Supporting Information

An Efficient Synthesis of Polysubstituted Pyrroles via

Copper-Catalyzed Coupling of Oxime Acetates with Dialkyl

Acetylenedicarboxylates under Aerobic Conditions

Xiaodong Tang, Liangbin Huang, Chaorong Qi, Wanqing Wu, Huanfeng Jiang*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

E-mail: jianghf@scut.edu.cn; Fax and Tel.: (+86) 20-87112906

Table of Contents

General Information	[2]
Typical Procedure for the Preparation of Oxime Acetates	[2]
General Procedure for the Synthesis of Pyrroles	[2]
General Procedure for 4a, 4l	[2]
Experimental procedures and characterization data for products 3a-3w, 4a, 4l	[3]
References	.[10]
NMR Spectra for Compounds 3a-3w , 4a , 4l	.[11]

General Information

¹H and ¹³C NMR spectra were recorded on BRUKER DRX-400 spectrometer using CDCl₃ as solvent and TMS as an internal standard. Gas chromatograph mass spectra were obtained with a SHIMADZU model GCMS-QP5000 spectrometer. High-resolution mass spectra (ESI) were obtained with a LCMS-IT-TOF mass spectrometer. Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification. Oxime acetates were synthesized according to the literature procedure.

Typical Procedure for the Preparation of Oxime Acetates¹

The mixture of ketoxime (3.0 mmol), acetic anhydride (6.0 mmol), was stirred at 100 $^{\circ}$ C for 3 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (25 mL) and washed with H₂O (20 mL) and brine (10 mL). The organic layers were dried over anhydrous Na₂SO₄ and evaporated in vacuum. The residue was purified by column chromatography on silica gel to afford the oxime acetates **1** with hexane/ethyl acetate as the eluent.

General Procedure for the Synthesis of Pyrroles

The oxime acetates **1** (0.5 mmol), dialkyl acetylenedicarboxylates **2** (0.6 mmol), CuCl (10 mol %) and Na₂SO₃ (0.6 mmol) was stirred in DMSO (2.0 mL) at 120 °C, in a 20 mL tube with a balloon O₂ for 12 h. When the reaction was completed (detected by TLC), the mixture was cooled to room temperature. The reaction was quenched with H₂O (10 mL) and extracted with EtOAc (3×10 mL) or CH₂Cl₂ (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and then evaporated in vacuum. The residue was purified by column chromatography on silica gel to afford the corresponding pyrroles **3** with hexane/ethyl acetate as the eluent.

General Procedure for 4a, 4l

The mixture of **3a** (0.50 mmol), 3-hexyne (1 mmol), $[RuCl_2(p-cymene)]_2$ (5 mol %) and $Cu(OAc)_2 \cdot H_2O$ (30 mol %) in *t*-AmOH (2 mL) was stirred at 100 °C under air for 22 h. At ambient temperature, the reaction mixture was diluted with H₂O (75 mL) and extracted with EtOAc (3 × 75 mL). The combined organic phase was washed with brine (50 mL) and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents under reduced pressure, the

crude product was purified by column chromatography on silica gel to afford 4a.

Analysis Data for Compounds 3a-3w, 4a, 4l

Dimethyl 5-Phenyl-1H-pyrrole-2,3-dicarboxylate (3a)²

¹H NMR (400 MHz, CDCl₃) δ 9.63 (br, 1H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 3.1 Hz, 1H), 3.93 (s, 3H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 160.7, 134.8, 130.3, 129.2, 128.4, 124.9, 122.7, 121.5, 110.7, 52.3, 51.9. IR (KBr) v (cm⁻¹) 3302, 2953, 1734, 1451, 1267, 1071, 827, 766. MS (EI, 70 eV) m/z (%): 259 (M+), 227, 196, 169, 140, 113, 102, 77.

Dimethyl 5-(p-tolyl)-1H-pyrrole-2,3-dicarboxylate (3b)

¹H NMR (400 MHz, CDCl₃) δ 9.65 (br, 1H), 7.46 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 3.0 Hz, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 2.37 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 160.7, 138.4, 135.1, 129.8, 127.5, 124.8, 122.3, 121.5, 110.3, 52.2, 51.9, 21.3. IR (KBr) v (cm⁻¹) 3303, 2951, 1734, 1450, 1262, 1070, 816, 767. MS (EI, 70 eV) m/z (%): 273(M+), 241, 207, 183, 154, 127, 115, 77. HRMS-ESI (m/z): calcd for C₁₅H₁₅NO₄, [M+Na]⁺ : 296.0893; found, 296.0898.

Dimethyl 5-(4-isobutylphenyl)-1H-pyrrole-2,3-dicarboxylate (3c)

¹H NMR (400 MHz, CDCl₃) δ 9.58 (br, 1H), 7.47 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 3.1 Hz, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 2.50 (d, J = 7.2 Hz, 2H), 1.89 (td, J = 13.3, 6.5 Hz, 1H), 0.92 (s, 3H), 0.91 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.3, 160.7, 142.3, 135.1, 129.9, 127.8, 124.7, 122.3, 121.5, 110.3, 52.2, 51.9, 45.1, 30.2, 22.3. IR (KBr) v (cm⁻¹) 3304, 2954, 1736, 1451, 1267, 1071, 827, 768. MS (EI, 70 eV) m/z (%): 315 (M+), 283, 240, 207, 191, 133, 115, 96. HRMS-ESI (m/z): calcd for C₁₈H₂₁NO₄, [M+Na]⁺: 338.1363; found, 338.1361.

Dimethyl 5-(4-fluorophenyl)-1H-pyrrole-2,3-dicarboxylate (3d)²

¹H NMR (400 MHz, CDCl₃) δ 9.62 (br, 1H), 7.58 - 7.51 (m, 2H), 7.17 - 7.08 (m, 2H), 6.87 (d, J = 3.1 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 160. 7, 134.0, 126.8, 126.7, 122.7, 121.5, 116.4, 116.2, 110.6, 52.3, 52.0. IR (KBr) v (cm⁻¹) 3296, 2954, 1735, 1452, 1264, 1072, 832, 767. MS (EI, 70 eV) m/z (%): 277 (M+), 245, 212, 187, 158, 133, 120, 107, 79.

Dimethyl 5-(4-chlorophenyl)-1H-pyrrole-2,3-dicarboxylate (3e)³

¹H NMR (400 MHz, CDCl₃) δ 9.68 (br, 1H), 7.50 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 3.1 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 160.6, 134.3, 133.7, 129.4, 128.8, 126.1, 123.0, 121.6, 111.0, 52.4, 52.0. IR (KBr) v (cm⁻¹) 3302, 2952, 1736, 1451, 1281, 1072, 824, 766. MS (EI, 70 eV) m/z (%): 293 (M+), 261, 203, 174, 139, 115, 87, 75.

Dimethyl 5-(4-methoxyphenyl)-1H-pyrrole-2,3-dicarboxylate (3f)⁴

¹H NMR (400 MHz, CDCl₃) δ 9.51 (br, 1H), 7.49 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 3.1 Hz, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 3.84 (s, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 160.7, 159.8, 135.0, 126.3, 123.1, 122.1, 121.6, 114.6, 109.8, 55.4, 52.2, 51.9. IR (KBr) v (cm⁻¹) 3302, 2950, 1733, 1449, 1264, 1069, 826, 765. MS (EI, 70 eV) m/z (%): 289(M+), 257, 242, 214, 170, 135, 113, 85, 77.

Dimethyl 5-(o-tolyl)-1H-pyrrole-2,3-dicarboxylate (3g)

¹H NMR (400 MHz, CDCl₃) δ 9.43 (br, 1H), 7.36 (d, J = 6.6 Hz, 1H), 7.31- 7.24 (m, 3H), 6.74 (d, J = 3.1 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 160.6, 135.9, 134.4, 131.2, 130.4, 128.7, 128.6, 126.3, 122.1, 120.8, 113.5, 52.2, 51.9, 20. 9. IR (KBr) v (cm⁻¹) 3294, 2953, 1736, 1446, 1257, 1070, 829, 763. MS (EI, 70 eV) m/z (%): 273 (M+), 241, 210, 183, 155, 127, 115, 91. HRMS-ESI (m/z): calcd for C₁₅H₁₅NO₄, [M+Na]⁺ : 296.0893; found, 296.0893.

COOCH ΗN COOCH3

Dimethyl 5-(m-tolyl)-1H-pyrrole-2,3-dicarboxylate (3h)

¹H NMR (400 MHz, CDCl₃) δ 9.61 (br, 1H), 7.40 - 7.29 (m, 3H), 7.16 (d, J = 7.5 Hz, 1H), 6.92 (d, J = 3.1 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ 164.3, 160. 7, 138.9, 135.00, 130.2, 129.2, 129.1, 125. 6, 122.5, 122.0, 121.5, 110.6, 52.3, 51.9, 21. 5. IR (KBr) v (cm⁻¹) 3300, 2951, 1731, 1448, 1281, 1070, 834, 782. MS (EI, 70 eV) m/z (%): 273 (M+), 241, 207, 183, 154, 127, 115, 77. HRMS-ESI (m/z): calcd for C₁₅H₁₅NO₄, [M+Na]⁺ : 296.0893; found, 296.0898.

Dimethyl 5-(3,4-dimethylphenyl)-1H-pyrrole-2,3-dicarboxylate (3i)

¹H NMR (400 MHz, CDCl₃) δ 9.54 (br, 1H), 7.33 (s, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 6.88 (d, J = 3.1 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 160.7, 137.5, 137.2, 135.2, 130.4, 127.8, 126.1, 122.4, 122.3, 121.5, 110.2, 52.2, 51.9, 19.9, 19.6. IR (KBr) v (cm⁻¹) 3301, 2949, 1733, 1450, 1264, 1070, 818, 766. MS (EI, 70 eV) m/z (%): 287 (M+), 255, 212, 182, 168, 128, 115, 105. HRMS-ESI (m/z): calcd for C₁₆H₁₇NO₄, [M+Na]⁺: 310.1050; found, 310.1055.

Dimethyl 5-(naphthalen-1-yl)-1H-pyrrole-2,3-dicarboxylate (3j)²

¹H NMR (400 MHz, CDCl₃) δ 9.77 (br, 1H), 8.14 -8.11 (m, 1H), 7.93 - 7.86 (m, 2H), 7.59 -7.49 (m, 4H), 6.91 (d, *J* = 3.0 Hz, 1H), 3.91 (s, 3H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 160.7, 133.9, 133.7, 131.2, 129.3, 128.9, 128.6, 127.1, 127.1, 126.4, 125.3, 125.0, 122.6, 121.0, 114.2, 52.2, 52.0. IR (KBr) v (cm⁻¹) 3281, 2951, 1736, 1450, 1278, 1072, 833, 774. MS (EI, 70 eV) m/z (%): 309 (M⁺), 277, 207, 190, 163, 127, 95.

Dimethyl 5-(thiophen-2-yl)-1H-pyrrole-2,3-dicarboxylate (3k)²

¹H NMR (400 MHz, CDCl₃) δ 9.49 (br, 1H), 7.29 (dd, J = 5.1, 1.0 Hz, 1H), 7.23 (dd, J = 3.6, 1.0 Hz, 1H), 7.07 (dd, J = 5.0, 3.7 Hz, 1H), 6.81 (d, J = 3.1 Hz, 1H), 3.93 (s, 3H), 3.89 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 164.0, 160.5, 133.1, 129.5, 128.0, 125.4, 123.9, 122.3, 121.5, 111.1, 52.3, 51.9. IR (KBr) v (cm⁻¹) 3284, 2940, 1730, 1448, 1269, 1071. MS (EI, 70 eV) m/z (%): 265 (M⁺), 233, 175, 146, 111, 87.

Dimethyl 4-methyl-5-phenyl-1H-pyrrole-2,3-dicarboxylate (31)⁵

¹H NMR (400 MHz, CDCl₃) δ 9.26 (br, 1H), 7.45 (d, J = 4.3 Hz, 4H), 7.39 - 7.35 (m, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 160.6, 133.1, 131.3, 128.9, 128.1, 127.6, 122.2, 120.4, 118.8, 52.0, 52.0, 10.8. IR (KBr) v (cm⁻¹) 3285, 2951, 1721, 1442, 1255, 1082, 773. MS (EI, 70 eV) m/z (%): 273 (M⁺), 241, 207, 183, 154, 127, 115, 77.

Dimethyl 4-methyl-5-(p-tolyl)-1H-pyrrole-2,3-dicarboxylate (3m)

¹H NMR (400 MHz, CDCl₃) δ 9.31 (br, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 2.2 Hz, 2H), 3.91 (s, 3H), 3.84 (s, 3H), 2.39 (s, 3H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 160.7, 138.1, 133.3, 129.6, 128.4, 127.5, 122.3, 120.1, 118.5, 51.9, 21.2, 10.8. IR (KBr) v (cm⁻¹) 3297, 2951, 1725, 1445, 1253, 1084, 822, 772. MS (EI, 70 eV) m/z (%): 287 (M+), 255, 197, 169, 128, 84, 77. HRMS-ESI (m/z): calcd for C₁₆H₁₇NO₄, [M+Na]⁺: 310.1050; found, 310.1047.

Dimethyl 5-(4-fluorophenyl)-4-methyl-1H-pyrrole-2,3-dicarboxylate (3n)

¹H NMR (400 MHz, CDCl₃) δ 9.22 (br, 1H), 7.47 -7.36 (m, 3H), 7.17-7.12 (m, 2H), 3.91 (s, 3H), 3.86 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 163. 8, 161.3, 160.5, 132.2,

130.9, 129.6, 129.5, 127.4, 122.2, 120.5, 118.8, 116.1, 115.9, 52.0, 52.0, 10.7. IR (KBr) v (cm⁻¹) 3282, 2959, 1735, 1455, 1295, 1089, 841, 742. MS (EI, 70 eV) m/z (%): 291 (M+), 259, 228, 201, 173, 146, 133, 86. HRMS-ESI (m/z): calcd for $C_{15}H_{14}FNO_4$, $[M+Na]^+$: 314.0799; found, 314.0801.

Dimethyl 5-(4-chlorophenyl)-4-methyl-1H-pyrrole-2,3-dicarboxylate (30)

¹H NMR (400 MHz, CDCl₃) δ 9.34 (br, 1H), 7.43-7.37 (m, 4H), 3.91 (s, 3H), 3.85 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 160.6, 134.1, 131.9, 129.7, 129.1, 128.9, 122.3, 120.7, 119.1, 52.0, 52.0, 10.8. IR (KBr) v (cm⁻¹) 3286, 2952, 1729, 1444, 1287, 1088, 833, 743. MS (EI, 70 eV) m/z (%): 307 (M+), 275, 244, 189, 154, 115, 94, 77. HRMS-ESI (m/z): calcd for C₁₅H₁₄CINO₄, [M+Na]⁺ : 330.0504; found, 330.0506.

Dimethyl 5-(4-methoxyphenyl)-4-methyl-1H-pyrrole-2,3-dicarboxylate (3p)

¹H NMR (400 MHz, CDCl₃) δ 9.13 (br, 1H) 7.29 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 3.77 (s, 6H), 2.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 160.6, 159.6, 133.2, 129.0, 123.8, 122.2, 119.9, 118.2, 114.4, 55.4, 51.9, 51.9, 10.7. IR (KBr) v (cm⁻¹) 3297, 2951, 1724, 1444, 1282, 1084, 834, 771. MS (EI, 70 eV) m/z (%): 303 (M+), 271, 185, 170, 135, 115, 92, 77. HRMS-ESI (m/z): calcd for C₁₆H₁₇NO₅, [M+Na]⁺: 326.0999; found, 326.1000.

Dimethyl 5-(2-fluorophenyl)-4-methyl-1H-pyrrole-2,3-dicarboxylate (3q)

¹H NMR (400 MHz, CDCl₃) δ 9.36 (br, 1H), 7.46-7.41 (m, 1H), 7.39-7.33 (m, 1H), 7.25 - 7.16 (m, 3H), 3.92 (s, 3H), 3.86 (s, 3H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 160.9, 159.9, 158.3, 130.5, 130.6, 129.9, 126.9, 124.5, 124.4, 121.6, 121.1, 120.7, 116.4, 116.2, 52.0, 51.9, 10.9. IR (KBr) v (cm⁻¹) 3291, 2952, 1724, 1446, 1211, 1084, 809, 762. MS (EI, 70 eV) m/z (%): 291 (M+), 259, 228, 201, 173, 146, 133, 86, 75. HRMS-ESI (m/z): calcd for C₁₅H₁₄FNO₄, [M+Na]⁺ : 314.0799; found, 314.0805.

Dimethyl 5-(3-fluorophenyl)-4-methyl-1H-pyrrole-2,3-dicarboxylate (3r)

¹H NMR (400 MHz, CDCl₃) δ 9.44 (br, 1H), 7.41 (dd, J = 14.0, 7.9 Hz, 1H), 7.17 (d, J = 9.7 Hz, 1H), 7.06 (t, J = 8.4 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 164.2, 160.6, 131.8, 130.6, 130.5, 123.3, 123.2, 122.3, 120.8, 119.3, 115.1, 114.9, 114.7, 114.4, 52.1, 52.0, 10.7. IR (KBr) v (cm⁻¹) 3283, 2954, 1720, 1444, 1269, 1084, 806, 769. MS (EI, 70 eV) m/z (%): 291 (M+), 259, 201, 173, 146, 113, 87, 77. HRMS-ESI (m/z): calcd for C₁₅H₁₄FNO₄, [M+Na]⁺: 314.0799; found, 314.0805.

Dimethyl 5-(2,4-dichlorophenyl)-4-methyl-1H-pyrrole-2,3-dicarboxylate (3s)

¹H NMR (400 MHz, CDCl₃) δ 9.38 (br, 1H), 7.51 (d, J = 1.8 Hz, 1H), 7.32 (d, J = 6.4 Hz, 1H), 7.26 (s, 1H), 3.91 (s, 3H), 3.84 (s, 3H), 2.09 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 160.4, 135.4, 134.6, 132.8, 130.1, 128.9, 128.5, 127.3, 121.3, 121.0, 52.0, 51.9, 10.7. IR (KBr) v (cm⁻¹) 3287, 2951, 1725, 1446, 1286, 1091, 828, 772. MS (EI, 70 eV) m/z (%): 341 (M+), 309, 277, 251, 223, 188, 139, 111. HRMS-ESI (m/z): calcd for C₁₅H₁₃Cl₂NO₄, [M+Na]⁺ : 364.0114; found, 364.0119.

Dimethyl 4-ethyl-5-phenyl-1H-pyrrole-2,3-dicarboxylate (3t)²

¹H NMR (400 MHz, CDCl₃) δ 9.19 (br, 1H), 7.48-7.42 (m, 4H), 7.40-7.31 (m, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 2.67 (q, J = 7.5 Hz, 2H), 1.16 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 160.5, 132.9, 131.4, 129.0, 128.2, 127.8, 125.3, 121.7, 120.3, 52.1, 52.0, 18.2, 15.9. IR (KBr) v (cm⁻¹) 3294, 2955, 1726, 1448, 1280, 1093, 771. MS (EI, 70 eV) m/z (%): 287 (M+), 255, 240, 223, 195, 169, 115, 77.

Dimethyl 5-ethyl-4-methyl-1H-pyrrole-2,3-dicarboxylate (3u)²

¹H NMR (400 MHz, CDCl₃) δ 8.99 (br, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 2.52 (q, J = 7.6 Hz, 2H), 2.00 (s, 3H), 1.14 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 160.7, 135.4, 121.2,

118.6, 117.6, 51.8, 51.8, 19.0, 13.3, 9.5. IR (KBr) v (cm⁻¹) 3306, 2954, 1726, 1444, 1279, 1084, 771. MS (EI, 70 eV) m/z (%): 225 (M+), 193, 178, 135, 107, 77.

Diethyl 5-phenyl-1H-pyrrole-2,3-dicarboxylate (3v)

¹H NMR (400 MHz, CDCl₃) δ 9.65 (br, 1H), 7.57 (d, J = 7.3 Hz, 2H), 7.42 (dd, J = 7.6 Hz, 2H), 7.33 (dd, J = 7.4 Hz, 1H), 6.91 (d, J = 3.0 Hz, 1H), 4.37 (q, J = 7.1 Hz, 4H), 1.39 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 160.4, 134.7, 130.4, 129.1, 128.3, 124.9, 122.8, 122.0, 110.5, 61.2, 60.7, 14.3. IR (KBr) v (cm⁻¹) 3302, 2982, 1731, 1474, 1267, 1065, 827, 765. MS (EI, 70 eV) m/z (%): 287 (M+), 241, 169, 140, 115, 102, 77. HRMS-ESI (m/z): calcd for C₁₇H₁₉NO₄, [M+Na]⁺ : 324.1206; found, 324.1212.

Diethyl 4-methyl-5-phenyl-1H-pyrrole-2,3-dicarboxylate (3w)⁶

¹H NMR (400 MHz, CDCl₃) δ 9.38 (br, 1H), 7.47-7.43 (m, 4H), 7.37-7.34 (m, 1H), 4.38 (q, J = 7.1 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 2.25 (s,3H), 1.39 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 160.4, 133.1, 131.5, 128.8, 128.0, 127.7, 122.6, 120.4, 118.4, 60.9, 14.3, 10. 7. IR (KBr) v (cm⁻¹) 3290, 2980, 1722, 1434, 1250, 1032, 768. MS (EI, 70 eV) m/z (%): 301 (M+), 255, 183, 155, 116, 104, 77.

Dimethyl 5,6-diethylpyrrolo[2,1-a]isoquinoline-2,3-dicarboxylate (4a)

¹H NMR (400 MHz, CDCl₃) δ 8.02 - 7.96 (m, 1H), 7.70 - 7.64 (m, 1H), 7.40-7.37 (m, 2H), 7.31 (s, 1H), 3.95 (s, 3H), 3.82 (s, 3H), 2.92 (q, *J* = 7.5 Hz, 2H), 2.84 (q, *J* = 7.5 Hz, 2H), 1.22-1.17 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 164.6, 135.0, 131.5, 127.1, 127.0, 126.8, 125.3, 123.7, 123.1, 122.8, 122.1, 118.4, 101.3, 53.4, 51.8, 22.0, 20.9, 14.6, 12.8. IR (KBr) v (cm⁻¹) 2929, 1722, 1449, 1382, 1218, 753. MS (EI, 70 eV) m/z (%): 339(M+), 307, 280, 249, 220, 204, 165, 102, 95. HRMS-ESI (m/z): calcd for C₂₀H₂₁NO₄, [M+Na]⁺ : 362.1363; found, 362.1356.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Dimethyl 5,6-diethyl-1-methylpyrrolo[2,1-a]isoquinoline-2,3-dicarboxylate (4l)

¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 7.5 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.52 - 7.41 (m, 2H), 3.96 (s, 3H), 3.89 (s, 3H), 3.02 (q, *J* = 7.5 Hz, 2H), 2.91 (q, *J* = 7.5 Hz, 2H), 2.82 (s, 3H), 1.27 (t, *J* = 7.5 Hz, 3H), 1.20 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 165.5, 135.2, 128.3, 127.7, 127.0, 126.6, 126.1, 123.6, 123.5, 122.9, 120.7, 119.5, 113.9, 53.0, 51.8, 22.1, 21.2, 14.5, 13.5, 12.6. IR (KBr) v (cm⁻¹) 2952, 1719, 1451, 1220, 1058, 758. MS (EI, 70 eV) m/z (%): 353 (M+), 322, 290, 261, 234, 220, 108, 95. HRMS-ESI (m/z): calcd for C₂₁H₂₃NO₄, [M+Na]⁺ : 376.1519; found, 376.1511.

References

- 1. Z. H. Ren, Z. Y. Zhang, B.Q. Yang, Wang, Wang, Z. H. Guan, Org. Lett. 2011, 13, 5394.
- S. Madabhushi, V. S. Vangipuram, K. K. R. Mallu, N. Chinthala, C. R. Beeram, Adv. Synth. Catal. 2012, 354, 1413.
- 3. R. Robles-Machín, A. López-Pérez, M. González-Esguevillas, J. Adrio, J. C. Carretero, *Chem. Eur. J.* 2010, **16**, 9864.
- 4. S. Ngwerume, J. E. Camp, J. Org. Chem. 2010, 75, 6271.
- 5. S. Ngwerume, J. E. Camp, Chem. Commun. 2011, 47, 1857.
- 6. G. Guerrini, F. Ponticelli, Eur. J. Org. Chem. 2010, 3919.

NMR Spectra for the Compounds 3a-3w, 4a, 4l

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

