H(24A)	109.5
C(4)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(4)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U33	U23	U13	U12	
					<u></u>		
O(1)	173(1)	54(1)	47(1)	-1(1)	28(1)	7(1)	
O(2)	79(1)	88(1)	94(1)	42(1)	7(1)	-19(1)	
O(3)	57(1)	73(1)	63(1)	17(1)	0(1)	-6(1)	
O(4)	81(1)	110(1)	48(1)	9(1)	18(1)	41(1)	
O(5)	71(1)	81(1)	44(1)	9(1)	20(1)	19(1)	
N(1)	70(1)	37(1)	47(1)	3(1)	20(1)	0(1)	
C(1)	47(1)	37(1)	44(1)	0(1)	7(1)	-1(1)	
C(2)	52(1)	46(1)	55(1)	0(1)	17(1)	-4(1)	
C(3)	52(1)	48(1)	60(1)	6(1)	8(1)	-8(1)	
C(4)	67(1)	37(1)	73(1)	2(1)	7(1)	0(1)	
C(5)	56(1)	49(1)	58(1)	-4(1)	10(1)	7(1)	
C(6)	48(1)	44(1)	45(1)	0(1)	9(1)	2(1)	
C(7)	55(1)	58(1)	46(1)	5(1)	16(1)	7(1)	
C(8)	47(1)	73(1)	59(1)	17(1)	15(1)	2(1)	
C(9)	54(1)	81(1)	78(1)	4(1)	-4(1)	-3(1)	
C(10)	113(2)	113(2)	126(2)	-32(2)	-23(2)	16(2)	
C(11)	106(2)	120(2)	88(1)	27(2)	-26(1)	-7(2)	
C(12)	54(1)	197(3)	145(2)	29(2)	10(1)	-25(2)	
C(13)	59(1)	68(1)	48(1)	0(1)	17(1)	10(1)	
C(14)	68(1)	76(1)	45(1)	10(1)	15(1)	14(1)	
C(15)	91(1)	82(2)	68(1)	20(1)	14(1)	2(1)	
C(16)	103(1)	128(2)	56(1)	18(1)	35(1)	39(1)	
C(17)	78(1)	107(2)	58(1)	6(1)	11(1)	-2(1)	
C(18)	61(1)	44(1)	51(1)	-2(1)	9(1)	1(1)	
C(19)	64(1)	40(1)	67(1)	2(1)	9(1)	3(1)	
C(20)	81(3)	81(3)	102	40(3)	17(2)	28(2)	
C(21)	100(4)	148	111(4)	-35(4)	-21(4)	-19(4)	
C(22)	122	54(3)	141(4)	40(3)	65(3)	12(3)	
C(20')	234(6)	88(4)	120	27(3)	-81(4)	9(4)	
C(21')	588(11)	106	154(4)	39(3)	212(6)	142(5)	
C(22')	113(3)	68(3)	495(11)	120(4)	138(5)	20(3)	
C(23)	82(1)	67(1)	94(1)	10(1)	31(1)	-15(1)	
C(24)	114(2)	44(1)	124(2)	8(1)	31(1)	9(1)	

Table S4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **2c**. The anisotropic displacement factor exponent takes the form: $-2^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	Х	У	Z	U(eq)
$H(1\Lambda)$	2166	5/196	5606	60
$H(1\mathbf{A})$	916	J470 4058	5000 7747	60 60
H(2A)	310	4038 2041	5630	66
H(3A)	4422	2041	4800	63
H(7A)	5963	5425	7530	188
H(10R)	6921	6250	8008	188
H(10C)	5/18	5750	8542	188
H(10C)	5418 6458	3739 4047	0215	160
H(11R)	0438 8010	4047	9213	169
H(11C)	7460	4431 2504	9441 8475	160
H(11C)	7409	5677	64/3	201
$\Pi(12\mathbf{A})$	/040	J077 4522	6400	201
H(12B)	8219	4323	0/34	201
H(12C)	8/48	5460	7689	201
H(15A)	2672	6221	2083	122
H(15B)	3043	6201	/38	122
H(15C)	4225	6073	1992	122
H(16A)	4930	4427	1074	139
H(16B)	3668	4403	-128	139
H(16C)	3925	3444	833	139
H(17A)	994	4745	1517	122
H(17B)	1489	3637	1119	122
H(17C)	1263	4586	143	122
H(20A)	159	7456	7576	133
H(20B)	-317	7084	6144	133
H(20C)	224	8248	6461	133
H(21A)	2766	7674	8535	191
H(21B)	2726	8535	7469	191
H(21C)	3765	7576	7596	191
H(22A)	1960	6658	4971	150
H(22B)	2863	7672	5435	150
H(22C)	1244	7776	4919	150
H(20D)	-284	7150	5911	251

Table S5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters ($Å^2x$ 10³) for **2c**.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

H(20E)	641	6673	5040	251
H(20F)	577	7907	5225	251
H(21D)	1492	7340	8582	394
H(21E)	715	8215	7637	394
H(21F)	2336	8282	8172	394
H(22D)	3783	7684	7076	322
H(22E)	2812	8193	5853	322
H(22F)	3325	7016	5812	322
H(23A)	152	2587	8685	119
H(23B)	1237	1656	8993	119
H(23C)	-47	1569	7817	119
H(24A)	2898	461	6430	140
H(24B)	1377	470	6642	140
H(24C)	2658	549	7822	140

C(18)-N(1)-C(1)-C(2)	33.4(2)
C(18)-N(1)-C(1)-C(6)	-148.04(15)
C(6)-C(1)-C(2)-C(3)	-0.7(2)
N(1)-C(1)-C(2)-C(3)	177.83(13)
C(1)-C(2)-C(3)-C(4)	0.6(2)
C(1)-C(2)-C(3)-C(23)	-179.06(14)
C(2)-C(3)-C(4)-C(5)	0.0(2)
C(23)-C(3)-C(4)-C(5)	179.67(15)
C(2)-C(3)-C(4)-C(24)	-178.48(17)
C(23)-C(3)-C(4)-C(24)	1.1(3)
C(3)-C(4)-C(5)-C(6)	-0.5(2)
C(24)-C(4)-C(5)-C(6)	178.00(17)
C(4)-C(5)-C(6)-C(1)	0.4(2)
C(4)-C(5)-C(6)-C(7)	178.05(14)
C(2)-C(1)-C(6)-C(5)	0.21(19)
N(1)-C(1)-C(6)-C(5)	-178.35(12)
C(2)-C(1)-C(6)-C(7)	-177.30(13)
N(1)-C(1)-C(6)-C(7)	4.1(2)
C(5)-C(6)-C(7)-C(13)	113.85(16)
C(1)-C(6)-C(7)-C(13)	-68.66(19)
C(5)-C(6)-C(7)-C(8)	-120.74(16)
C(1)-C(6)-C(7)-C(8)	56.75(19)
C(9)-O(3)-C(8)-O(2)	-1.6(3)
C(9)-O(3)-C(8)-C(7)	178.17(15)
C(6)-C(7)-C(8)-O(2)	-129.86(18)
C(13)-C(7)-C(8)-O(2)	-1.6(2)
C(6)-C(7)-C(8)-O(3)	50.34(19)
C(13)-C(7)-C(8)-O(3)	178.61(13)
C(8)-O(3)-C(9)-C(10)	62.8(2)
C(8)-O(3)-C(9)-C(12)	-62.4(2)
C(8)-O(3)-C(9)-C(11)	179.21(17)
C(14)-O(5)-C(13)-O(4)	3.4(3)
C(14)-O(5)-C(13)-C(7)	-175.76(14)
C(6)-C(7)-C(13)-O(4)	43.3(2)
C(8)-C(7)-C(13)-O(4)	-84.3(2)
C(6)-C(7)-C(13)-O(5)	-137.52(15)

Table S6.	Torsion angles	[°]	for 2	2c.
-----------	----------------	-----	-------	-----

C(8)-C(7)-C(13)-O(5)	94.88(17)
C(13)-O(5)-C(14)-C(15)	63.1(2)
C(13)-O(5)-C(14)-C(16)	-178.81(17)
C(13)-O(5)-C(14)-C(17)	-61.8(2)
C(1)-N(1)-C(18)-O(1)	4.6(3)
C(1)-N(1)-C(18)-C(19)	-174.78(13)
O(1)-C(18)-C(19)-C(20)	-68.5(3)
N(1)-C(18)-C(19)-C(20)	110.9(3)
O(1)-C(18)-C(19)-C(21)	53.9(3)
N(1)-C(18)-C(19)-C(21)	-126.7(3)
O(1)-C(18)-C(19)-C(20')	-124.0(3)
N(1)-C(18)-C(19)-C(20')	55.4(4)
O(1)-C(18)-C(19)-C(22')	118.3(4)
N(1)-C(18)-C(19)-C(22')	-62.3(4)
O(1)-C(18)-C(19)-C(21')	-2.1(4)
N(1)-C(18)-C(19)-C(21')	177.3(4)
O(1)-C(18)-C(19)-C(22)	173.2(3)
N(1)-C(18)-C(19)-C(22)	-7.4(3)

Symmetry transformations used to generate equivalent atoms:

Table S7. Hydrogen bonds for 2c [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1A)O(4)	0.86	2.05	2.7968(17)	145.2	

Symmetry transformations used to generate equivalent atoms: