Enantioselective Pd(II)/Pd(IV) Catalysis Utilizing SPRIX Ligand: Efficient Construction of Chiral 3-Oxy-Tetrahydrofurans

Kazuhiro Takenaka, Yogesh D. Dhage, and Hiroaki Sasai*
The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
E-mail: sasai@sanken.osaka-u.ac.jp

Contents

General information
S1

Preparation of homoallyl alcohol substrates 1 S1-S2
Synthesisof 3-oxy-tetrahydrofuran 2 via enantioselective cyclative acetoxylation S2-S3
Optimization of reaction conditions S4
Hammett plot S5
${ }^{1} \mathrm{H}$ NMR analysis for the additive effect of TfOH S5
Deuterium labeling experiment S6-S7
NMR spectra S8-S30
HPLC charts S31-S39
References S40

electronic Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2013
General information

NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on JEOL ECS400 (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) or BRUKER Avance III $700\left(700 \mathrm{MHz}\right.$ for $\left.{ }^{1} \mathrm{H}\right)$. Chemical shifts are reported in $\delta \mathrm{ppm}$ 5 referenced to an internal tetramethylsilane standard for ${ }^{1} \mathrm{H}$ NMR. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR are given relative to $\mathrm{CDCl}_{3}(\delta 77.0)$. ESI and APCI mass spectra were recorded on a Thermo Fisher, LTQ ORBITRAP XL. IR spectra were obtained using a JASCO FT/IR-4100 instrument. Optical ${ }_{10}$ rotations were measured with a JASCO P-1030 polarimeter. HPLC analyses were performed on JASCO HPLC system (JASCO PU 2080 pump and MD-2010 UV/Vis detector). Anhydrous diethyl ether, acetic acid, and dimethoxyethane were purchased from Kanto Chemicals and were used without ${ }_{15}$ further purification. Other solvents were purified prior to use by standard techniques. ${ }^{1} i$-Pr-SPRIX was prepared according to the method reported by our laboratory. ${ }^{2}$ Complex $\mathbf{3 b}$ was prepared from 3a and MeOTf. ${ }^{3}$ All other chemicals were purchased from commercial suppliers and used as received. 20 All reactions were performed with standard Schlenk technique under a nitrogen atmosphere. Column chromatography was conducted on Kishida Silica Gel (spherical, 63-200 $\mu \mathrm{m}$).

Typical procedure for the preparation of homoallyl alcohol substrates 1

${ }_{25}$ To an oven-dried two-necked flask equipped with a condenser was added preheated magnesium turnings (6 equiv) followed by dry diethyl ether (5 mL) and one crystal of iodine at room temperature. To this mixture was added allyl bromide (1 equiv) dropwise at $0{ }^{\circ} \mathrm{C}$, which was refluxed for 1 h . The 30 reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, to which a solution of ketone (0.623 equiv) in diethyl ether was added dropwise at that temperature (for $\mathbf{1 b}, \mathbf{1 c}$, and $\mathbf{1 d}$: a solution of the Grignard reagent was added to a solution of ketone to avoid formation of diaryl methanol byproduct). The reaction mixture ${ }_{35}$ was refluxed for 12 h . To the mixture was added sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ to quench the reaction, which was extracted three times with diethyl ether. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to dryness. The crude material was then chromatographed on silica gel using ${ }_{40}$ hexane-ethyl acetate solvent.

1,1-Diphenyl-3-buten-1-ol (1a): Colorless oil; yield: 2.00 g (86%). IR (KBr): 3553, 3058, $2345,1492,1447,1344,1166,991,726,699$, ${ }_{45} 620 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.55$ $(\mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{dt}, J=7.3 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.16-5.27 (m, 2H), 5.61-5.71 (m, 1H), 7.20-7.24 (m, 2H), 7.29-7.33 (m, 4H), 7.43-7.46 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 46.6,76.9,120.5,125.9,126.8,128.1,133.3,146.4$. ${ }_{50}$ HRMS (APCI): m/z $[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{15}: 207.1173$; found: 207.1163.

1,1-Bis(4-fluorophenyl)but-3-en-1-ol (1b): Colorless oil; yield: $2.46 \mathrm{~g}(93 \%)$. IR (KBr): ${ }_{55} 3548,3077,2980,1896,1602,1508,1344$, 1227, 1160, 1013, 927, 835, $565 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.56(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{dt}, J=7.3 \mathrm{~Hz}$, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.19-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.57-5.67(\mathrm{~m}, 1 \mathrm{H}), 6.96-$ $7.02(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.{ }_{60} \mathrm{CDCl}_{3}\right): \delta 46.8,77.2,115.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 121.0,127.6$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}\right), 132.8,142.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 161.7\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\mathrm{F}=244 \mathrm{~Hz})$. HRMS (APCI): $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{2}$: 243.0985; found: 243.0976.

${ }_{65}$ 1,1-Bis(4-chlorophenyl)but-3-en-1-ol (1c): Colorless oil; yield: $2.84 \mathrm{~g}(95 \%)$. IR (KBr): 3631, 3548, 3076, 2925, 1903, 1638, 1489, 1401, 1093, 1012, 820, $755,526 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.50(\mathrm{~s}, 1 \mathrm{H}), 3.01$ $70(\mathrm{dt}, J=7.3 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.19-5.27(\mathrm{~m}$, $2 \mathrm{H}), 5.56-5.66(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 46.4,76.2,121.2,127.3,128.4$, $132.5,132.9,144.6$. HRMS (APCI): $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{2}$: 275.0394; found: 257.0384.

1,1-Bis(4-bromophenyl)but-3-en-1-ol (1d): Colorless oil; yield: $2.72 \mathrm{~g}(70 \%)$. IR (KBr): 3547, 3076, 2924, 2372, 1904, 1485, 1397, 1163, 1074, 1008, $746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.{ }_{80} \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.55(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{dt}, J=7.3$ $\mathrm{Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.20-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.56-$ $5.66(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 46.3,76.2,121.1,121.3,127.7,131.3$, 132.4, 145.0. HRMS (APCI): $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Br}_{2}$: ${ }_{85} 362.9383$; found: 362.9374 .

1,1-Bis(4-(trifluoromethyl)phenyl)but-3-en-1-ol (1e): Colorless oil; yield: $2.20 \mathrm{~g}(60 \%)$. IR (KBr): 3553, 3081, 2934, 1617, 1413, ${ }_{0} 1326,1125,1016,833,509 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.60(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{dt}, J$ $=7.3 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.24-5.32(\mathrm{~m}, 2 \mathrm{H})$, 5.56-5.67 (m, 1H), 7.56-7.61 (m, 8H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 46.6,76.6,122.2,122.9,125.7$ (q, J_{C} $\left.{ }_{95} \mathrm{~F}=3.8 \mathrm{~Hz}\right), 126.5,129.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=97.0 \mathrm{~Hz}\right), 132.3,149.8$. HRMS (APCI): No corresponding peaks were observed.

1,1-Bis(4-methylphenyl)but-3-en-1-ol (1f): Colorless oil; yield: $1.93 \mathrm{~g}(75 \%)$. IR (KBr): 3554, 3024, 2921, 2345, 1638, 1510, 1439, 1163, 992, 815, $566 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 3.04(\mathrm{dt}, J$ $=7.3 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.26(\mathrm{~m}, 2 \mathrm{H})$, $5.62-5.72(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ 105 NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.9,46.7,77.2,120.2,125.8,128.8$, 133.6, 136.3. 143.7. HRMS (APCI): $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19}$: 235.1486; found: 235.1477.

1,1-Bis(4-methoxyphenyl)but-3-en-1-ol (1g): ${ }^{0}$ Colorless oil; yield: 2.54 g (85%). IR (KBr): 3503, 3073, 3002, 2934, 2835, 2050, 1509, $1440,1345,1247,1177,1034,830,577 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.50(\mathrm{~s}, 1 \mathrm{H})$, $3.00(\mathrm{dt}, J=7.3 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}$, $\left.{ }_{115} 6 \mathrm{H}\right), 5.12-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.71(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.83(\mathrm{~m}, 4 \mathrm{H})$, 7.30-7.33 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 46.9,55.3$, $76.4,113.3,120.0,127.1,133.6,139.0,158.2$. HRMS (APCI): $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}: 267.1385$; found: 267.1373.

9-Allyl-9H-fluoren-9-ol (1h): Colorless crystals; yield: 2.20 g (97%). IR (KBr): 3307, 3075, 2831, 1913, 1839, 1448, 1065, 997, 916, $768,578 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $52.10(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=7.3 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}$, 2H), 4.94-4.99 (m, 2H), 5.55-5.65 (m, 1H), 7.28-7.39 (m, $4 \mathrm{H}), 7.53-7.63(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 44.0$, $81.5,118.7,119.9,123.8,127.8,128.9,132.6,134.3,148.2$. HRMS (APCI): $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13}: 205.1017$; 10 found: 205.1006.

2-Allyl-2,3-dihydro-1H-inden-2-ol (1i): Brown oil.Yield: $800 \mathrm{mg}(45 \%)$. IR (KBr): 3401, 3072, 2902, 1639, 1481, 1275, 916, 740, ${ }_{15} 599 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.89$ (s, 1H), $2.52(\mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}$, $)$ 3.09 (d, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.19-5.24$ (br m, 2H), 5.92-6.03 (m, 1 H), 7.15-7.22 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 44.9$, 46.4, 81.4, 119.0, 124.9, 126.5, 133.9, 141.1. HRMS (APCI): m/z ${ }_{20}[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13}$: 157.1017; found: 157.1007.

2-Benzyl-1-phenylpent-4-en-2-ol (1j): Colorless oil; yield; 1.98 g (77\%). IR (KBr): 3568, 3475, 3062, 2977, 1638, 1494, 1364, 25 1058, 916, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.44(\mathrm{~s}, 1 \mathrm{H}), 2.00(\mathrm{dt}, J=7.3 \mathrm{~Hz}, J=$ $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 4 \mathrm{H}) 5.00-,5.05(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.13(\mathrm{~m}, 1 \mathrm{H})$, 5.82-5.92 (m, 1H), 7.15-7.25 (m, 10H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 43.0,45.5,73.7,118.9,126.4,128.1,130.7,134.0$, ${ }_{30}$ 137.2. HRMS (APCI): $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19}: 235.1486$; found: 235.1476 .

3-Methyl-1,1-diphenylbut-3-en-1-ol (1k): White solid; yield: $616 \mathrm{mg}(45 \%)$. $\mathrm{IR}(\mathrm{KBr})$: ${ }_{35} 3058,2345,1638,1491,1447,1056,901,741$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.32(\mathrm{~s}$, $3 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 4.80-4.81(\mathrm{~m}$, $1 \mathrm{H}), 4.94-4.96(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 4 \mathrm{H})$. 7.45-7.48 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.2,49.8$, ${ }_{40} 75.8,116.7,125.8,126.7,128.0,142.2,146.9$. HRMS (ESI): m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{3}$: 261.1255; found: 261.1248.

4-Methyl-1,1-diphenylpent-3-en-1-ol (11): Pale green oil; yield: 1.35 g (98\%). IR (KBr): 3537, 2914, 1662, 1492, 1376, 1266, 1168, 1054, 753, $643 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.69(\mathrm{~s}, 6 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H})$, $3.02(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 5.02-5.07(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.29-7.33 (m, 4H), 7.44-7.47 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (100 MHz ,
${ }_{50} \mathrm{CDCl}_{3}$): $\delta 18.2,26.1,40.7,77.6,118.3,125.9,126.6,128.0,137.9$, 146.9. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}$: 275.1411; found: 275.1402.

Typical procedure for the enantioselective cyclative acetoxylation of homoallyl alcohols

${ }_{55} \mathrm{~A}$ solution of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(4.6 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and (P, R, R) - i-Pr-SPRIX ($6.6 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ mL) was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The volatiles were then removed by evaporation to afford $\mathrm{Pd}-i$-Pr-SPRIX complex as a yellow powder. Into the vessel containing the complex was
${ }_{60}$ added a solution of TfOH ($8.2 \mu \mathrm{~mol}, 18 \mathrm{~mol} \%$) in DME (0.15 mL) [prepared by mixing 1.5 mL of DME and $7.2 \mu \mathrm{~L}$ of $\mathrm{TfOH}]$ and the resulting mixture was stirred for 5 min at $25^{\circ} \mathrm{C}$. To this suspension was added $\mathrm{PhI}(\mathrm{OAc})_{2}(0.137 \mathrm{mmol}$, 3 equiv) followed by alkenyl alcohol substrates 1 (0.046 ${ }_{65} \mathrm{mmol}$) dissolved in $\mathrm{AcOH}(0.15 \mathrm{~mL})$, which was stirred at $25^{\circ} \mathrm{C}$ for 4 h unless otherwise mentioned. After completion of the reaction, the solvents were evaporated under reduced pressure. The residue was purified by column chromatography on silica gel by using hexane/ethyl acetate $=99.3 / 0.7$ to afford 70 3-acetoxy-tetrahydrofurans 2.

5,5-Diphenyltetrahydrofuran-3-yl acetate (2a): Colorless wax; yield: 11.5 mg (92%); 90% ee [HPLC (Chiralpak $\mathrm{AD}-\mathrm{H}$, hexane/EtOH $=99.5 / 0.5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): 10.8 \mathrm{~min}$ (minor), 13.7 min (major)]; $[\alpha]_{\mathrm{D}} 22+16.92\left(c 0.26, \mathrm{CHCl}_{3}\right)$. IR (KBr): 3058, 2963, 2372, 2345, 1737, 1448, 1365, 1238, 1082, 1049, 1020, 701, $535 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.91$ ${ }_{80}(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=13.8 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.8$ $\mathrm{Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (dd, $J=10.5 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.30(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.9,44.9,71.7,75.2,87.8,125.6,127.7,126.8$, ${ }_{85} 127.0$, 128.1, 128.3, 145.0, 145.6, 170.8. HRMS (ESI): m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{3}: 305.1153$; found: 305.1174.
 5,5-Bis(4-fluorophenyl)tetrahydro-furan-3-yl acetate (2b): Colorless wax; 90 yield: $12.2 \mathrm{mg}(86 \%) ; 88 \%$ ee [HPLC (Chiralpak AD-H, hexane/EtOH = $99.5 / 0.5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=220$ nm): 15.3 min (minor), 19.9 min (major)]; $[\alpha]_{\mathrm{D}}{ }^{25}+20.22\left(c 0.267, \mathrm{CHCl}_{3}\right)$. IR (KBr): 2964, 2878, ${ }_{95} 2372,2345,1738,1602,1508,1408,1366,1234,1159,1076$, $1014,835,561,540 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.92(\mathrm{~s}$, $3 \mathrm{H}), 2.70(\mathrm{dd}, J=13.7 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.9(\mathrm{dd}, J=13.7 \mathrm{~Hz}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J$ $=10.5 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.30(\mathrm{~m}, 1 \mathrm{H}), 6.95-7.02(\mathrm{~m}$, $\left.{ }_{100} 4 \mathrm{H}\right), 7.33-7.38(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.8$, $45.1,71.8,75.1,87.1,114.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}\right), 115.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $30.5 \mathrm{~Hz}), 127.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 140.7$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 141.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 160.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=15.2\right.$
$\mathrm{Hz}), 163.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=15.2 \mathrm{~Hz}\right)$, 170.7. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ 105 calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{NaO}_{3}$: 341.0965; found: 341.0955.

5,5-Bis(4-chlorophenyl)tetrahydro-furan-3-yl acetate (2c): Colorless wax; yield: 13.0 mg (83%); 79% ee [HPLC (Chiralpak AD-H, hexane $/ \mathrm{EtOH}=99.5 / 0.5$, flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}, \lambda=227 \mathrm{~nm}): 20.0 \mathrm{~min}$ (minor), 26.1 min (major)]; [$\alpha]_{\mathrm{D}}{ }^{24}$ +9.68 (c 0.95, CHCl 3). IR (KBr): 2928, 2372, 2345, 1738, 1490, 115 1237, 1092, 1012, 831, $537 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.91(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=13.7 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.9(\mathrm{dd}, J=$ $13.7 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.30(\mathrm{~m}, 1 \mathrm{H}), 7.25-$ $7.28(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ ${ }_{120} 20.8,44.8,71.9,75.0,87.0,127.0,127.0,128.3,128.6,132.9$,
133.2, 143.3, 143.8, 170.7. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NaO}_{3}$: 373.0374; found: 373.0364.

5,5-Bis(4-bromophenyl)tetrahydro${ }_{5}$ furan-3-yl acetate (2d): Colorless wax; yield: 15.4 mg (79\%); 78% ee [HPLC (Chiralpak AD-H, hexane $/ \mathrm{EtOH}=99.5 / 0.5$, flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}, \lambda=221 \mathrm{~nm}): 24.2 \mathrm{~min}$ 10 (minor), 34.8 min (major)]; $[\alpha]_{\mathrm{D}}{ }^{23}+10.25$ (c $1.12, \mathrm{CHCl}_{3}$). IR (KBr): 2973, 2877, 2372, 2345, 1737, 1486, 1365, 1238, 1077, $1008,821,738,534 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.91$ (s, $3 \mathrm{H}), 2.68(\mathrm{dd}, J=13.7 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=13.7 \mathrm{~Hz}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J$ $\left.{ }_{15}=10.5 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.25-5.30(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.40-7.45(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.9$, 44.7, 71.9, 74.9, 87.1, 121.0, 121.3, 127.4, 127.4, 131.3, 131.5, 143.8, 144.2, 170.7. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{NaO}_{3}: 460.9363$; found: 460.9358 .

20
5,5-Bis(4-(trifluoromethyl)phenyl)-tetrahydrofuran-3-yl acetate (2e): Colorless wax; yield: 13 mg (70\%); 44% ee [HPLC (Chiralpak AD-H, 25 hexane $/ \mathrm{EtOH}=99.5 / 0.5$, flow rate $=$ $1 \mathrm{~mL} / \mathrm{min}, \lambda=221 \mathrm{~nm}): 11.6 \mathrm{~min}$ (minor), 16.2 min (major)]; $[\alpha]_{\mathrm{D}}{ }^{24}+2.14$ (c $0.28, \mathrm{CHCl}_{3}$). IR (KBr): 2936, 2372, 2345, 1741, 1617, 1412, 1367, 1325, 1238, $1165,1122,1069,1016,847,606,522 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , ${ }_{30} \mathrm{CDCl}_{3}$): $\delta 1.87(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{dd}, J=13.7 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{dd}, J=13.7 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.32(\mathrm{~m}$, $1 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.7$, $44.8,72.2,74.8,87.2,122.5,122.6,125.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right)$, ${ }_{35} 125.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 125.95,125.98,129.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}\right)$, 129.7 (q, $J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}$), 148.5, 148.9, 179.6. HRMS (ESI): m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{NaO}_{3}$: 441.0901; found: 441.0894.

5,5-Bis(4-methylphenyl)tetrahydro-
40 furan-3-yl acetate (2f): Colorless wax; yield: $4.1 \mathrm{mg}(30 \%) ; 90 \%$ ee [HPLC (Chiralpak AD-H, hexane/EtOH = 99.7/0.3, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=219$ nm): 20.3 min (minor), 23.9 min 45 (major) $;[\alpha] \mathrm{D}^{23}+11\left(c \quad 0.218, \mathrm{CHCl}_{3}\right)$. IR (KBr): 2923, 2372, $2345,1737,1509,1439,1325,1238,1075,1019,813,564, \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}$, $3 \mathrm{H}), 2.65(\mathrm{dd}, J=13.7 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.7 \mathrm{~Hz}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.1(\mathrm{dd}, J$ $\left.{ }_{50}=10.5 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.23-5.28(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.11(\mathrm{~m}$, 4H), 7.26-7.29 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.92$, 20.94, 20.94, 44.9, 71.5, 75.4, 87.7, 125.6, 125.7, 128.7, 129.0, 136.3, 136.6, 142.2, 142.9, 170.9. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{3}$: 333.1466; found: 333.1463.

55

4',5'-Dihydro-3'H-spiro[fluorene-9,2'-furan]-4'-yl acetate ($\mathbf{2 h}$): The reaction was performed at $-10{ }^{\circ} \mathrm{C}$ for 96 h . Pale yellow solid; yield: 10.6 mg (85%); 50% ${ }_{60}$ ee [HPLC (Chiralpak AD-H, hexane/EtOH $=98 / 2$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=298$ nm): 17.3 min (minor), 24.5 min (major) $] ;[\alpha]_{\mathrm{D}}{ }^{24}-10.68$ (c 0.5 ,
CHCl_{3}). IR (KBr): 3061, 2930, 2858, 2345, 1737, 1449, 1375, 1236, 1152, 1070, 1048, 759, $505 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
${ }_{65} \mathrm{CDCl}_{3}$): $\delta 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{dd}, J=14.6 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{dd}, J=14.6 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.74(\mathrm{~m}$, $1 \mathrm{H}), 7.26-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.59-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.70(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.3$ 42.6, 74.3, 75.9, 77.2, 89.8, ${ }_{70} 119.8,119.9,123.2,124.4,128.1,128.2,129.0,129.1,139.6$, 147.8, 148.7, 170.7. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{3}$: 303.0997 ; found: 333.0991.

1',3',4,5-Tetrahydro-3H-spiro[furan${ }_{75} \mathbf{2 , 2}$ '-inden]-4-yl acetate (2i): The reaction was performed at $-10^{\circ} \mathrm{C}$ for 50 h . Colorless wax; yield: 7.7 mg (75%); 37% ee [HPLC (Chiralpak AD-H, hexane/EtOH $=98 / 2$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \lambda=216 \mathrm{~nm}$): 12.5 min (major), 17.1 min ${ }_{80}$ (minor)]; $[\alpha]_{\mathrm{D}}{ }^{24}-56\left(c 0.05, \mathrm{CHCl}_{3}\right)$. IR (KBr): 3022, 2940, 2372, $2345,1737,1480,1432,1365,1240,1150,1098,1057,1022$, $742,506 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.18$ (dd, $J=14.2 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=14.2 \mathrm{~Hz}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }_{85} 3.16(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=$ $10.5 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.33-5.38 (m, 1H), 7.12-7.20 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 21.2,42.4,45.0,45.2,72.3,75.4,90.9,124.5,124.6$, 126.57, 126.61, 140.9, 141.3, 170.9. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ ${ }_{90}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{3}$: 255.0997 ; found: 255.0990 .
 5,5-Dibenzyltetrahydrofuran-3-yl acetate (2j): The reaction was performed at $-10^{\circ} \mathrm{C}$ for 12 h . Colorless 5 wax; yield: 7.6 mg (55%); 54% ee [HPLC (Chiralpak IC, hexane/EtOH = $99.7 / 0.3$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=219 \mathrm{~nm}$): 21.0 min (major), 25.8 min (minor)]; $[\alpha]_{\mathrm{D}}{ }^{24}-13.45$ (c $0.055, \mathrm{CHCl}_{3}$). IR (KBr): 3027, 2922, 2863, 2372, 2345, 1737, 1453, 1244, 1108, 1082, 100 1052, 1021, 701, $517 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.92$ (s, 3H), 1.94 (dd, $J=14.2 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=14.2$ $\mathrm{Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (d, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.84-4.89(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 10 \mathrm{H})$. ${ }_{105}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.1,38.5,44.8,46.1,72.2,75.4$, $85.8,126.3,126.4,127.99,128.03,130.75,130.84,137.3,137.7$, 170.7. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{3}$: 333.1466; found: 333.1459.

110 3-Methyl-5,5-diphenyltetrahydrofuran-3-yl acetate (2 k): Colorless wax; yield: 6.1 mg (56\%); racemic [HPLC (Chiralpak As-H, hexane, flow rate $=1$ $\mathrm{mL} / \mathrm{min}, \lambda=221 \mathrm{~nm}$): $18.3 \mathrm{~min}, 22.86$ $115 \mathrm{~min}]$. IR (KBr): 3058, 2345, 1735, 1490, 1448, 1368, 1242, 1058, 738, 701, $494 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.46$ ${ }_{120}(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.5,22.4,50.7,77.3$, $87.2,87.9,125.4,125.4,126.5,126.8,128.1,128.3,146.0,146.1$, 170.6. HRMS (ESI): $m / z \quad[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{3}$: 319.1310; found: 319.1301.

Optimization of reaction conditions			
Table S1 Solvent Screening ${ }^{a}$			
 1a		$\mathrm{Pd}(\mathrm{OTf})_{2}($ SPRIX $)(10 \mathrm{~mol} \%)$ SPRIX (5 mol\%)	
Entry	Solvent	Yield (\%) ${ }^{\text {b }}$	Ee (\%) ${ }^{\text {c }}$
$1{ }^{\text {d }}$	AcOH	66	28
2	AcOH+DME	68	40
3	$\mathrm{AcOH}+\mathrm{CPME}$	58	29
4	$\mathrm{AcOH}+\mathrm{THF}$	60	14
5	$\mathrm{AcOH}+\mathrm{Et}_{2} \mathrm{O}$	72	34
6	$\mathrm{AcOH}+$ dioxane	66	26
7	$\mathrm{AcOH}+$ acetone	66	21
8	$\mathrm{AcOH}+\mathrm{CH}_{2} \mathrm{Cl}_{2}$	63	34
9	$\mathrm{AcOH}+$ toluene	75	16

${ }^{a}$ Reaction conditions: 1a/Pd(OTf $)_{2}\{(P, R, R)-i-\operatorname{Pr}-\mathrm{SPRIX}\} /(P, R, R)-i-\mathrm{Pr}-$ ${ }_{5} \mathrm{SPRIX} / \mathrm{PhI}(\mathrm{OAc})_{2}=1: 0.1: 0.05: 3, \mathbf{1 a}=0.14 \mathrm{mmol} / \mathrm{mL}$ in solvent $(1: 1)$, $40{ }^{\circ} \mathrm{C}, 12 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis. ${ }^{d} 18 \mathrm{~h}$.

Table S2 Effect of Pd Source ${ }^{a}$

Ph	$\begin{gathered} \\ \hline \mathrm{H} \end{gathered} \begin{array}{r} \mathrm{Pd} \text { sou } \\ \mathrm{SPRI} \\ \mathrm{TfOH} \\ \mathrm{AcOH}+[\end{array}$	$\begin{aligned} & \text { mol\%) } \\ & \text { nol\%) } \\ & \text { nol\%) } \\ & \hline \text { equiv) } \\ & 5^{\circ} \mathrm{C}, 4 \mathrm{~h} \end{aligned}$	
Entry	Pd source	Yield (\%) ${ }^{b}$	Ee (\%) ${ }^{c}$
1	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	92	90
2	$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$	82	74
3	$[\mathrm{PdCl}(\pi \text {-allyl })]_{2}$	80	72
4	PdCl_{2} (cod)	66	57
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	73	35
6	$\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}$	43	7
7	$\mathrm{Pd}(\mathrm{acac})_{2}$	48	24
8	$\mathrm{Pd}(\text { hfacac })_{2}$	56	32
9	$\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2}$	68	41
10	PdCl_{2}	26	4
11	PdBr_{2}	31	14
12	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$	64	14

10^{a} Reaction conditions: 1a/Pd/($\left.P, R, R\right)-i$ - $\mathrm{Pr}-\mathrm{SPRIX} / \mathrm{TfOH} / \mathrm{PhI}(\mathrm{OAc})_{2}=$ 1:0.1:0.15:0.18:3, 1a $=0.14 \mathrm{mmol} / \mathrm{mL}$ in AcOH+DME (1:1), $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis.

Table S3 Effect of Oxidant ${ }^{a}$

 1a	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(10 \mathrm{~mol} \%)$ SPRIX ($15 \mathrm{~mol} \%$) TfOH ($18 \mathrm{~mol} \%$)		
	$\mathrm{AcOH}+$	quiv) $5^{\circ} \mathrm{C}, 4 \mathrm{~h}$	
Entry	Oxidant	yield (\%) ${ }^{\text {b }}$	$\mathrm{Ee}(\%)^{c}$
1	$\mathrm{PhI}(\mathrm{OAc})_{2}$	92	90
2	$\mathrm{PhI}(\mathrm{OCOCF})_{2}$	52	55
3	$\mathrm{PhI}(\mathrm{OH})(\mathrm{OTs})$	32	55
4	PhIO	54	72
5	p-benzoquinone	no reaction	-

6	$\mathrm{PhI}(\mathrm{OAc})_{2}(1$ equiv)	72	69
7	$\mathrm{PhI}(\mathrm{OAc})_{2}(2$ equiv $)$	90	86
8	$\mathrm{PhI}(\mathrm{OAc})_{2}$ (4 equiv)	85	73

${ }^{a}$ Reaction conditions: $\quad \mathbf{1 a} / \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2} /(P, R, R)-i$-Pr-SPRIX/TfOH/ oxidant $=1: 0.1: 0.15: 0.18: 3, \mathbf{1 a}=0.14 \mathrm{mmol} / \mathrm{mL}$ in $\mathrm{AcOH}+\mathrm{DME}(1: 1)$, $25^{\circ} \mathrm{C}, 4 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis.

Table S4 Effect of Additive ${ }^{a}$

${ }^{a}$ Reaction conditions: 1a/ $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2} /(P, R, R)-i$-Pr-SPRIX/additive/ $\mathrm{PhI}(\mathrm{OAc})_{2}=1: 0.1: 0.15: 0.18: 3, \mathbf{1 a}=0.14 \mathrm{mmol} / \mathrm{mL}$ in $\mathrm{AcOH}+\mathrm{DME}(1: 1)$, $25^{\circ} \mathrm{C}, 4 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis.

25
Table S5 Effect of Amount of TfOH^{a}

 1a	$\begin{gathered} \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(10 \mathrm{~mol} \%) \\ \text { SPRIX (15 mol\%) } \\ \text { TfOH (X mol\%) } \end{gathered}$		
		equiv) ${ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$	
Entry T	TfOH (equiv)	Yield (\%) ${ }^{\text {b }}$	$\mathrm{Ee}(\%)^{c}$
1	1	48	20
2	5	56	15
3	10	88	36
4	15	93	80
5	18	92	90
6	20	92	85
7	50	40	54
8	100	20	56

${ }^{a}$ Reaction conditions: 1a/ $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2} /(P, R, R)-i$-Pr-SPRIX/TfOH/ $\mathrm{PhI}(\mathrm{OAc})_{2}=1: 0.1: 0.15: \mathrm{X}: 3, \mathbf{1 a}=0.14 \mathrm{mmol} / \mathrm{mL}$ in $\mathrm{AcOH}+\mathrm{DME} \mathrm{(1:1)}$, $3025^{\circ} \mathrm{C}, 4 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis.

Hammett plot

Figure S1. Substituent effects on the enantioselectivity in the cyclative acetoxylation of $\mathbf{1}$.

${ }^{1} \mathrm{H}$ NMR analysis for the additive effect of TfOH

Figure S2. ${ }^{1} \mathrm{H}$ NMR analysis for the additive effect of TfOH.

Deuterium labeling experiment

Scheme S1 Preparation of substrate (Z)-1a-d. (a) TESOTf (3 equiv), 2,6-lutidine (7 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 75 \%$; ${ }_{5}$ (b) $n-\mathrm{BuLi}\left(1.2\right.$ equiv), THF, $-78{ }^{\circ} \mathrm{C}$ to $-30{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{D}_{2} \mathrm{O}$, quant $(97 \% \mathrm{D})$; (c) $\mathrm{Pd} / \mathrm{CaCO}_{3}(\mathrm{Pd}: 1.7 \mathrm{~mol} \%)$, quinoline (2.6 equiv), $\mathrm{H}_{2}(1 \mathrm{~atm})$, toluene, $\mathrm{rt}, 1.5 \mathrm{~h}, 92 \%$; (d) TBAF (2.3 equiv), THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1 \mathrm{~h}, 93 \%$ (ratio: (Z)-1a-d:(E)-1a-d:1a = 81:13:6).

Substrate (Z)-1a-d was prepared from homopropargyl alcohol $\mathbf{S 1}^{4}$ over 4 steps as shown in Scheme S1: First, the alcohol unit of ${ }_{10} \mathbf{S} 1$ was protected with a triethylsilyl (TES) group. ${ }^{5}$ A deuterium atom was then introduced at the alkyne terminal of silyl ether S2. ${ }^{6}$ Subsequent Lindlar reduction of S2-d furnished Z-olefin (Z)-S3- $\boldsymbol{d} .{ }^{7}$ Finally, the desired substrate $(Z)-\mathbf{1 a}-\boldsymbol{d}$ was obtained as an inseparable mixture with its isomer $(E)-\mathbf{1 a}-\boldsymbol{d}$ and non-deuterated 1a (ratio: $(Z) \mathbf{- 1 a} \boldsymbol{-} \boldsymbol{d}:(E) \mathbf{- 1 a} \mathbf{- d}: \mathbf{1 a}=81: 13: 6)$ by the removal of the TES group.
(Z)-1a-d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.55(\mathrm{~s}, 1 \mathrm{H}), 3.10-3.12(\mathrm{br} \mathrm{dd}, J=6.9 \mathrm{~Hz}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }_{15} 5.61-5.70(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.46(\mathrm{~m}, 10 \mathrm{H})$.

Scheme S2 Enantioselective cyclative acetoxylation of (Z)-1a-d promoted by Pd/SPRIX/TfOH catalyst.
20 According to the typical procedure, product consisting of anti-2a-d (80%), syn-2a-d (14\%), and 2a (6\%) was obtained in 87% yield with 90% ee (Scheme S2). Relative configuration of the major product, anti-2a-d, was determined by the comparison of chemical shifts ${ }^{8}$ and coupling constant ${ }^{9}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum with reported values and was eventually established by NOE. anti-2a-d: ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=3.0 \mathrm{~Hz}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=6.9 \mathrm{~Hz}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.99(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) .5 .26-5.29(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.43(\mathrm{~m}, 10 \mathrm{H})$.
25

Scheme S3 Stereochemical pathway of enantioselective cyclative acetoxylation of (Z)-1a-d.
Since the isomeric ratio was not changed throughout the process, i.e. from the substrate $((Z) \mathbf{- 1 a - d}:(E) \mathbf{- 1 a -} \boldsymbol{d}=81: 13)$ to the product ${ }_{30}($ anti-2a-d:syn-2a-d $=80: 14)$, this $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalysis is thought to proceed in a stereospecific manner. Thus, treatment of
substrate (Z)-1a- \boldsymbol{d} with the catalytic system afforded only anti-2a- \boldsymbol{d}. There are two possibilities for the formation of anti-2a-d from (Z)-1a-d (Scheme S3). One is initiated by anti-acetoxypalladation through the coordination of the alkoxy moiety, which is followed by the oxidation of alkyl-Pd(II) species II to Pd(IV) intermediate III. Then, dissociation of the alkoxy ligand and rotation of the $\mathrm{C}-\mathrm{C}$ bond take place to result in intermediate IV. Finally, intramolecular $\mathrm{S}_{\mathrm{N}} 2$ attack of the alkoxy (or alcohol)
5 nucleophile furnishes anti-2a-d (path A). ${ }^{10}$ The other pathway involves cyclization via anti-alkoxypalladation, oxidation, and $\mathrm{S}_{\mathrm{N}} 2$ attack of an external acetoxy anion (path B). From Pd(IV) intermediates III or VII, no direct reductive elimination leading to syn$\mathbf{2 a}-\boldsymbol{d}$ occurs (paths A' and B'). Although path B cannot be ruled out at the present time, path A is preferable for the following reasons:

1. The relationship between the electronic property of the aromatic substituent and the enantioselectivity is better explained.

10 2. Path B contains 5-endo-trig-type cyclization, which is classified as an unfavorable process according to the Baldwin's rule.
3. The use of TfOH drastically accelerates the reaction: In addition to the generation of the catalyticall active species, TfOH may also facilitate the dissociation step.

NMR spectra

Figure S3-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S3-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S4-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 4 - 2 .}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S5-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S6-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S6-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S7-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S7-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S8-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S8-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 f}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S9-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S9-2. ${ }^{13}$ C NMR spectrum of compound $\mathbf{1 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S10-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S10-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S11-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S11-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S12-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S12-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 j}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S13-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S13-2. ${ }^{13} \mathbf{C}$ NMR spectrum of compound $\mathbf{1 k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S14-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S14-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S15-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S15-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2a ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure S16－1．${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ．

\％${ }^{4}$ 等8				4		5
\％\％ise	可可繧	－${ }^{\text {cos }}$		ω	Febe	4
Y	4	Y	4	1	WY！	

Figure S16－2．${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ．

Figure S17-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S17-2. ${ }^{13}$ C NMR spectrum of compound $\mathbf{2 c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S18-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S18-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S19-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S19-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S20-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S20-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 f}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S21-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S21-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S22-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S22-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S23-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2} \mathbf{j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S23-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 j}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure S24-1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S24-2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S25. ${ }^{1}$ H NMR spectrum of compound $\mathbf{1 a - d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of compound anti-2a-d (700 MHz, $\left.\mathrm{CDCl}_{3}\right)$.

Figure S27. HPLC chart of compound 2a.

Figure S28. HPLC chart of compound 2b.

Figure S29. HPLC chart of compound 2c.

Figure S30. HPLC chart of compound 2d.

Figure S31. HPLC chart of compound 2e.

Figure S32. HPLC chart of compound 2 f .

Figure S33. HPLC chart of compound $\mathbf{2 h}$.

Figure S34. HPLC chart of compound $\mathbf{2 i}$.

Figure S35. HPLC chart of compound $\mathbf{2 j}$.

References

1 W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals, 7th ed.; Butterworth-Heinemann: Oxford, U.K., 2013.
2 M. A. Arai, M. Kuraishi, T. Arai and H. Sasai, J. Am. Chem. Soc.
5 2001, 123, 2907.
3 D. L. Oliver and G. K. Anderson, Polyhedron 1992, 11, 2415.
4 J. A. Cabezas, A. R. Pereira and A. Amey, Tetrahedron Lett. 2001, 42, 6819.
5 S, W. Wang, J. Chen, G. H. Chen and Y. G. Peng, Synlett 2009, 9, $10 \quad 1457$.
6 Z. He and A. K. Yudin, J. Am. Chem. Soc. 2011, 133, 13770.
7 J. J. Hirner, K. E. Roth, Y. Shi and S. A. Blum, Organometallics 2012, 31, 6843.
8 A. Maradufu, D. M. Mackie and A. S. Perlin, Can. J. Chem. 1972, 50, $15 \quad 2617$.

9 M. E. Green, J. C. Rech and P. E. Floreancig, Org. Lett. 2005, 7, 4117.

10 Dissociation of an anionic ligand from a Pd(IV) intermediate and its nucleophilic attack at a carbon center bearing $\mathrm{Pd}(\mathrm{IV})$ is reported. See,
20 P. A. Sibbald, C. F. Rosewall, R. D. Swartz and F. E. Michael, J. Am. Chem. Soc. 2009, 131, 15945.

