# Supplementary Information

# Synthesis of a novel 1,2-dithianenucleoside via Pummerer-like reaction, followed by Vorbruggen glycosylation between 1,2-dithiane derivative and uracil

Tadashi Miyazawa, Kouhei Umezaki, Noriko Tarashima, Kazuhiro Furukawa, Takashi Ooi, Noriaki Minakawa **General Methods**. Physical data were measured as follows: Melting points are uncorrected. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded at 400 or 500 MHz and 100 or 125 MHz instruments (Bruker AV500 or AV400) in CDCl<sub>3</sub> or DMSO- $d_6$  as the solvent with tetramethylsilane as an internal standard. Chemical shifts are reported in parts per million ( $\Box$ ), and signals are expressed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broad). All exchangeable protons were detected by addition of D<sub>2</sub>O. Mass spectra were measured by Waters Micromass LTC PREMIER. X-ray crystallographic analysis was performed with a Rigaku RAXIS-RAPID instrument (Rigaku Corporation). A software, "CrystalStructure 3.6.0 (Rigaku Corporation)" was used for solving the data. TLC was done on Merck Kieselgel F254 precoated plates. Silica gel used for column chromatography was Merck silica gel 60 (70–230 mesh).



*cis*-4,5-Diacetoxy-1,2-dithiane (3).<sup>15</sup> A solution of 1 (1.5 g, 9.7 mmol) in 10% aq. KOH–MeOH (36 mL, 1:5) was stirred for 48 h under O<sub>2</sub> atmosphere. After being cooled to 0 °C, the reaction mixture was neutralized with saturated aq. NH<sub>4</sub>Cl, and the reaction mixture was concentrated *in vacuo*. The residue was coevaporated with toluene, and then MeOH was added to the residue. The resulting insoluble materials were filtered off, and the filtrate was concentrated *in vacuo* to give crude 2. To a solution of the resulting 2 in dry CH<sub>3</sub>CN (97 mL) were added Et<sub>3</sub>N

(6.7 mL, 48.6 mmol), acetic anhydride (4.6 mL, 48.6 mmol), and DMAP (200 mg, 1.9 mmol), and the whole was stirred for 2 h at room temperature. The reaction was quenched by addition of MeOH and the solvent was removed *in vacuo*. The residue was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with saturated aqueous NaHCO<sub>3</sub>, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (4:1–2:1), to give **3** (1.75 g, 76% as a yellow solid): <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  5.17(m, 2 H), 3.23–2.66 (m, 4 H), 2.09 (s, 6 H).

(4S, 5R)-4,5-Diacetoxy-1-oxo-1,2-dithiane(4).<sup>15</sup> To a solution of 3 (1.74 g, 7.4 mmol) in  $CH_2Cl_2$  (20 mL) was added a solution of mCPBA (2.0 g, 8.1 mmol) in  $CH_2Cl_2$  (5 mL) dropwisely at -78 °C. After being stirred at the same temperature, the reaction was quenched by addition of saturated aqueous NaHCO<sub>3</sub>. The reaction mixture was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with H<sub>2</sub>O, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (2:1–1:2), to give 4 as a 7:1mixture of diastereomers (1.64 g, 88% as a white solid). As analytical samples, each diastereomer was purified by a silica gel column.

NMR spectrum of diastereomer A; <sup>1</sup>H NMR (CDCl<sub>3</sub>); δ 5.75 (m, 1 H), 5.43 (m, 1 H), 3.97 (m, 1 H), 3.43–3.30 (m, 3 H), 2.17 (s, 3 H), 2.05 (s, 3 H).

NMR spectrum of diastereomer B; <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  5.46 (m, 1 H), 5.26 (ddd, 1 H, J= 2.7, 3.3 and 11.3 Hz), 4.02 (dd, 1 H, J= 11.3 and 13.6 Hz), 4.00 (dd, 1 H, J= 5.0 and 13.6 Hz), 3.23 (dd, 1 H, J= 2.7 and 12.5 Hz), 2.84 (dd, 1 H, J= 3.3 and 12.5 Hz), 2.16 (s, 3 H), 2.10 (s, 3 H).

**4,5-O-(1-Methylethylidene)-1,2-dithiane (6).** In the same manner as described above, compound **1** (5.0 g, 32.8 mmol) was converted into the 1,2-dithiane derivarive **2**. Then, the resulting crude **2** was dissolved in acetone (110 mL), and 2,2-dimethoxypropane (29 mL, 200 mmol) and *p*-TsOH (1.25 g, 6.6 mmol) were added to the solution. After being stirred for 10 min at room temperature, the reaction was quenched by addition of saturated aqueous NaHCO<sub>3</sub> at 0 °C, and the solvent was removed *in vacuo*. The residue was partitioned between AcOEt and H<sub>2</sub>O, and

the separated organic layer was further washed with H<sub>2</sub>O, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (3:1–2:1), to give **3** (1.75 g, 97% as a white solid). Analytical sample was crystalized from Hexane to give **3** as white crystals: mp 48.5–49 °C; ESIMS-LR m/z = 215 (MNa<sup>+</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  4.20 (m, 2 H), 3.16 (m, 4 H), 1.55 and 1.38 (each s, each 3 H).<sup>13</sup>C NMR (CDCl<sub>3</sub>); $\delta$  108.33, 70.73, 35.71, 28.30, 26.64. *Anal*. Calcd for C<sub>7</sub>H<sub>12</sub>O<sub>2</sub>S<sub>2</sub>: C, 43.72; H, 6.29. Found: C, 43.42; H, 6.11.

(4*S*, 5*R*)- 4,5-*O*-(1-Methylethylidene)-1-oxo-1,2-dithiane(7). In the same manner as described for 4, 6 (880 mg, 4.6 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (12 mL) was treated with mCPBA (1.24 g, 5.0 mmol) at -78 °C afforded 7 (789 mg, 83% as a white solid). As analytical samples, each diastereomer was purified by a silica gel column. ESIMS-LR *m*/*z* = 231 (MNa<sup>+</sup>).

Physical data of diastereomer A: mp 100–101 °C (crystallized from hexane/AcOEt); ESIMS-LR m/z = 231 (MNa<sup>+</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  4.47 (m, 1 H), 4.19 (ddd, 1 H, J = 4.0, 6.0, and 10.5 Hz), 3.78 (dd, 1 H, J = 3.8 and 13.3 Hz), 3.58 (dd, 1 H, J = 6.0 and 14.3 Hz), 3.23 (dd, 1 H, J = 10.5 and 14.3 Hz), 3.13 (dd, 1 H, J = 9.8 and 13.3 Hz), 1.51 and 1.36 (each s, each 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>); $\delta$  24.84, 25.59, 28.12, 55.17, 70.93, 72.41, 110.06. *Anal*. Calcd for C<sub>7</sub>H<sub>12</sub>O<sub>3</sub>S<sub>2</sub>: C, 40.36 ; H, 5.81. Found: C, 40.18 ; H,5.74 .

Physical data of diastereomer B: mp 73–74 °C (crystallized from hexane/AcOEt); ESIMS-LR m/z = 231 (MNa<sup>+</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  4.76 (ddd, 1 H, J = 5.3, 6.3, and 9.3 Hz), 4.60 (ddd, 1H, J = 3.3, 6.3, and 7.3 Hz), 3.71 (dd, 1 H, J = 5.3 and 13.3 Hz), 3.58 (dd, 1 H, J = 3.3 and 3.8 Hz), 3.12 (dd, 1 H, J = 7.3 and 13.8 Hz), 3.10 (dd, 1 H, J = 9.3 and 13.3 Hz), 1.50 and 1.39 (each s, each 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>); $\delta$  25.88, 27.71, 28.79, 51.95, 68.05, 70.70, 109.23. *Anal.* Calcd for C<sub>7</sub>H<sub>12</sub>O<sub>3</sub>S<sub>2</sub>: C, 40.36; H, 5.81. Found: C, 40.21; H, 5.64.

1-[(3R,4R,5S)-4,5-O-(1-Methylethylidene)-1,2-dithianyl]uracil (8) and 1-[(3S,4R,5S)-4,5-O-(1-methylethylidene)-1,2-dithianyl]uracil (9). To a suspension of uracil (112 mg, 1.0 mmol) in dry toluene (2 mL) were added triethylamine (280  $\mu$ L, 2.0 mmol) and TMSOTf (723  $\mu$ L, 4.0 mmol), and the mixture was stirred at room temperature until giving two-phase clear solution. Dry CH<sub>3</sub>CN (3.0 mL) was added to the above solution, which gave an one-phase clear solution, and the whole was added to a solution of 7 (104 mg, 0.5 mmol) in dry CH<sub>3</sub>CN (3.0 mL) dropwise over 10 min via a cannula. An additional triethylamine (280  $\mu$ L, 2.0 mmol) in dry toluene (1.5 mL) was added dropwise to the reaction mixture at 0 °C. After being stirred for 10 min at the same temperature, the reaction was quenched by addition of saturated aqueous NaHCO<sub>3</sub> at 0 °C, and the reaction mixture was partitioned between AcOEt and H<sub>2</sub>O. The separated organic layer was washed with saturated aqueous NaHCO<sub>3</sub>, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with MeOH in CHCl<sub>3</sub> (0%–5%), to give **8** (49 mg, 32% as a white solid) and **9** (26 mg, 17% as a coloreless glass).

Physical data of **8**: mp 212–214 °C (dec.) (crystallized from MeOH); ESIMS-LR m/z = 325 (MNa<sup>+</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  8.24 (brs, 1 H), 7.17 (d, 1 H, J = 8.0 Hz), 5.76 (dd, 1 H, J = 1.8 and 8.0 Hz), 5.60 (d, 1 H, J = 9.8 Hz), 4.65 (m, 1 H), 4.40 (dd, 1 H, J = 4.5 and 9.8 Hz), 3.49 (dd, 1 H, J = 3.3 and 15.1 Hz), 3.27 (dd, 1 H, J = 3.0 and 15.1 Hz), 1.62 and 1.40 (each s, each 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta$  162.13, 149.94, 140.92, 109.81, 103.56, 74.51, 74.39, 36.93, 28.17, 26.63; Anal. Calcd for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub>S<sub>2</sub>•1/2 H<sub>2</sub>O: C, 42.43 ; H, 4.86 ; N, 9.00. Found: C, 42.50 ; H, 4.52 ; N, 8.93.

Physical data of **9**: ESIMS-LR m/z = 325 (MNa<sup>+</sup>); ESIMS-HR (MNa<sup>+</sup>) calcd for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub>NaS<sub>2</sub> 325.0293, found 325.0280; <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  9.25 (brs, 1 H ), 7.66 (d, 1 H, J = 8.0 Hz), 6.29 (d, 1 H, J = 2.5 Hz), 5.73 (d, 1 H, J = 8.0 Hz), 4.40 (dd, 1 H, J = 2.5 and 4.3 Hz), 4.36 (ddd, 1 H, J = 4.3, 5.8, and 10.3 Hz), 2.95 (dd, 1 H, J = 10.3 and 14.0 Hz), 2.83 (dd, 1 H, J = 5.8 and 14.0 Hz), 1.59 and 1.36 (each s, each 3 H); <sup>13</sup>CNMR (CDCl<sub>3</sub>);  $\delta$  162.42, 150.02, 142.58, 110.74, 102.73, 75.50, 73.86, 58.40, 34.09, 28.61, 27.12.



Scheme S2

(2*S*,3*S*,4*R*)-2,5-Dibromo-1,3,4-tris-*p*-methoxybenzyloxypentane (10).<sup>18</sup> To a solution of 2,3,5-Tri-*O*-*p*-methoxybenzyl-D-ribitol<sup>18</sup> (27.9 g, 54.5 mmol) in dry pyridine (145 mL) was added MsCl (14.8 mL, 0.19 mol) and the whole mixture was stirred for 30 min at 0 °C. The reaction was quenched by addition of ice, and the reaction mixture concentrated *in vacuo*. The residue was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with saturated aqueous NaHCO<sub>3</sub>, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*, and the residue was coevaporated with toluene to give the crude dimesylate as a yellow oil. The resulting dimesylate in methyl ethyl ketone (130 mL) containing lithium

bromide (45.5 g, 0.52 mol) was heated for 5 h under reflux. The residue was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with saturated aqueous NaHCO<sub>3</sub>, followed by brine. The reaction mixture was allowed to cool to room temperature and concentrated *in vacuo*. The residue was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with H<sub>2</sub>O, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (7:1–3:1), to give **10** (20.9 g, 62% as a yellow oil): <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta \Box 7.32-7.21(m, 6 H)$ , 6.86(m, 6 H), 4.68–4.46 (m, 6 H), 4.40(m, 1 H), 3.79 (s, 9 H), 3.89(m, 1 H), 3.76–3.69(m, 4 H), 3.64(m, 1 H).

(2*R*,3*S*,4*R*)-2,5-Dithioacetyl-1,3,4-tris-*p*-methoxybenzyloxypentane (11). To a solution of 10 (20.8 g, 32.7 mmol) in dry DMF (32 mL) was added potassium thioacetate (26.0 g, 0.2 mol) and the whole mixture was stirred for 7 h at 100 °C. The reaction mixture was allowed to cool to room temperature and concentrated *in vacuo*. The residue was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with H<sub>2</sub>O, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (6:1–3:1), to give 11 (7.6 g, 37% as a brown oil): ESIMS-LR *m/z* = 651 (MNa<sup>+</sup>); ESIMS-HR (MNa<sup>+</sup>) calcd for C<sub>33</sub>H<sub>40</sub>O<sub>8</sub>NaS<sub>2</sub> 651.2062, found 651.2078; <sup>1</sup>H NMR (CDCl<sub>3</sub>); □ $\delta$ □7.22 (m, 6 H), 6.84 (m, 6 H), 4.53–4.39 (m, 6 H), 3.90 (m, 1 H), 3.84 (dd, 1 H, *J* = 4.8 and 5.5 Hz), 3.79 (s, 9 H), 3.63 (m, 2 H), 3.43 (dd, 1 H, *J* = 5.5 and 6.5 Hz), 3.33 (dd, 1 H, *J* = 4.3 and 14.1 Hz), 3.18 (dd, 1 H, *J* = 5.3 and 14.1 Hz), 2.35 (s, 3 H), 2.30 (s, 3 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>); □ $\delta$ □196.07, 195.01, 159.64, 159.58, 130.39, 130.20, 129.99, 129.68, 114.09, 114.04, 78.66, 78.44, 73.43, 72.96, 71.83, 70.07, 55.63, 45.02, 31.07, 30.99, 30.01.

### (3R,4S,5R)-4,5-Bis-*p*-methoxybenzyloxy-3-*p*-methoxybenzyloxymethyl-1,2-dithiane

(12). A solution of 11 (7.6 g, 12.1 mmol) in 10% aq. KOH–MeOH (84 mL, 1:5) was stirred for 8 h under  $O_2$  atmosphere. After being cooled to 0 °C, the reaction mixture was neutralized with saturated aq. NH<sub>4</sub>Cl, and the reaction mixture was concentrated *in vacuo*. The residue was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with H<sub>2</sub>O,

followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (6:1–3:1), to give **12** (4.79 g, 73% as a brown oil): ESIMS-LR m/z = 565 (MNa<sup>+</sup>); ESIMS-HR (MNa<sup>+</sup>) calcd for C<sub>29</sub>H<sub>34</sub>O<sub>6</sub>NaS<sub>2</sub> 565.1694, found 565.1650; <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  7.23 (m, 6 H), 6.86 (m, 6 H), 4.56–4.41 (m, 6 H), 3.89–3.75 (m, 4 H), 3.80 (s, 9 H), 3.50 (m, 1 H), 3.22 (m, 1 H), 2.78 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta$  159.05, 129.48, 129.43, 129.18, 113.65, 113.62, 80.18, 78.94, 72.55, 71.27, 71.16, 68.19, 55.13, 46.99, 30.59.

(3*R*,4*S*,5*R*)-4,5-Dihydroxy-3-hydroxymethyl-1,2-dithiane (13). A solution of 12 (4.79 g, 8.83 mmol) in TFA–CH<sub>2</sub>Cl<sub>2</sub> (20 mL, 1:4) was stirred for 5 h at room temperature. The reaction mixture was concentrated *in vacuo*, and the residue was coevaporated with MeOH several times. Then, the resulting precipitates were filtered off, washed with MeOH. The solvent was removed *in vacuo*, and the residue was purified by a silica gel column, eluted with CHCl<sub>3</sub>/MeOH (19:1–17:3), to give 13 (1.35 g, 84% as a colorless oil): ESIMS-LR m/z = 205 (MNa<sup>+</sup>); ESIMS-HR (MNa<sup>+</sup>) calcd for C<sub>5</sub>H<sub>10</sub>O<sub>3</sub>NaS<sub>2</sub> 204.9969, found 205.0009; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>);  $\delta$  4.85 (br s, 3 H, exchangable with D<sub>2</sub>O), 3.86 (m, 1 H), 3.75–3.55 (m, 3 H), 3.16 (m, 1 H), 2.97 (m, 1 H), 2.75 (m, 1 H); <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>);  $\delta$  75.56, 73.89, 64.34, 52.18, 32.36.

(*3R*,*4S*,*5R*)-*4*,*5*-Dihydroxy-3-triisopropylsiloxymethyl-1,2-dithiane (14). To a solution of 13 (1.2 g, 6.58 mmol) in dry DMF (32 mL) were added triisopropylsilyl chloride (1.5 mL, 7.24 mmol) and imidazole (0.99 g, 14.5 mmol), and the whole mixture was stirred for 5 h at room temperature. The reaction was quenched by addition of ice, and the solvent was removed *in vacuo*. The residue was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with H<sub>2</sub>O, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (5:1–1:1), to give 14 (2.0 g, 91% as a brown oil): ESIMS-LR *m*/*z* = 361 (MNa<sup>+</sup>); ESIMS-HR (MNa<sup>+</sup>) calcd for C<sub>14</sub>H<sub>30</sub>O<sub>3</sub>NaS<sub>2</sub>Si 361.1303, found 361.1303; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>);  $\delta$  4.85 (br s, 2 H, exchangable with D<sub>2</sub>O), 4.12 (m, 1 H), 3.92 (m, 1 H), 3.80 (m, 1 H), 3.61 (m, 1 H), 3.31 (m, 1 H), 2.98 (m, 1 H), 2.79 (m, 1 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta \Box$  74.74, 67.07, 60.30, 48.19, 33.52, 17.78, 11.63.

## (3*R*,4*S*,5*R*)-4,5-*O*-(1-Methylethylidene)-3-triisopropylsiloxymethyl-1,2-dithiane (15).

To a solution of **14** (2.0 g, 5.9 mmol) in acetone (20 mL) were added 2,2-dimethoxypropane (5.3 mL, 41 mmol) and *p*TsCl (0.22 g, 1.2 mmol), and the whole mixture was stirred for 10 min at room temperature. The reaction was quenched by addition of saturated aqueous NaHCO<sub>3</sub> at 0 °C, and the solvent was removed *in vacuo*. The residue was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with H<sub>2</sub>O, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (49:1–24:1), to give **15** (1.98 g, 98% as a brown oil): ESIMS-LR *m/z* = 401 (MNa<sup>+</sup>); ESIMS-HR (MNa<sup>+</sup>) calcd for C<sub>17</sub>H<sub>34</sub>O<sub>3</sub>NaS<sub>2</sub>Si 401.1616, found 401.1655; <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  4.33 (m, 1 H), 4.22 (dd, 1 H, *J* = 4.6 and 8.7 Hz), 4.11 (dd, 1 H, *J* = 4.5 and 10.4 Hz), 3.98 (dd, 1 H, *J* = 5.0 and 10.4 Hz), 3.31 (dd, 1 H, *J* = 3.7 and 14.6 Hz), 3.26 (m, 1 H), 3.18 (dd, 1 H, *J* = 4.5 and 14.6 Hz), 1.52 and 1.38 (each s, each 3 H), 1.07 (m, 21 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta$  108.14, 72.73, 71.14, 62.96, 51.89, 36.58, 28.60, 26.86, 18.12, 12.04.

#### (3R,4S,5R)-4,5-O-(1-Methylethylidene)-1-oxo-3-triisopropylsiloxymethyl-1,2-dithiane

(16). To a solution of 15 (1.9 g, 5.2 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (26 mL) was added a solution of mCPBA (1.42 g, 5.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) dropwisely at -78 °C, and the whole mixture was stirred for 10 min at the same temperature. The reaction was quenched by addition of saturated aqueous NaHCO<sub>3</sub> at -78 °C. The reaction mixture was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with H<sub>2</sub>O, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (7:1–4:1), to give 16 as a 4:1 mixture of diastereomers (1.78 g, 86% as a colorless oil). Analytical samples were purified by a silica gel column: ESIMS-LR *m*/*z* = 395 (MH<sup>+</sup>); ESIMS-HR (MH<sup>+</sup>) calcd for C<sub>17</sub>H<sub>34</sub>O<sub>4</sub>NaS<sub>2</sub>Si 417.1565, found 417.1602.

NMR spectrum of diastereomer A: <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  4.58 (ddd, 1 H, J = 3.5, 5.5 and 7.8 Hz), 4.30 (dd, 1 H, J = 4.3 and 10.5 Hz), 4.26 (dd, 1 H, J = 5.5 and 9.5 Hz), 4.13 (t, 1 H, J = 10.5 Hz), 3.55 (dd, 1 H, J = 3.5 and 13.6 Hz), 3.16 (dd, 1 H, J = 7.8 and 13.6 Hz), 3.06 (ddd, 1 H, J = 4.3, 9.5 and 10.5 Hz), 1.50 and 1.37 (each s, each 3 H), 1.07 (m, 21H, TIPS); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ 

109.25, 71.24, 70.18, 61.64, 55.77, 43.80, 28.30, 26.20, 18.30, 12.23.

NMR spectra of diastereomer B: <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  4.71 (dd, 1 H, J = 6.0 and 10.3 Hz), 4.38 (dd, 1 H, J = 2.3 and 10.5 Hz), 4.20 (ddd, 1 H, J = 4.0, 6.0 and 10.3 Hz), 4.09 (dd, 1 H, J = 2.8 and 10.5 Hz), 3.84 (dd, 1 H, J = 4.0 and 13.3 Hz), 3.80 (m, 1 H), 2.98 (dd, 1 H, J = 10.3 and 13.3 Hz), 1.49 and 1.36 (each s, each 3 H), 1.07 (m, 21 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  109.76, 72.85, 71.66, 62.25, 55.31, 43.29, 27.87, 25.32, 17.79, 11.73.

### (4R,5S,6R)-3-Acetoxy-4,5-O-(1-methylethylidene)-6-triisopropylsiloxymethyl-1,2-dithi

ane (17). A solution of 16 (1.75 g, 4.4 mmol) in acetic anhydride (22 mL) was heated for 33 h under reflux. After being cooled to room temperature, the reaction mixture was poured into saturated aqueous NaHCO<sub>3</sub> at 0 °C. Then, the whole was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with saturated aqueous NaHCO<sub>3</sub>, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (30:1–20:1), to give 17 as a 1:1 mixture of diastereomers (0.37 g, 19% as a orange oil). Analytical samples were purified by a silica gel column: ESIMS-LR m/z = 459 (MNa<sup>+</sup>); ESIMS-HR calcd for C<sub>19</sub>H<sub>36</sub>O<sub>5</sub>NaS<sub>2</sub>Si 459.1671, found 459.1633.

NMR spectra of diastereomer A: <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  6.01 (d, 1 H, J = 4.8 Hz), 4.48 (dd, 1 H, J = 4.8 and 7.5 Hz), 4.16 (t, 1 H, J = 4.8 Hz), 4.14 (dd, 1 H, J = 5.5 and 10.5 Hz), 4.00 (dd, 1 H, J = 5.5 and 10.5 Hz), 3.26 (dt, 1 H, J = 5.5 and 7.5 Hz), 2.16 (s, 3 H), 1.52 and 1.36 (each s, each 3 H), 1.07 (m, 21 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta \Box$  169.15, 108.50, 74.60, 74.45, 73.56, 62.88, 50.27, 28.38, 26.73, 21.15, 18.08, 12.01.

NMR spectra of diastereomer B: <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  6.16 (d, 1 H, J = 3.0 Hz), 4.46 (dd, 1 H, J = 5.0 and 9.0 Hz), 4.41 (dd, 1 H, J = 3.0 and 5.0 Hz), 4.12 (dd, 1 H, J = 4.3 and 10.5 Hz), 4.01 (dd, 1 H, J = 4.3 and 10.5 Hz), 3.25 (dt, 1 H, J = 4.3 and 9.0 Hz), 2.16 (s, 3 H), 1.54 and 1.39(each s, each 3 H), 1.07 (m, 21 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta \Box$  169.34, 109.86, 74.60, 74.45, 73.56, 62.41, 51.78, 27.93, 26.56, 21.19, 18.08, 12.01.

S10

# 1-[(3R,4R,5S,6R)-4,5-*O*-(1-Methylethylidene)-6-triisopropylsiloxymethyl-1,2-Dithianyl ]uracil (18) and 1-[(3S,4R,5S,6R)-4,5-*O*-(1-methylethylidene)-6-triisopropylsiloxymethyl-1,2-Dithianyl]uracil (19). To a suspension of 17 (233 mg, 0.53 mmol) and uracil (120 mg, 1.07 mmol) in dry CH<sub>3</sub>CN (3 mL) was added *N,O*-bis(trimethylsilyl)acetamide (0.52 mL, 2.14 mmol), and TMSOTf (0.24 mL, 1.3 mmol) was added to the resulting clear solution at 0 °C. Then, the whole mixture was heated for 5 h under reflux. After being cooled to room temperature, the reaction mixture was quenched by addition of saturated aqueous NaHCO<sub>3</sub> at 0 °C. Then, the whole was partitioned between AcOEt and H<sub>2</sub>O, and the separated organic layer was further washed with saturated aqueous NaHCO<sub>3</sub>, followed by brine. The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated *in vacuo*. The residue was purified by a silica gel column, eluted with hexane/AcOEt (9:1–3:2), to give **18** (95 mg, 37% as a brown oil) and **19** (40 mg, 15% as a brown form).

Physical data of **18**: ESIMS-LR m/z = 511 (MNa<sup>+</sup>); ESIMS-HR (MNa<sup>+</sup>) calcd for C<sub>21</sub>H<sub>36</sub>N<sub>2</sub>O<sub>5</sub>NaS<sub>2</sub>Si 511.1733, found 511.1706; <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  8.18 (br s, 1 H, exchangable with D<sub>2</sub>O ), 7.39 (d, 1 H, J = 8.2 Hz), 5.78 (d, 1 H, J = 7.6 Hz), 5.75 (d, 1 H, J = 8.2 Hz), 4.80 (t, 1 H, J = 4.7 Hz), 4.38 (dd, 1 H, J = 4.7 and 7.6 Hz), 4.17 (dd, 1 H, J = 6.9 and 10.4 Hz), 4.14 (dd, 1 H, J = 5.4 and 10.4 Hz), 3.33 (ddd, 1 H,  $J_{6',5'} = 4.7$ , 5.4, and 6.9 Hz), 1.57 and 1.37 (each s, each 3 H), 1.07 (m, 21 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta$  163.01, 150.15, 140.77, 108.92, 103.15, 74.20, 73.87, 63.09, 60.05, 49.55, 28.15, 26.53, 18.08, 11.98.

Physical data of **19**: ESIMS-LR m/z = 511 (MNa<sup>+</sup>); ESIMS-HR (MNa<sup>+</sup>) calcd for C<sub>21</sub>H<sub>36</sub>N<sub>2</sub>O<sub>5</sub>NaS<sub>2</sub>Si 511.1733, found 511.1738; <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  8.35 (brs, 1 H, exchangable with D<sub>2</sub>O ), 7.65 (d, 1 H, J = 8.2 Hz), 6.25 (d, 1 H, J = 2.7 Hz), 5.70 (d, 1 H, J = 2.2 and 8.2 Hz), 4.44 (dd, 1 H, J = 2.7 and 4.4 Hz), 4.36 (dd, 1 H, J = 4.4 and 10.4 Hz), 4.11 (dd, 1 H, J = 3.2 and 10.4 Hz), 3.98 (dd, 1 H, J = 4.4 and 10.4 Hz), 3.18 (ddd, 1 H, J = 3.2, 4.4, and 10.4 Hz), 1.54 and 1.35 (each s, each 3 H), 1.00 (m, 21 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta$  163.03, 150.29, 142.84, 110.26,

102.61, 75.87, 74.24, 61.83, 58.79, 52.31, 28.65, 27.07, 18.08, 11.97.

**1-[(3***R***,4***R***,5***S***,6***R***)-4,5-Dihydroxy-6-hydroxymethyl-1,2-dithianyl]uracil (20). A solution of <b>18** (73 mg, 0.15 mmol) in trifluoroacetic acid-CH<sub>2</sub>Cl<sub>2</sub> (2 mL, 1:1) was stirred for 25 h at room temperature. The solvent was removed *in vacuo*, and the residue was coevaporated with MeOH, and then toluene. The residue was purified by a silica gel column, eluted with MeOH in CHCl<sub>3</sub> (15%–25%), to give **20** (40 mg, 91% as a brown solid). Analytical sample was crystalized from MeOH to give **20** as white crystals: mp 204–206 °C (dec.) (crystallized from MeOH); ESIMS-LR m/z = 315 (MNa<sup>+</sup>); <sup>1</sup>H NMR (DMSO- $d_6$ , 70 °C) δ 7.63 (dd, 1 H, J = 4.0 and 8.2 Hz), 5.72 (d, 1 H, J = 9.8 Hz), 5.62 (dd, 1 H, J = 1.6 and 8.2 Hz), 5.34 (br s, 2 H, exchangable with D<sub>2</sub>O), 5.06 (br s, 1 H, exchangable with D<sub>2</sub>O), 4.28 (dd, 1 H, J = 2.2 and 3.5 Hz), 4.09 (dd, 1 H, J = 2.2 and 9.8 Hz), 3.92 (dd, 1 H, J = 3.8 and 11.3 Hz), 3.91 (dd, 1 H, J = 6.9 and 11.3 Hz), 3.10 (ddd, 1 H, J = 3.5, 3.8 and 6.9 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>); δ 164.02, 151.13, 142.10, 102.56, 71.78, 67.70, 59.59, 55.55, 49.16; *Anal*. Calcd for C<sub>9</sub>H<sub>12</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub>: C, 36.98; H, 4.14; N, 9.58. Found: C, 36.88; H, 4.28; N, 9.53.



Scheme S3

2, 3-O-(1-Methylethylidene)-5-O-triisopropylsilyl-1, 4-dithio-D-ribofuranoside (23). To a solution of 18 (24 mg, 0.05 mmol) in dry  $CH_2Cl_2$  (2.0 mL) was added dithiothreitol (30 mg, 0.2 mmol) and  $Et_3N$  (14µL, 0.1 mmol), and the whole mixture was stirred for 4 h at room temperature. The solvent was removed *in vacuo*, and the residue was purified by a silica gel column, eluted with AcOEt in hexane (5%) and then MeOH in CHCl<sub>3</sub> (15–20%), to give 23 as a 1:1 mixture of diastereomers (12 mg, 63% as a colorless oil) and uracil (2.7 mg, 49% as a white solid): ESIMS-LR m/z = 401 (MNa<sup>+</sup>); ESIMS-HR calcd for C<sub>17</sub>H<sub>34</sub>O<sub>3</sub>NaS<sub>2</sub>Si 401.1616, found 401.1646.

NMR spectra of diastereomer A: <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  4.88 (m, 1 H), 4.65 (m, 2 H), 3.98 (dd, 1 H, J = 3.8 and 10.3 Hz), 3.77 (dd, 1 H, J = 5.3 and 10.3 Hz), 3.31 (m, 1 H), 2.28 (d, 1 H, J = 10.8 Hz), 1.56 and 1.37 (each s, each 3 H), 1.07 (m, 21 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta$ 

NMR spectra of diastereomer B: <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  4.96 (dd, 1 H, J = 2.0 and 5.5 Hz), 4.72 (dd, 1 H, J = 2.7 and 6.0 Hz), 4.48 (dd, 1 H, J = 2.7 and 5.5 Hz), 4.01 (dd, 1 H, J = 8.8 and 10.3 Hz), 3.84 (dd, 1 H, J = 6.0 and 10.3 Hz), 3.54 (ddd, 1 H, J = 2.0, 6.0 and 8.8 Hz), 2.44 (d, 1 H, J = 6.0 Hz), 1.52 and 1.32(each s, each 3 H), 1.07 (m, 21 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>);  $\delta$