Catalytic stereospecific alkylation of malononitriles with enantioenriched primary allylic amines

Man-Bo Li,^a Hao Li,^a Ju Wang,^a Cong-Rong Liu^a and Shi-Kai Tian*^{ab}

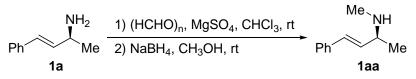
^a Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Supporting information

Table of contents

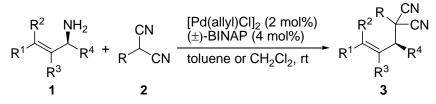
General information	S-2
Preparation of amine 1aa	S-2
General procedure for the stereospecific alkylation of malononitriles	with
enantioenriched primary allylic amines	S-3
Analytical data for the products	S-3
Alkylation of malononitrile (2a) with amine 1aa	S-9
Alkylation of malononitrile (2a) with amine 1ab	S-9
Transformations of substituted malononitrile 3a	S-9
Electrospray ionization mass spectrometric analysis of the reaction mixture	. S-11
Isolation of compound 10a	.S-12
References	S-13
Copies of ¹ H NMR and ¹³ C NMR spectra	S-14
Copies of HPLC traces	S-58


General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AC-400 FT spectrometer (400 MHz and 100 MHz, respectively) using tetramethylsilane as an internal reference. NMR multiplicities are abbreviated as follows: s = singlet, d =doublet, t = triplet, sept = septet, m = multiplet, br = broad signal. Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). Electrospray ionization (ESI) mass spectrometry data were acquired using a Thermo LTO Orbitrap XL instrument equipped with an ESI source and controlled by Xcalibur software. High pressure liquid chromatography (HPLC) analyses were performed on a Hewlett-Packard 1200 Series instrument equipped with an isostatic pump using a Daicel Chiralpak column (AD, AD-H, OD, or OJ, 250 x 4.6 mm) with isopropanol/hexane as mobile phase, and the UV detection was monitored at 254 nm or 210 nm. The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical rotations were measured on a Perkin-Elmer 343 polarimeter with a sodium lamp at $\lambda = 589$ nm and reported as $[\alpha]_D^{T^{\circ}C}$ (c = g/100mL, solvent). Melting points were uncorrected.

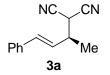
Amines **1a-f** and **1i-j** were resolved from the corresponding racemic mixtures with (+)-tartaric acid,^{1a-c} and their absolute configuration was assigned by comparison of the optical rotation or the chiral HPLC trace (for the derivative) with that reported in the literature.¹ Amines **1g-h** were prepared from *L*-valine according to the literature procedures.² Amine **1ab** was prepared by double methylation of amine **1a** according to the literature procedures: (1) **2b** was prepared through copper-catalyzed arylation of malononitrile with iodobenzene;^{4a} (2) **2c-f** and **2j** were prepared through reductive alkylation of malononitrile with aldehydes or ketones;^{4b} and (3) **2g-i** were prepared through alkylation of malononitrile with alkyl halides.^{4c} The rest of chemicals were purchased from the Sinopharm Chemical Reagent Co., Meryer, Acros, Alfa Aesar, and TCI, and used as received.

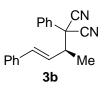
Abbreviations: Ac = acetyl, BINAP = 2,2'-bis(diphenylphosphino)-1,1'binaphthyl, Cy = cyclohexyl, dba = dibenzylideneacetone, dppb = 1,4-bis(diphenylphosphino)butane, Np = naphthyl, rt = room temperature, THF = tetrahydrofuran, Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene.


Preparation of amine 1aa³

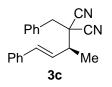
To a solution of amine **1a** $(147 \text{ mg}, 1.0 \text{ mmol})^{1a-c}$ and paraformaldehyde (30.0 mg, 1.0 mmol) in dry chloroform (5.0 mL) was added magnesium sulfate (500 mg). The mixture was stirred at room temperature for 5 h. After filtration, the solvent was evaporated under reduced pressure. The residue was dissolved in methanol (5.0 mL),

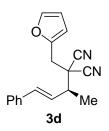
and then NaBH₄ (38.0 mg, 1.0 mmol) was added. The mixture was stirred at room temperature for 1 h, added water (5.0 mL), and extracted with ethyl acetate (2 x 20 mL). The combined organic extracts were dried over anhydrous magnesium sulfate and concentrated. The residue was purified by silica gel chromatography, eluting with ethyl acetate, to give amine **1aa** (90.0 mg, 56%) as a colorless oil.⁵ $[\alpha]_D^{20} = -37.0$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.18 (m, 5H), 6.46 (d, J = 16.0 Hz, 1H), 6.04 (dd, J = 16.0, 8.0 Hz, 1H), 3.26-3.17 (m, 1H), 2.39 (s, 3H), 1.23 (d, J = 6.4 Hz, 3H).

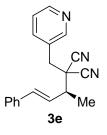

General procedure for the stereospecific alkylation of malononitriles with enantioenriched primary allylic amines

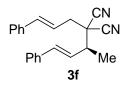

A mixture of amine **1** (0.50 mmol), malononitrile **2** (0.60 mmol), racemic BINAP (12.5 mg, 4 mol%), and $[Pd(allyl)Cl]_2$ (3.64 mg, 2 mol%) in toluene or dichloromethane (1.0 mL) was stirred under nitrogen at room temperature for 3 h or 8 h. The mixture was purified directly by silica gel chromatography, eluting with ethyl acetate/petroleum ether (1:5), to give compound **3**.

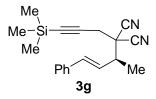
The absolute configuration of compound 3a was assigned to be S by transforming it to known compound 6a (see below) and that of the rest of products was assigned by analogy.

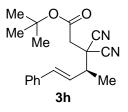

Analytical data for the products


Compound **3a**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (3/97), flow rate 1.0 mL/min, t_R: 16.0 min (major), 18.4 min (minor)], colorless oil; $[\alpha]_D^{20} = -11.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.26 (m, 5H), 6.66 (d, J = 15.6 Hz, 1H), 6.10 (dd, J = 15.6, 8.0 Hz, 1H), 3.72 (d, J = 5.6 Hz, 1H), 3.09–2.98 (m, 1H), 1.45 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 134.6, 128.7, 128.5, 126.7, 126.0, 111.7, 39.3, 29.9, 17.7; HRMS (EI) calcd for C₁₃H₁₂N₂ (M) 196.1000, found 196.0992.

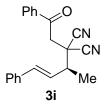

Compound **3b**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (1/99), flow rate 1.0 mL/min, t_R: 11.0 min (minor), 12.2 min (major)], white solid; m.p. 73-74 °C; $[\alpha]_D^{20} = -51.2$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.51 (m, 2H), 7.50–7.41 (m, 3H), 7.33–7.22 (m, 5H), 6.43 (d, J = 16.0 Hz, 1H), 6.01 (dd, J = 16.0, 8.4 Hz, 1H), 3.13-3.05 (m, 1H), 1.37 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 135.5, 130.8, 129.9, 129.4, 128.7, 128.3, 126.6, 125.2, 114.4, 48.8, 48.3, 16.4; HRMS (ESI) calcd for C₁₉H₁₆N₂Na⁺ (M + Na)⁺ 295.1206, found 295.1199.


Compound **3c**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (1/99), flow rate 1.0 mL/min, t_R: 20.3 min (minor), 21.6 min (major)], white solid; m.p. 108-109 °C; $[\alpha]_D^{20} = -32.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.27 (m, 10H), 6.65 (d, J = 15.6 Hz, 1H), 6.18 (dd, J = 15.6, 9.2 Hz, 1H), 3.24 (d, J = 13.6 Hz, 1H), 3.11 (d, J = 13.6 Hz, 1H), 2.96-2.84 (m, 1H), 1.55 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 135.6, 132.4, 130.2, 128.9, 128.8, 128.7, 128.6, 126.7, 125.5, 114.9, 114.3, 45.1, 44.8, 41.7, 17.7; HRMS (EI) calcd for C₂₀H₁₈N₂ (M) 286.1470, found 286.1466.

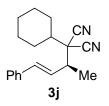

Compound **3d**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (1/99), flow rate 1.0 mL/min, t_R: 19.3 min (major), 21.9 min (minor)], colorless oil; $[\alpha]_D^{20} = -49.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.25 (m, 6H), 6.66 (d, J = 16.0 Hz, 1H), 6.44 (d, J = 3.2 Hz, 1H), 6.40 (dd, J = 3.2, 1.6 Hz, 1H), 6.12 (dd, J = 16.0, 8.8 Hz, 1H), 3.36 (d, J = 15.2 Hz, 1H), 3.29 (d, J = 15.2 Hz, 1H), 2.93-2.80 (m, 1H), 1.52 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 143.4, 135.8, 135.6, 128.7, 128.5, 126.7, 125.0, 114.6, 114.1, 110.9, 110.6, 43.8, 43.0, 34.5, 17.4; HRMS (EI) calcd for C₁₈H₁₆N₂O (M) 276.1263, found 276.1262.


Compound **3e**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (10/90), flow rate 1.0 mL/min, t_R: 15.7 min (minor), 19.5 min (major)], white solid; m.p. 112-113 °C; $[\alpha]_D^{20} = -30.9$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.67-8.61 (m, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.47–7.23 (m, 6H), 6.68 (d, J = 16.0 Hz, 1H), 6.17 (dd, J = 16.0, 9.2 Hz, 1H), 3.25 (d, J = 13.6 Hz, 1H), 3.13 (d, J = 13.6 Hz, 1H), 2.95-2.88 (m, 1H), 1.57 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 150.2, 137.6, 136.0, 135.5, 128.8, 128.7, 128.4, 126.7, 125.0, 123.7, 114.5, 113.8, 45.0, 44.8, 39.1, 17.8; HRMS (EI) calcd for C₁₉H₁₇N₃ (M) 287.1422, found 287.1424.

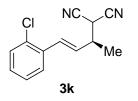
Compound **3f**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (1/99), flow rate 1.0 mL/min, t_R: 17.4 min (minor), 20.2 min (major)], colorless oil; $[\alpha]_D^{20} = -104.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.22 (m, 10H), 6.68 (d, J = 15.6 Hz, 1H), 6.62 (d, J = 15.6 Hz, 1H), 6.24 (dt, J = 15.6, 7.6 Hz, 1H), 6.11 (dd, J = 15.6, 9.2 Hz, 1H), 2.95–2.85 (m, 2H), 2.84–2.74 (m, 1H), 1.52 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 135.8, 135.7, 135.5, 128.8, 128.7, 128.5, 126.7, 119.3, 114.9, 114.4, 44.0, 43.3, 39.5, 17.5; HRMS (EI) calcd for C₂₂H₂₀N₂ (M) 312.1626, found 312.1632.



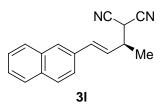
Compound **3g**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (1/99), flow rate 1.0 mL/min, t_R: 12.6 min (minor), 15.1 min (major)], white solid; m.p. 78-79 °C; $[\alpha]_D^{20} = -51.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.26 (m, 5H), 6.66 (d, J = 15.6 Hz, 1H), 6.02 (dd, J = 15.6, 9.2 Hz, 1H), 3.10–3.00 (m, 1H), 2.99 (d, J = 16.8 Hz, 1H), 2.86 (d, J = 16.8 Hz, 1H), 1.52 (d, J = 6.8 Hz, 3H), 0.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 136.1, 129.3, 129.2, 127.3, 125.1, 114.9, 114.3, 96.7, 93.4, 44.0, 42.7, 28.9, 17.9, 0.3; HRMS (EI) calcd for C₁₉H₂₂N₂Si (M) 306.1552, found 306.1550.



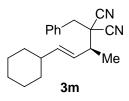
Compound **3h**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda =$


254 nm, isopropanol/hexane (5/95), flow rate 1.0 mL/min, t_R: 7.4 min (minor), 9.1 min (major)], colorless oil; $[\alpha]_D{}^{20} = -26.5$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.23 (m, 5H), 6.60 (d, J = 16.0 Hz, 1H), 6.05 (dd, J = 16.0, 9.2 Hz, 1H), 3.05–2.93 (m, 1H), 2.95 (d, J = 16.8 Hz, 1H), 2.81 (d, J = 16.8 Hz, 1H), 1.53 (d, J = 7.6 Hz, 3H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 135.9, 135.5, 128.8, 128.7, 126.7, 124.9, 114.7, 113.9, 84.0, 44.5, 40.9, 39.1, 27.9, 17.3; HRMS (EI) calcd for C₁₉H₂₂N₂O₂ (M) 310.1681, found 310.1679.

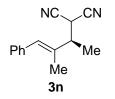
Compound **3i**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (5/95), flow rate 1.0 mL/min, t_R: 19.8 min (major), 21.8 min (minor)], white solid; m.p. 104-105 °C; $[\alpha]_D^{20} = -54.0$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 8.4, 1.2 Hz, 2H), 7.65–7.56 (m, 1H), 7.51–7.43 (m, 2H), 7.36–7.27 (m, 5H), 6.61 (d, J = 15.6 Hz, 1H), 6.11 (dd, J = 15.6, 9.2 Hz, 1H), 3.69 (d, J = 18.0 Hz, 1H), 3.64 (d, J = 18.0 Hz, 1H), 3.23–3.11 (m, 1H), 1.58 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 135.8, 135.5, 135.0, 134.4, 129.0, 128.8, 128.6, 128.1, 126.7, 125.3, 115.0, 114.2, 43.9, 43.8, 38.4, 17.5; HRMS (EI) calcd for C₂₁H₁₈N₂O (M) 314.1419, found 314.1415.



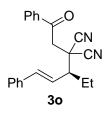
Compound **3j**, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (1/99), flow rate 1.0 mL/min, t_R: 8.0 min (major), 12.1 min (minor)], colorless oil; $[\alpha]_D{}^{20} = -42.6$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.24 (m, 5H), 6.60 (d, J = 16.0 Hz, 1H), 6.09 (dd, J = 16.0, 9.2 Hz, 1H), 3.03–2.92 (m, 1H), 2.08–1.93 (m, 2H), 1.91–1.80 (m, 3H), 1.73–1.70 (m, 1H), 1.47 (d, J = 6.8 Hz, 3H), 1.46–1.20 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 134.5, 128.7, 128.4, 126.6, 125.8, 114.5, 114.3, 48.9, 41.8, 41.1, 27.7, 25.7, 25.6, 25.5, 17.6, 5.6; HRMS (EI) calcd for C₁₉H₂₂N₂ (M) 278.1783, found 278.1787.



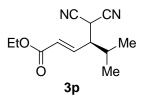
Compound 3k, 95% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda =$


254 nm, isopropanol/hexane (1/99), flow rate 1.0 mL/min, t_R: 31.2 min (minor), 34.8 min (major)], colorless oil; $[\alpha]_D^{20} = +10.7$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.49 (m, 1H), 7.40–7.34 (m, 1H), 7.32–7.21 (m, 2H), 7.06 (d, J = 16.0 Hz, 1H), 6.10 (dd, J = 16.0, 8.0 Hz, 1H), 3.77 (d, J = 5.6 Hz, 1H), 3.18–3.05 (m, 1H), 1.49 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 131.0, 129.8, 129.5, 128.9, 127.1, 127.0, 111.6, 111.5, 39.3, 29.8, 17.6; HRMS (EI) calcd for C₁₃H₁₁N₂Cl (M) 230.0611, found 230.0614.

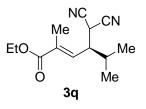
Compound **31**, 90% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (3/97), flow rate 1.0 mL/min, t_R: 30.8 min (major), 34.9 min (minor)], white solid; m.p. 122-123 °C; $[\alpha]_D^{20} = -11.4$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.73 (m, 4H), 7.60–7.55 (m, 1H), 7.56–7.44 (m, 2H), 6.81 (d, J = 16.0 Hz, 1H), 6.23 (dd, J = 16.0, 8.0 Hz, 1H), 3.76 (d, J = 5.6 Hz, 1H), 3.16–3.03 (m, 1H), 1.49 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.7, 133.4, 133.3, 133.0, 128.5, 128.1, 127.7, 127.1, 126.5, 126.4, 126.2, 123.3, 111.7, 111.6, 39.4, 29.9, 17.7; HRMS (EI) calcd for C₁₇H₁₄N₂ (M) 246.1157, found 246.1154.



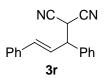
Compound **3m**, 98% ee as determined by HPLC analysis [Daicel Chiralcel OD, $\lambda = 210 \text{ nm}$, isopropanol/hexane (1/99), flow rate 1.0 mL/min, t_R: 13.5 min (major), 14.9 min (minor)], colorless oil; $[\alpha]_D^{20} = +9.8$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.33 (m, 5H), 5.70 (dd, J = 15.6, 6.8 Hz, 1H), 5.45–5.34 (m, 1H), 3.16 (d, J = 14.0 Hz, 1H), 3.03 (d, J = 14.0 Hz, 1H), 2.67–2.57 (m, 1H), 2.08–2.00 (m, 1H), 1.78–1.61 (m, 5H), 1.41 (d, J = 6.8 Hz, 3H), 1.33–1.06 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 132.7, 130.2, 128.9, 128.6, 124.0, 115.0, 114.4, 45.1, 44.2, 41.5, 40.7, 32.8, 32.7, 26.0, 25.8, 17.6; HRMS (EI) calcd for C₂₀H₂₄N₂ (M) 292.1939, found 292.1936.



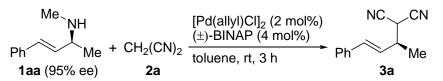
Compound **3n**, 90% ee as determined by HPLC analysis [Daicel Chiralcel OD, $\lambda = 254$ nm, isopropanol/hexane (5/95), flow rate 1.0 mL/min, t_R: 21.5 min (major), 24.6


min (minor)], colorless oil; $[\alpha]_D{}^{20} = -9.6$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.33 (m, 2H), 7.29–7.22 (m, 3H), 6.59 (s, 1H), 3.80 (d, J = 7.6 Hz, 1H), 3.05-2.95 (m, 1H), 1.88 (d, J = 1.6 Hz, 3H), 1.49 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 134.3, 130.3, 128.9, 128.3, 127.2, 112.1, 111.9, 44.8, 28.4, 16.6, 14.8; HRMS (EI) calcd for C₁₄H₁₄N₂ (M) 210.1157, found 210.1153.

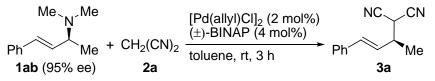
Compound **30**, 90% ee as determined by HPLC analysis [Daicel Chiralcel AD, $\lambda = 254$ nm, isopropanol/hexane (5/95), flow rate 1.0 mL/min, t_R: 13.2 min (major), 15.1 min (minor)], white solid; m.p. 101-102 °C; $[\alpha]_D^{20} = -43.9$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.85 (m, 2H), 7.62–7.56 (m, 1H), 7.49–7.41 (m, 2H), 7.36–7.25 (m, 5H), 6.59 (d, J = 15.6 Hz, 1H), 5.95 (dd, J = 15.6, 10.0 Hz, 1H), 3.69 (d, J = 18.0 Hz, 1H), 3.65 (d, J = 18.0 Hz, 1H), 2.20–2.11 (m, 1H), 1.84–1.74 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 137.6, 135.4, 135.0, 134.4, 129.0, 128.8, 128.6, 128.1, 126.7, 123.8, 115.2, 114.4, 50.9, 44.0, 37.9, 24.5, 11.8; HRMS (EI) calcd for C₂₂H₂₀N₂O (M) 328.1576, found 328.1568.



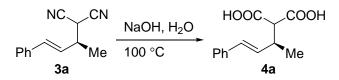
Compound **3p**, >99% ee as determined by HPLC analysis [Daicel Chiralcel AS, $\lambda = 210$ nm, isopropanol/hexane (5/95), flow rate 1.0 mL/min, t_R: 18.4 min (major)], colorless oil; $[\alpha]_D^{20} = +20.0$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.75 (dd, J = 15.6, 10.0 Hz, 1H), 6.10 (d, J = 15.6 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 3.92 (d, J = 6.4 Hz, 1H), 2.61–2.52 (m, 1H), 2.16–2.04 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 140.4, 128.1, 111.5, 111.0, 61.0, 50.0, 29.7, 26.1, 20.6, 18.8, 14.2; HRMS (EI) calcd for C₁₂H₁₆N₂O₂ (M) 220.1212, found 220.1219.


Compound **3q**, >99% ee as determined by HPLC analysis [Daicel Chiralcel AS, $\lambda = 210$ nm, isopropanol/hexane (2/98), flow rate 1.0 mL/min, t_R: 22.4 min (major)],

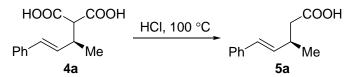
colorless oil; $[\alpha]_D{}^{20} = +27.7$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.61–6.55 (m, 1H), 4.25 (q, J = 7.2 Hz, 2H), 3.88 (d, J = 6.0 Hz, 1H), 2.93–2.84 (m, 1H), 2.14–2.04 (m, 1H), 1.97 (d, J = 1.6 Hz, 3H), 1.33 (t, J = 6.8 Hz, 3H), 1.04 (d, J = 6.8 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 134.9, 133.9, 111.7, 111.1, 61.3, 46.2, 30.4, 25.9, 20.5, 18.6, 14.2, 13.5; HRMS (EI) calcd for C₁₃H₁₈N₂O₂ (M) 234.1368, found 234.1372.


Compound **3r**,⁶ white solid; m.p. 66-67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.26 (m, 10H), 6.70 (d, J = 16.0 Hz, 1H), 6.46 (dd, J = 16.0, 8.0 Hz, 1H), 4.12–4.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 135.8, 135.5, 129.4, 128.9, 128.7, 128.6, 127.7, 126.8, 123.9, 111.8, 111,7, 49.7, 30.2.

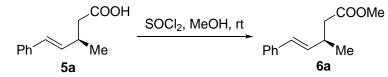
Alkylation of malononitrile (2a) with amine 1aa


A mixture of amine **1aa** (80.5 mg, 0.50 mmol), malononitrile **2a** (39.6 mg, 0.60 mmol), racemic BINAP (12.5 mg, 4 mol%), and $[Pd(allyl)Cl]_2$ (3.64 mg, 2 mol%) in toluene (1.0 mL) was stirred under nitrogen at room temperature for 3 h. The mixture was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (1:5), to give compound **3a** (55.0 mg, 56%) as a colorless oil.

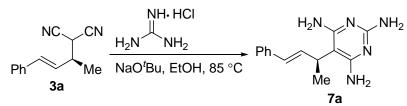
Alkylation of malononitrile (2a) with amine 1ab



A mixture of amine **1ab** (87.5 mg, 0.50 mmol), malononitrile **2a** (39.6 mg, 0.60 mmol), racemic BINAP (12.5 mg, 4 mol%), and $[Pd(allyl)Cl]_2$ (3.64 mg, 2 mol%) in toluene (1.0 mL) was stirred under nitrogen at room temperature for 3 h. The mixture was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (1:5), to give compound **3a** (7.8 mg, 8%) as a colorless oil.

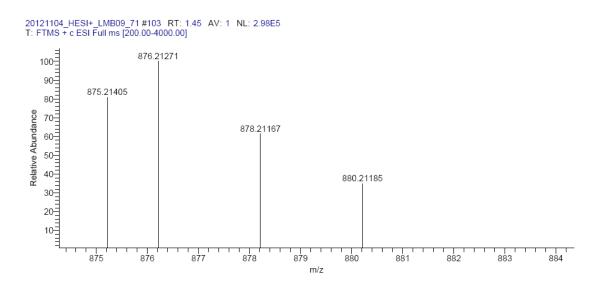

Transformations of substituted malononitrile 3a

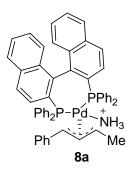
To a mixture of malononitrile **3a** (95% ee, 196 mg, 1.0 mmol) and water (5 mL) at room temperature was added sodium hydroxide (200 mg, 5.0 mmol) carefully. The mixture was heated under reflux for 5 h and then cooled to room temperature. The mixture was extracted with dichloromethane (2 x 20 mL). The product was recovered from the aqueous layer by treatment with aqueous hydrogen chloride (1 M, 10.0 mL) and extracted with dichloromethane (2 x 20 mL). The combined organic extracts were dried over anhydrous sodium sulfate and then concentrated to give diacid **4a** (201 mg, 86%) as a white solid. m.p. 118-119 °C; $[\alpha]_D^{20} = -52.6$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 10.72 (s, br, 2H), 7.41–7.21 (m, 5H), 6.47 (d, J = 16.0 Hz, 1H), 6.13 (dd, J = 16.0, 8.4 Hz, 1H), 3.44 (d, J = 8.4 Hz, 1H), 3.14–3.04 (m, 1H), 1.22 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 136.9, 131.4, 130.5, 128.6, 127.5, 126.4, 57.5, 37.7, 18.3; HRMS (EI) calcd for C₁₃H₁₄O₄ (M) 234.0892, found 234.0899.



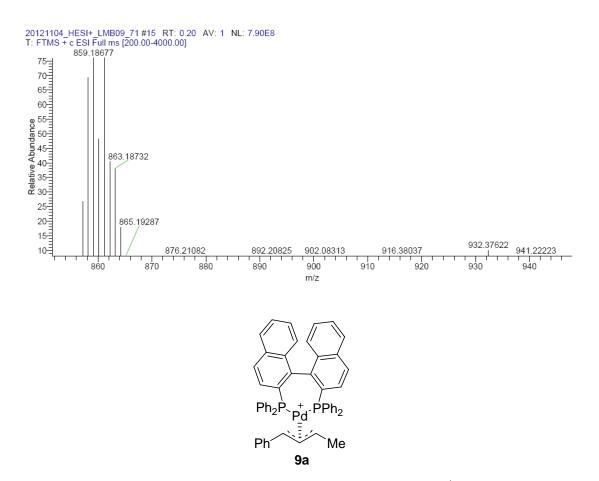
To diacid **4a** (117 mg, 0.50 mmol) at room temperature was added aqueous hydrogen chloride (3 M, 1.0 mL). After that the mixture was heated under reflux for 8 h. The mixture was cooled to room temperature and extracted with dichloromethane (2 x 20 mL). The combined organic extracts were dried over anhydrous sodium sulfate and then concentrated. The residue was purified by silica gel chromatography (ethyl acetate/petroleum ether = 1/1) to give acid **5a** (73.2 mg, 77%) as a colorless oil.⁷ $[\alpha]_D^{20} = -33.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.19 (m, 5H), 6.42 (d, J = 16.0 Hz, 1H), 6.15 (dd, J = 16.0, 7.6 Hz, 1H), 2.91–2.82 (m, 1H), 2.53–2.36 (m, 2H), 1.18 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 137.1, 133.9, 129.0, 128.5, 127.2, 126.2, 41.2, 33.7, 20.2.

Thionyl chloride (59.5 mg, 36.3 µL, 0.50 mmol) was added dropwise to a solution of acid **5a** (57.0 mg, 0.30 mmol) in methanol (1.0 mL) at 0 °C. The mixture was stirred at room temperature for 1 h and then quenched with ice water (5.0 mL). The mixture was extracted with dichloromethane (2 x 20 mL). The combined organic extracts were dried over anhydrous sodium sulfate and then concentrated. The residue was purified by silica gel chromatography (ethyl acetate/petroleum ether = 1/5) to give ester **6a** (50.1 mg, 80%) as a colorless oil.⁸ $[\alpha]_D^{20} = -62.6$ (c = 1.0, CCl₄), Lit.⁸

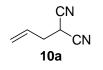

79% ee, $[\alpha]_D^{20} = -49.2$ (*c* = 1.3, CCl₄); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.20 (m, 5H), 6.41 (d, *J* = 16.0 Hz, 1H), 6.14 (dd, *J* = 16.0, 7.6 Hz, 1H), 3.67 (s, 3H), 2.91–2.80 (m, 1H), 2.49–2.33 (m, 2H), 1.15 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 137.3, 134.2, 128.9, 128.5, 127.1, 126.1, 51.3, 41.4, 34.0, 20.2.



A mixture of malononitrile **3a** (196 mg, 1.0 mmol), guanidine hydrochloride (105 mg, 1.1 mmol), sodium *tert*-butoxide (106 mg, 1.1 mmol) in ethanol (1.0 mL) was refluxed at 85 °C for 8 h. After filtration, the solution was cooled to 0 °C to give a white solid. Recrystallization from ethanol gave pyrimidine **7a** (235 mg, 92%) as a white solid. m.p. 242-243 °C; $[\alpha]_D^{20} = -9.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 7.44–7.40 (m, 2H), 7.34–7.27 (m, 2H), 7.24–7.17 (m, 1H), 6.55-6.41 (m, 2H), 5.37 (s, br, 4H), 5.25 (s, br, 2H), 3.76-3.69 (m, 1H), 1.31 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 161.8, 160.8, 137.2, 134.7, 128.5, 127.6, 127.0, 125.9, 88.5, 30.9, 16.2; HRMS (EI) calcd for C₁₄H₁₇N₅ (M) 255.1484, found 255.1483.


Electrospray ionization mass spectrometric analysis of the reaction mixture

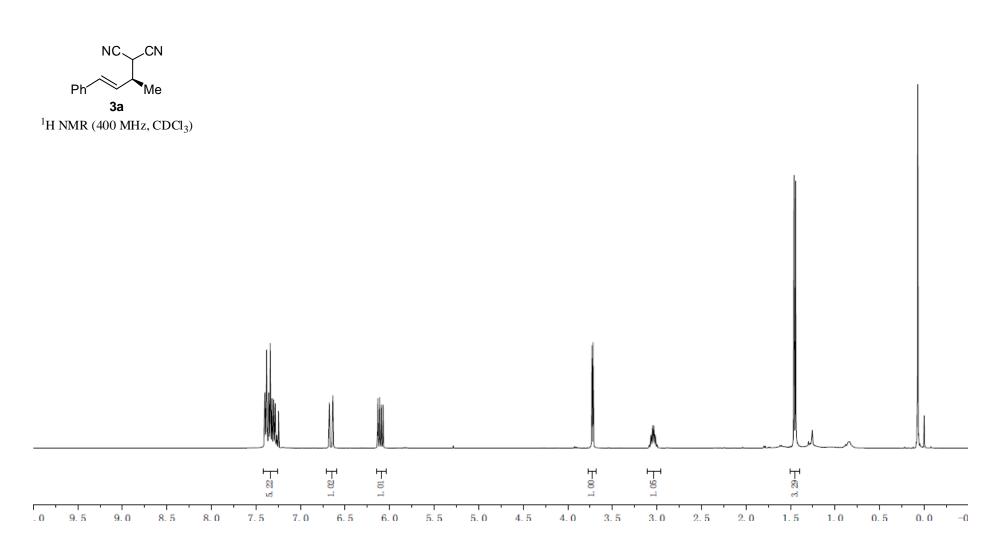
A mixture of amine **1a** (73.5 mg, 0.50 mmol), malononitrile **2a** (39.6 mg, 0.60 mmol), racemic BINAP (12.5 mg, 4 mol%), and $[Pd(allyl)Cl]_2$ (3.64 mg, 2 mol%) in toluene (1.0 mL) was stirred under nitrogen at room temperature for 10 min. The mixture was cooled to room temperature and subjected to ESI-MS (positive mode) analysis. Copied below is the spectrum we obtained and the species have been identified according to the high resolution mass data.

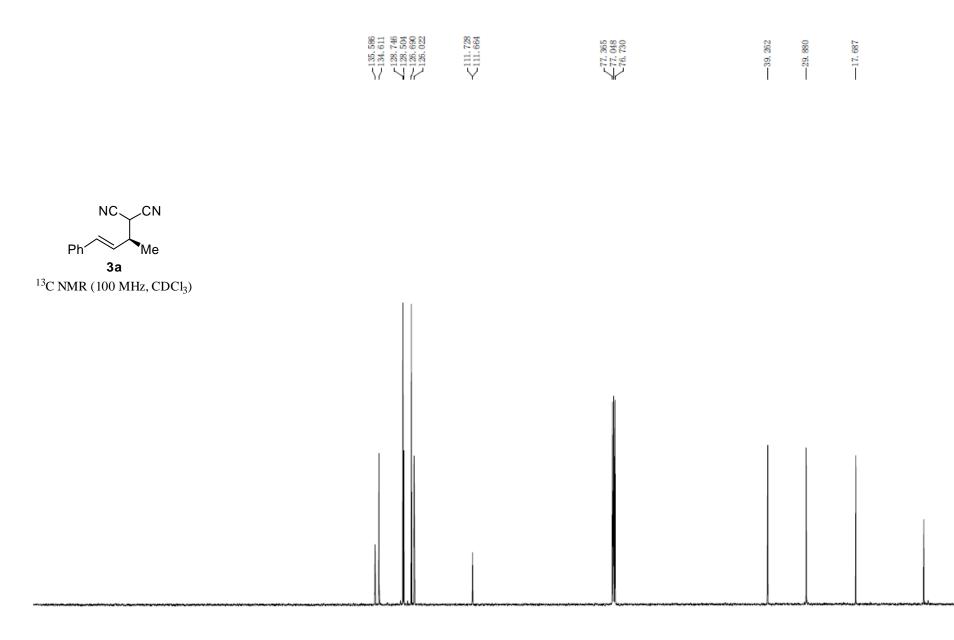


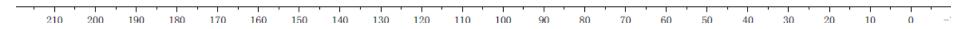
 π -Allylpalladium **8a**: HRMS (ESI) calcd for C₅₀H₄₆NP₂Pd⁺ 876.21348, found 876.21271.

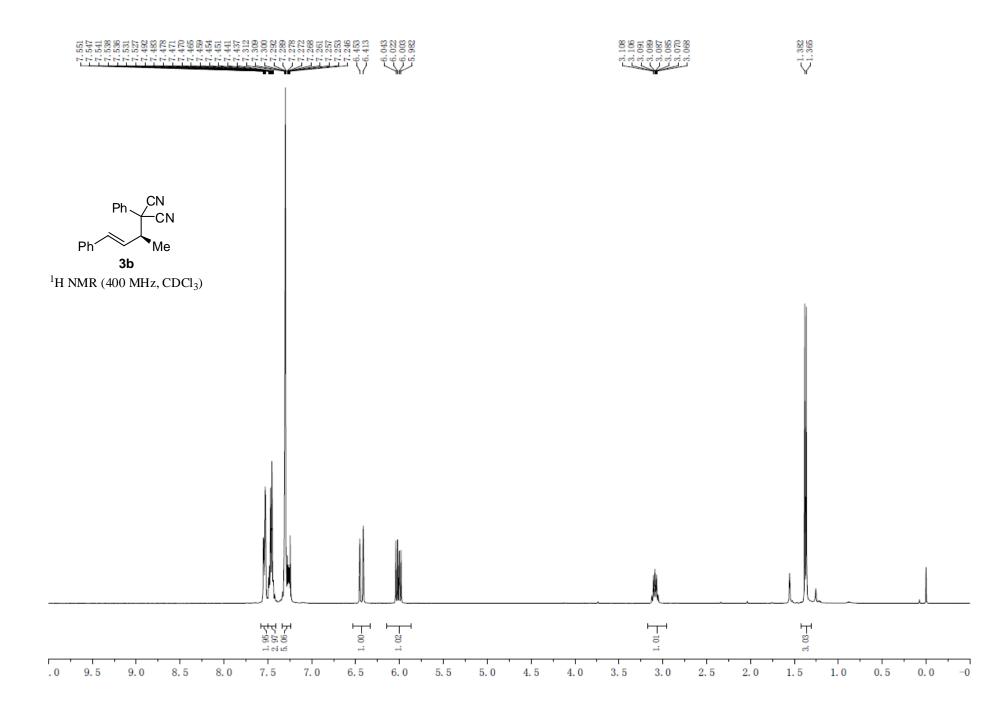
 $\pi\text{-Allylpalladium}$ 9a: HRMS (ESI) calcd for $C_{54}H_{43}P_2Pd^+$ 859.18693, found 859.18677.

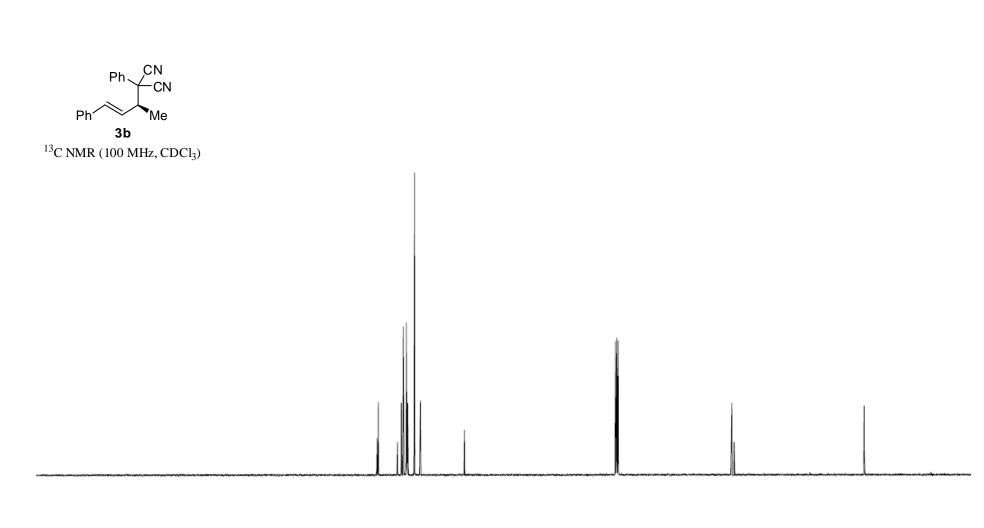
Isolation of compound 10a

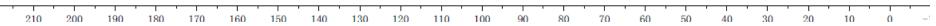

A mixture of amine **1a** (147 mg, 1.0 mmol), malononitrile (**2a**) (79.0 mg, 1.2 mmol), racemic BINAP (25.0 mg, 4 mol%), and $[Pd(allyl)Cl]_2$ (7.28 mg, 2 mol%) in

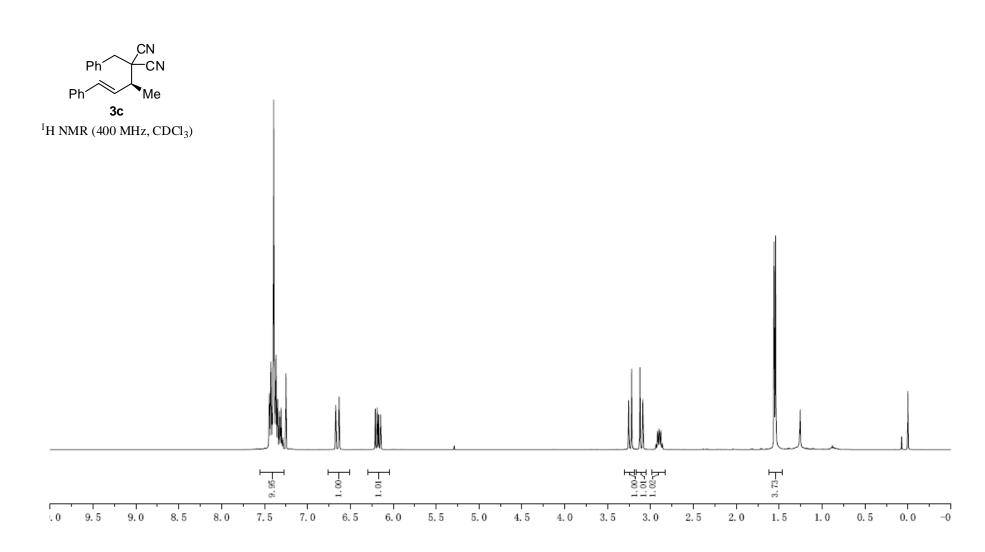

toluene (2.0 mL) was stirred under nitrogen at room temperature for 3 h. The mixture was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (1:20), to give compound **10a** (3.9 mg, 92% yield based on [Pd(allyl)Cl]₂) as a colorless oil.⁹ ¹H NMR (400 MHz, CDCl₃) δ 5.92–5.79 (m, 1H), 5.44–5.37 (m, 2H), 3.80 (t, *J* = 6.8 Hz, 1H), 2.78-2.73 (m, 2H).


References

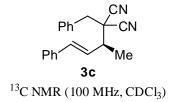

- (a) T. G. Schenck and B. Bosnich, J. Am. Chem. Soc., 1985, 107, 2058; (b) M.-B. Li, Y. Wang and S.-K. Tian, Angew. Chem. Int. Ed., 2012, 51, 2968; (c) X.-S. Wu, Y. Chen, M.-B. Li, M.-G. Zhou and S.-K. Tian, J. Am. Chem. Soc., 2012, 134, 14694; (d) E. G. Klauber, N. Mittal, T. K. Shah and D. Seidel, Org. Lett., 2011, 13, 2464.
- 2 C. Dai and C. R. J. Stephenson, Org. Lett., 2010, 12, 3453.
- 3 Y. Yamamoto, J. Oda and Y. Inouye, J. Org. Chem., 1976, 41, 303.
- 4 (a) K. Okuro, M. Furuune, M. Miura and M. Nomura, J. Org. Chem., 1993, 58, 7606; (b) J. C. Dunham, A. D. Richardson and R. E. Sammelson, Synthesis, 2006, 680; (c) E. Díez-barra, A. de la Hoz, A. Moreno and P. Sánchez-Verdú, J. Chem. Soc. Perkin Trans. 1, 1991, 2589.
- 5 For a racemic form, see: S.-I. Murahashi, Y. Imada, Y. Taniguchi and Y. Kodera, *Tetrahedron Lett.*, 1988, **29**, 2973.
- 6 J.-H. Xie, H.-F. Duan, B.-M. Fan, X. Cheng, L.-X. Wang and Q.-L. Zhou, *Adv. Synth. Catal.*, 2004, **346**, 625.
- 7 For a racemic form, see: J. Kluegge, E. Herdtweck and T. Bach, *Synlett*, 2004, 1199.
- 8 T. Hayashi, A. Yamamoto and T. Hagihara, J. Org. Chem., 1986, 51, 723.
- 9 S. Ma, S. Yu and W. Qian, *Tetrahedron*, 2005, **61**, 4157.

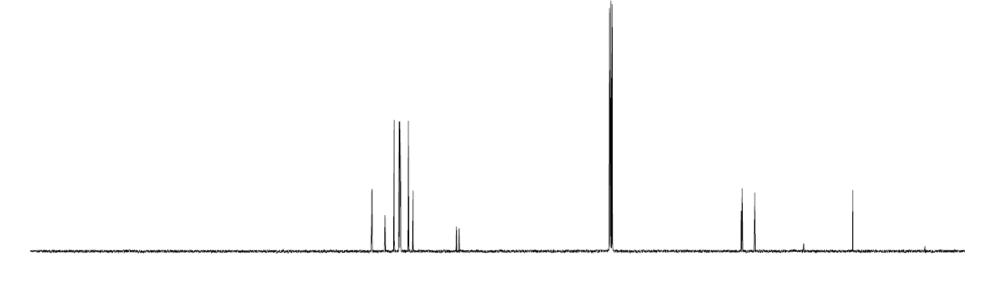


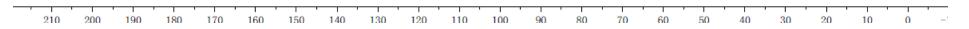


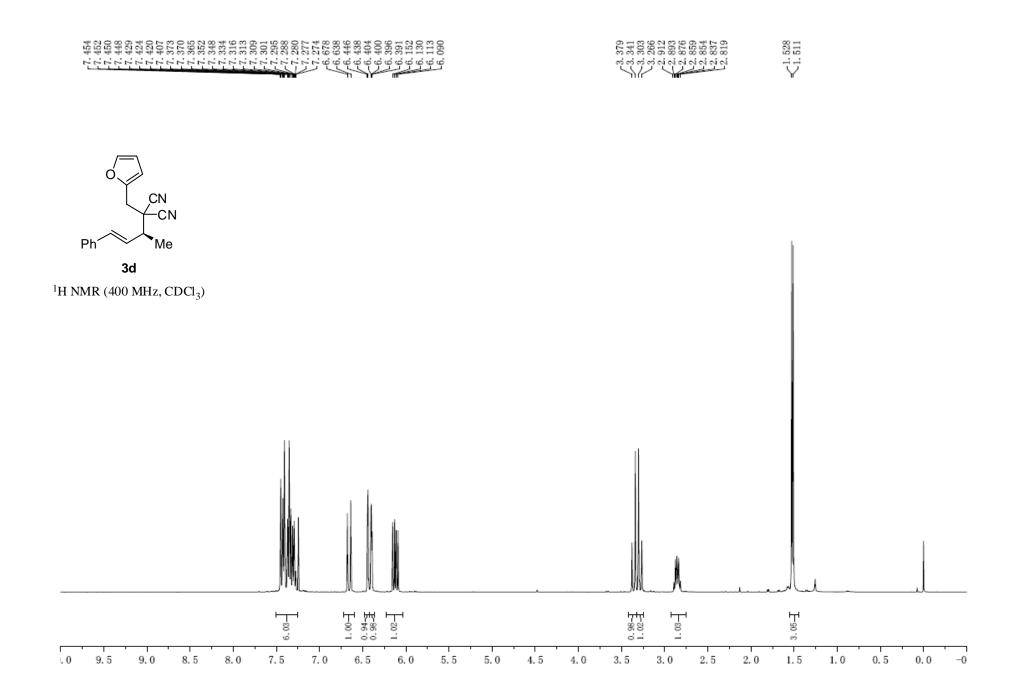


-135.855 -135.513 -135.513 -130.803 -129.907 -129.907 -128.334 -128.656	-114.394	-77. 353 -77. 036 -76. 718	-48, 268 -48, 268	-16.380
		\vee		

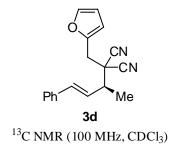


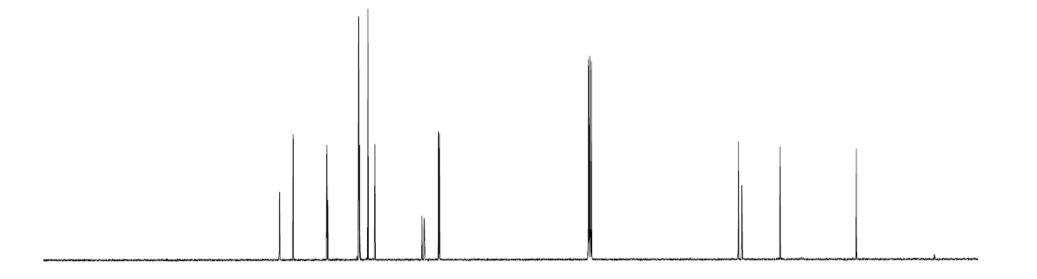


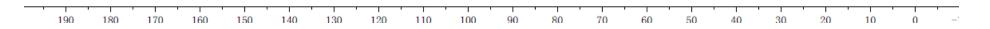




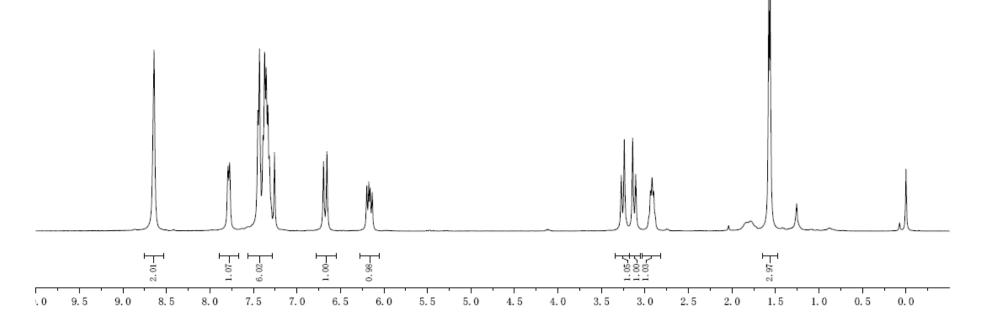
$683 \\ 619 \\ 619 \\ 619 \\ 619 \\ 619 \\ 619 \\ 619 \\ 619 \\ 610 \\ 610 \\ 650 $	288.	344 027 709	072 831 748	207
135. 128. 128. 128.	114	77.77.	45. 41.	17.
	Ϋ́.	∇	¥7	

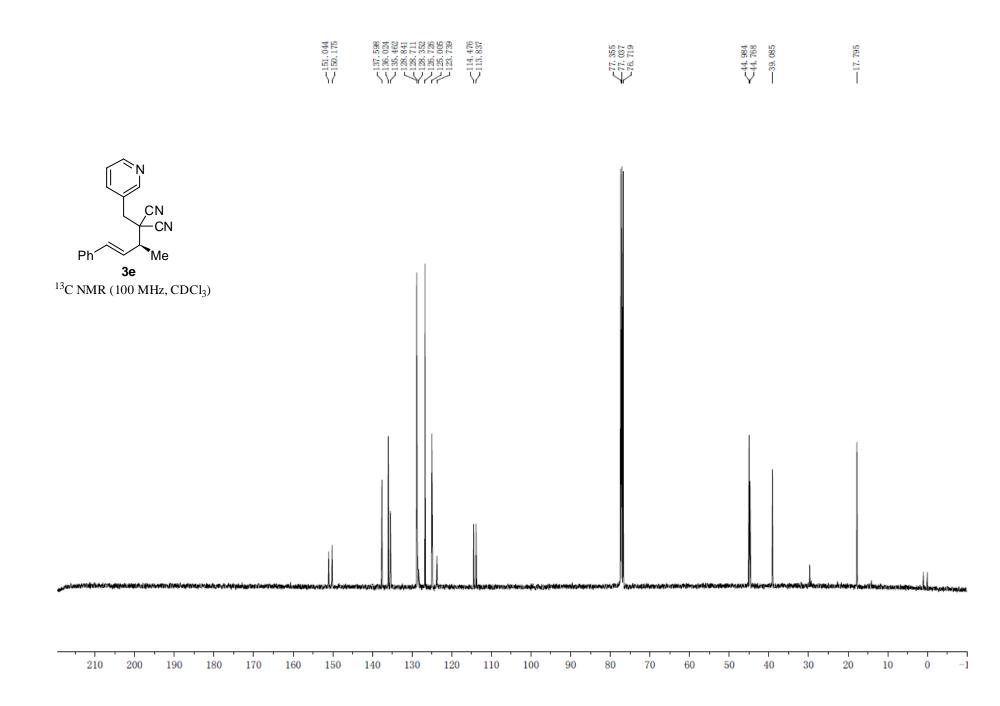


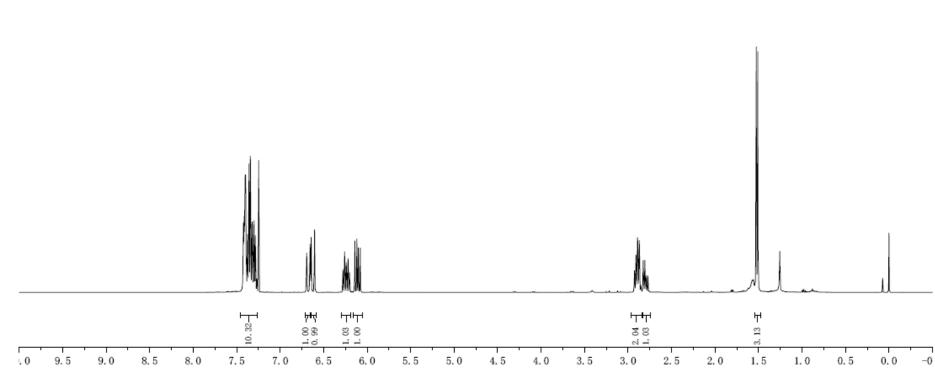


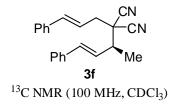


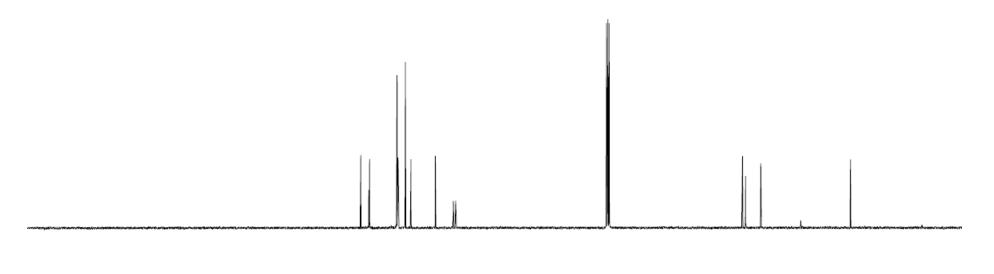
.411	825 619 651 651 075	562 063 877 644	311 994 676	763	471	372
146. 143.	135 135 128 128 128	114. 1114. 1110.	76.	43.	34	17.
	∇ ∇	∇Y	\mathbb{V}			

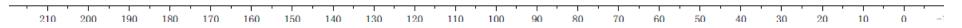


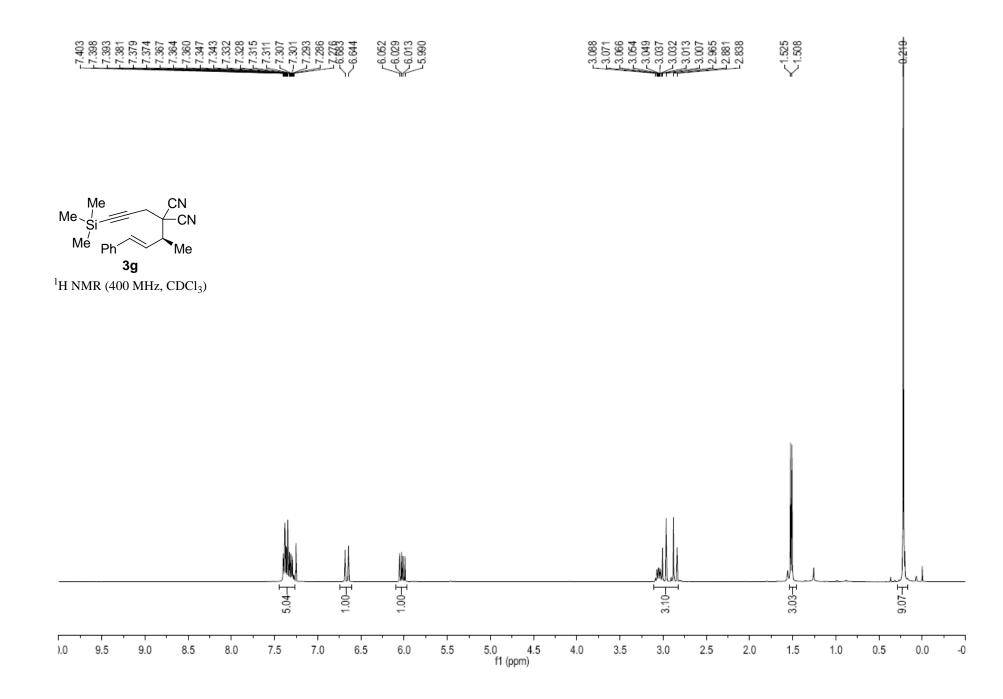




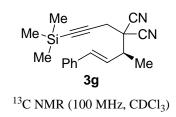


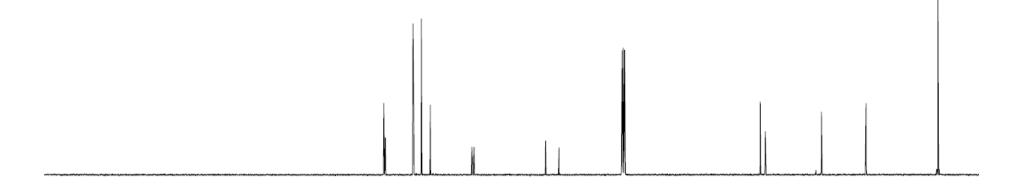


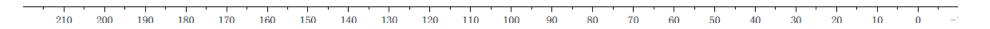


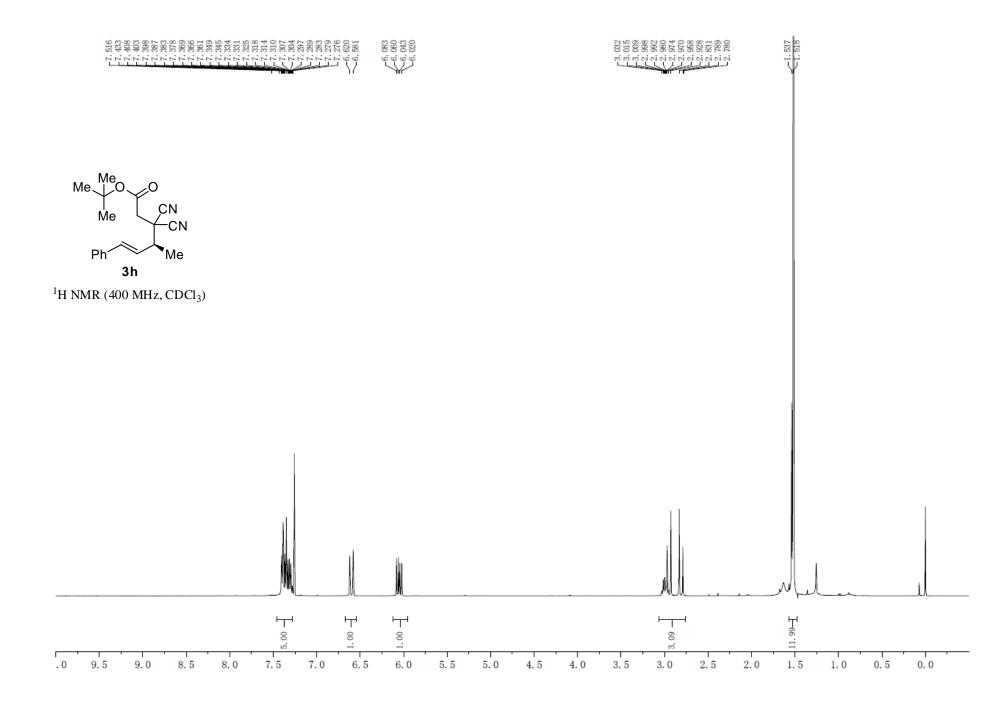


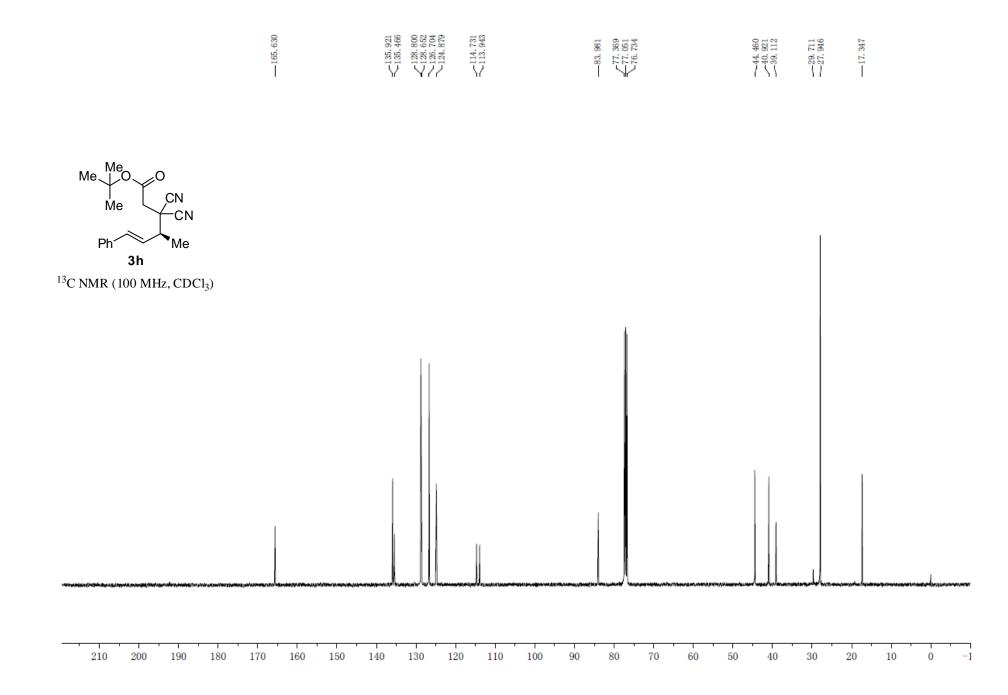
555 555 555 555 555 555 555 555 555 55	350 032 715	251 515	519
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	12 12 12 12 12 12 12 12 12 12 12 12 12 1	44 39 39	17.
		440	7
	\rightarrow		I

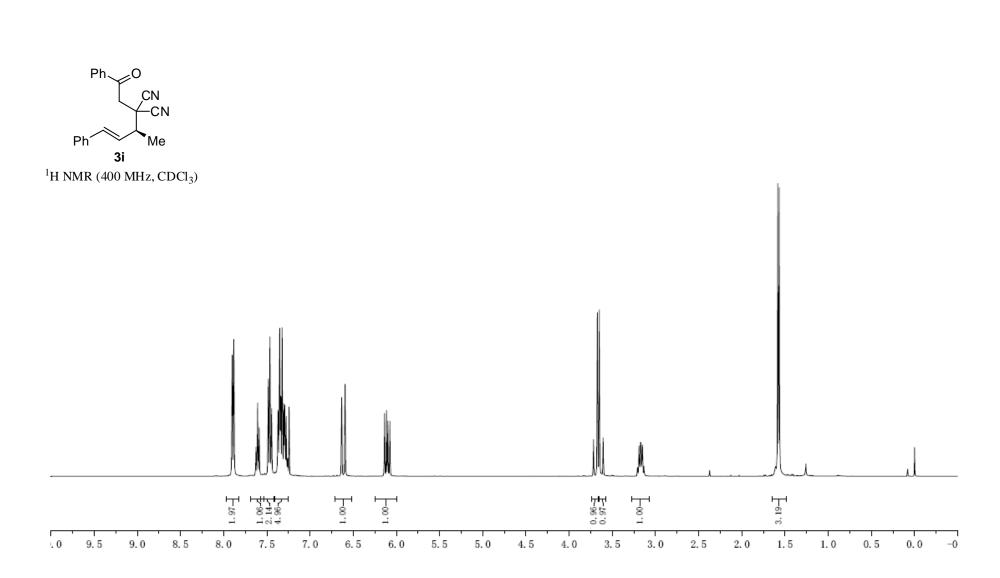


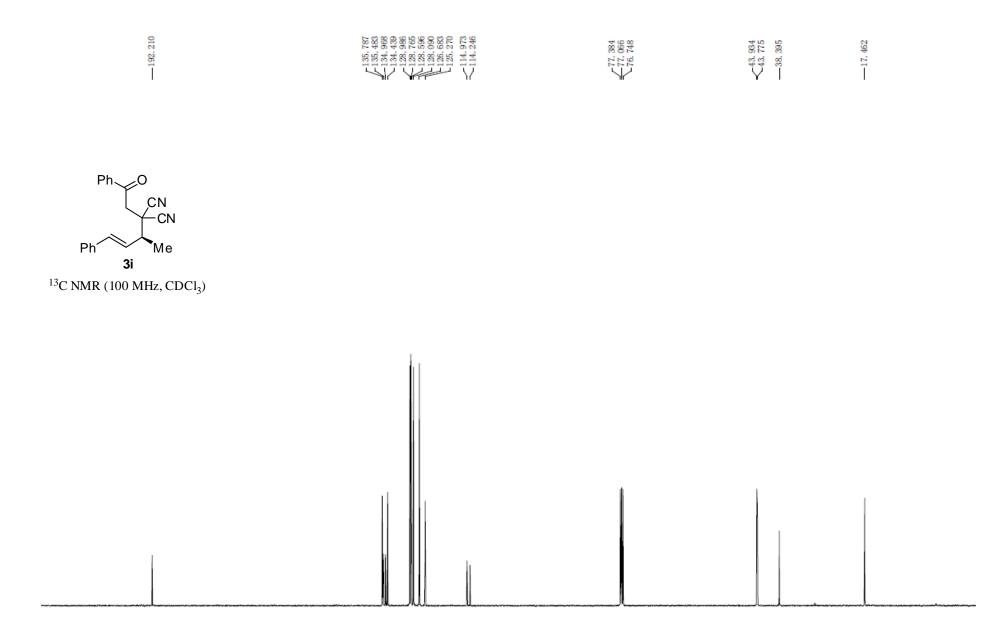


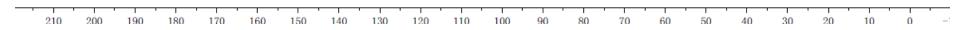


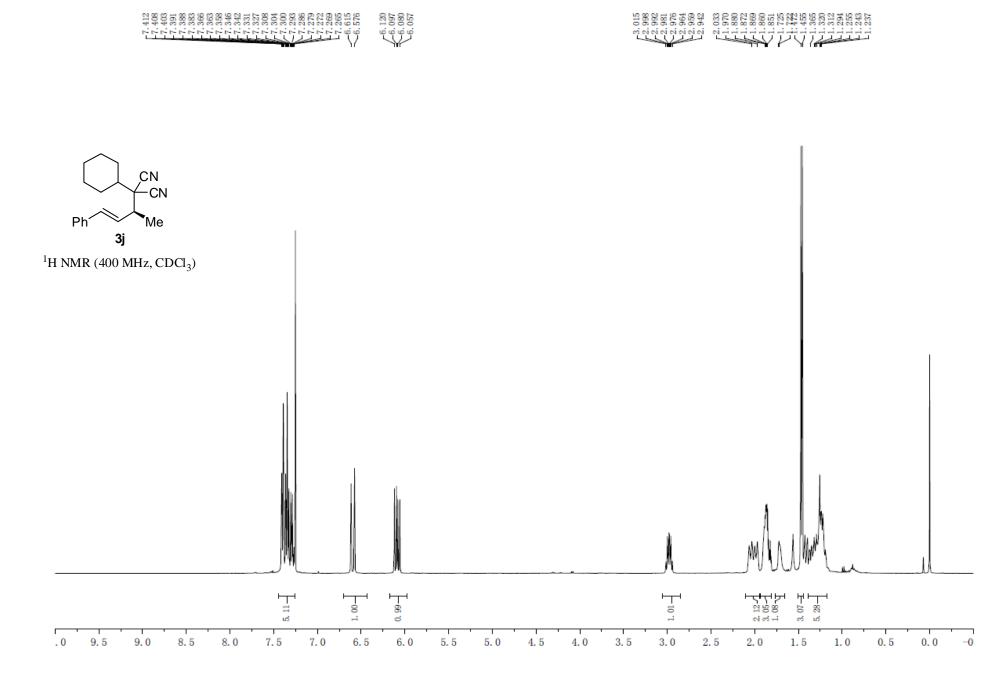


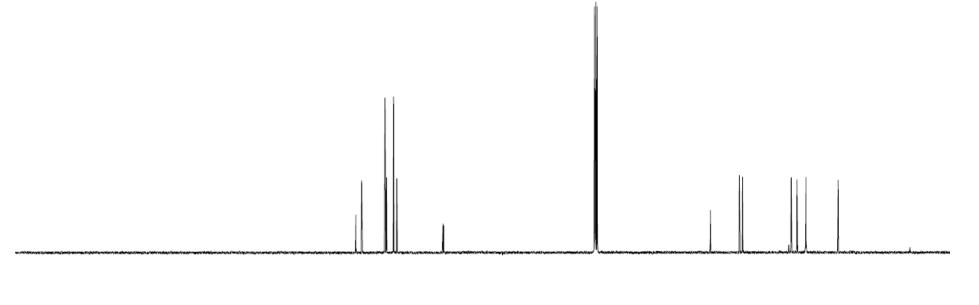

. 503	. 348 165 271 073	. 300	725 440	926 609 291	722	668	938	282
88	8888	14	96. 93.	666	42.5	œ	5	¢3
			66	C- C- C-	যা যা	C-1	-	
∇	- Y22 -	∇		∇	17			









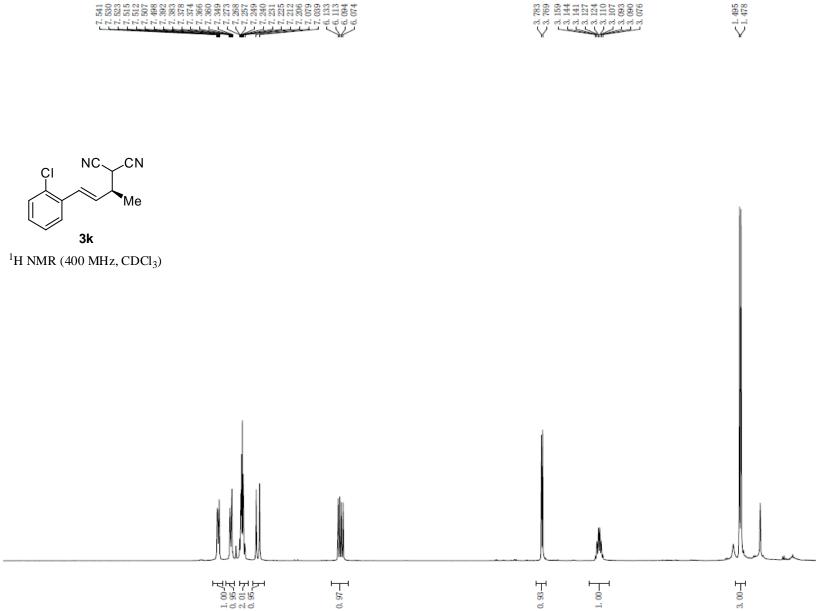


135, 889 134, 459 123, 4459 1235, 4459 1235, 842 125, 842 125, 842 125, 842 144, 521 144, 521	$\overbrace{76, 712}^{77, 347}$	48.940	-41.841 -41.061	29, 132 27. 704 25. 654 25. 559 25. 488		
--	---------------------------------	--------	--------------------	---	--	--

			'								'		' '	·			'	'	· 1	1	· 1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-

541

9.5

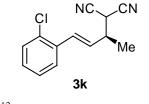

9.0

8.5

8.0

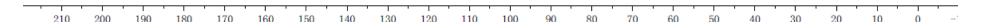
. 0

212

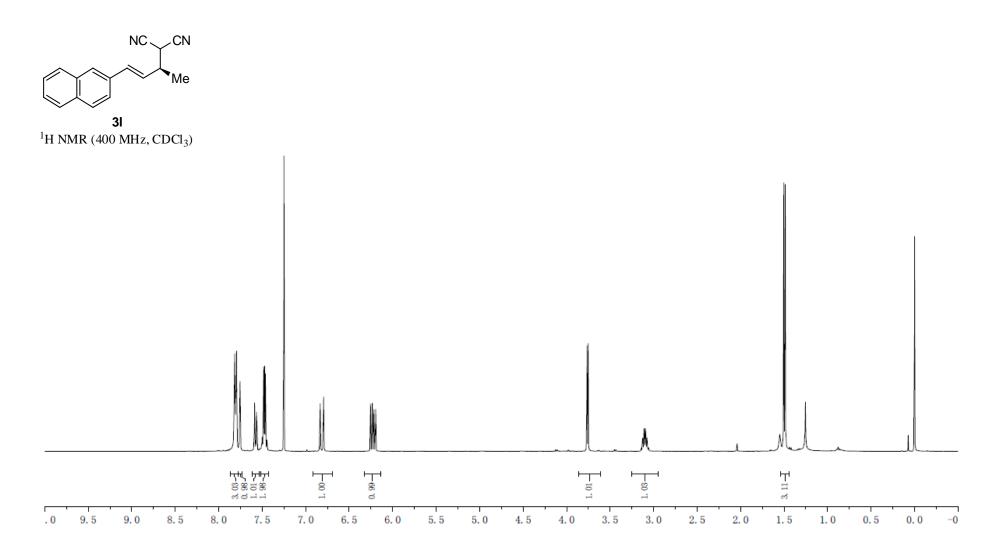

1133 094 074

0.0

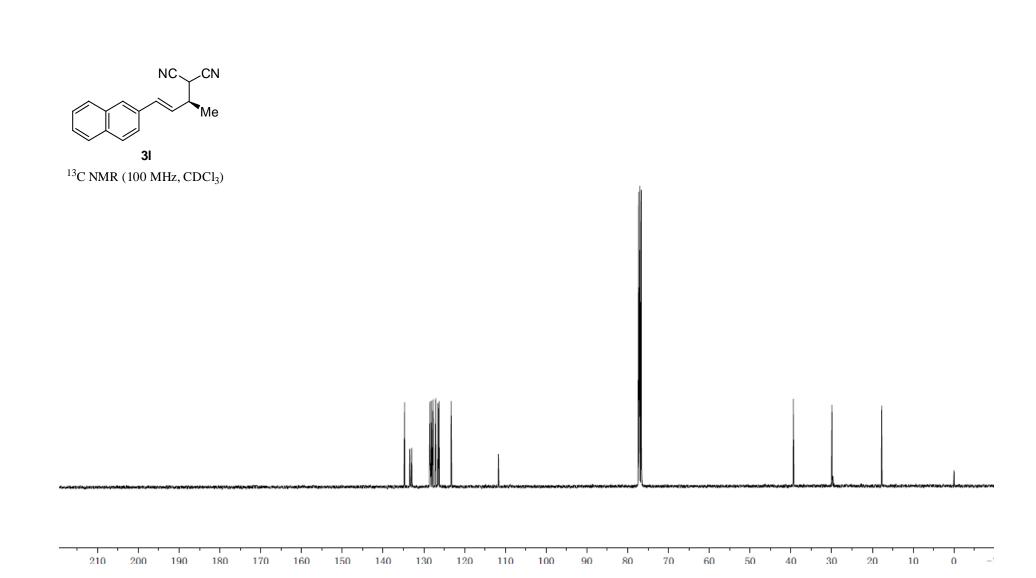
-0

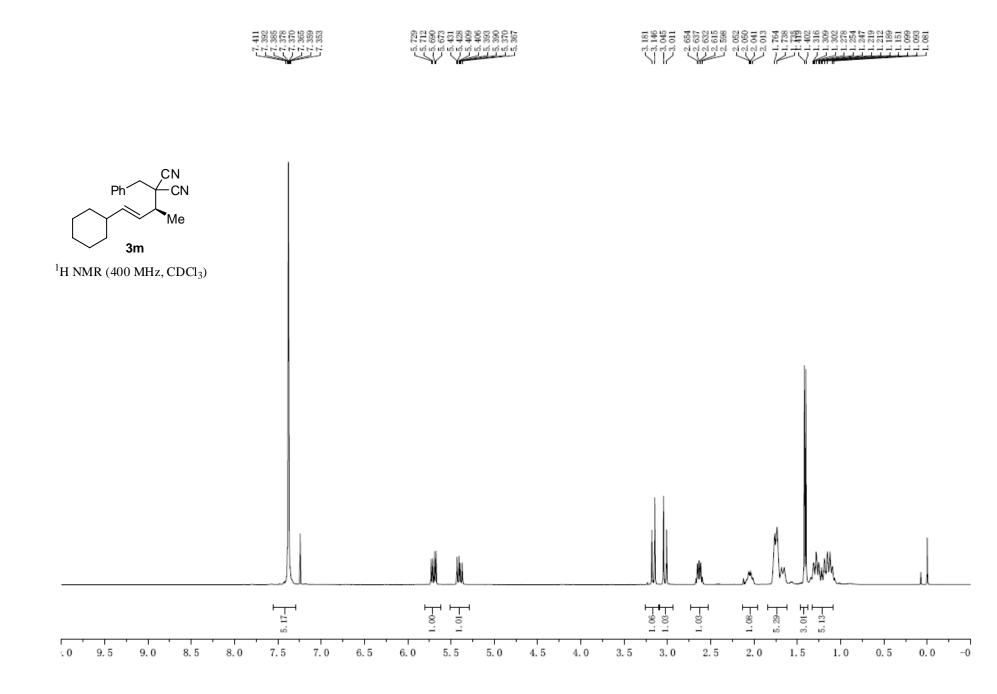

 $\begin{array}{c} 783\\769\\1159\\1141\\1127\\1127\\1127\\107\\093\\090\\076\end{array}$

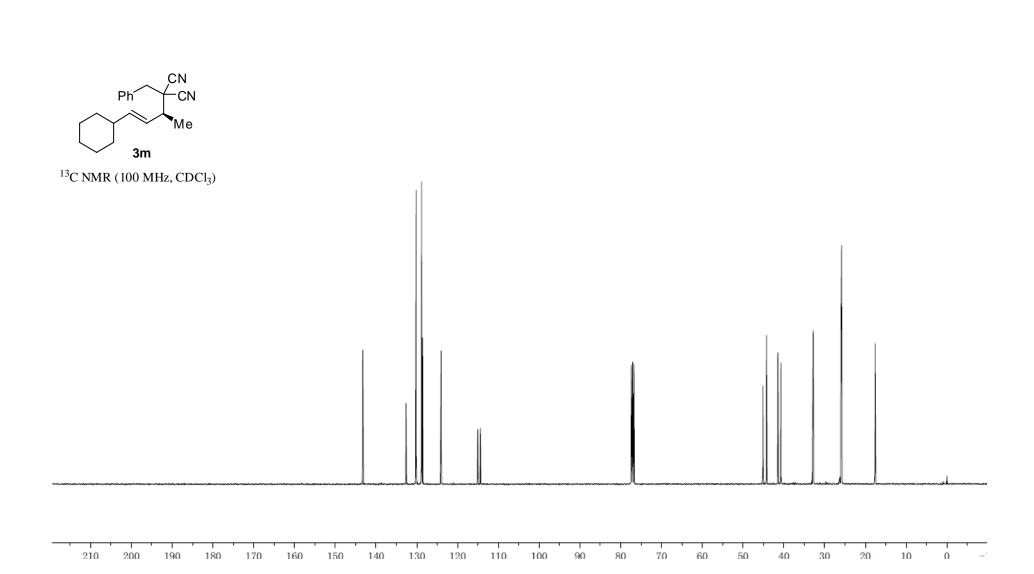
$\begin{array}{c} 0.21\\ 0.21\\ 0.236\\ 0.518\\ 0.518\\ 0.44\\ 0.44\\ 0.44\end{array}$. 526	20 20 20 20 20	275	810	629
131. 129. 128. 127.	111	77.	39.	29.	17.
	Ý	\vee			

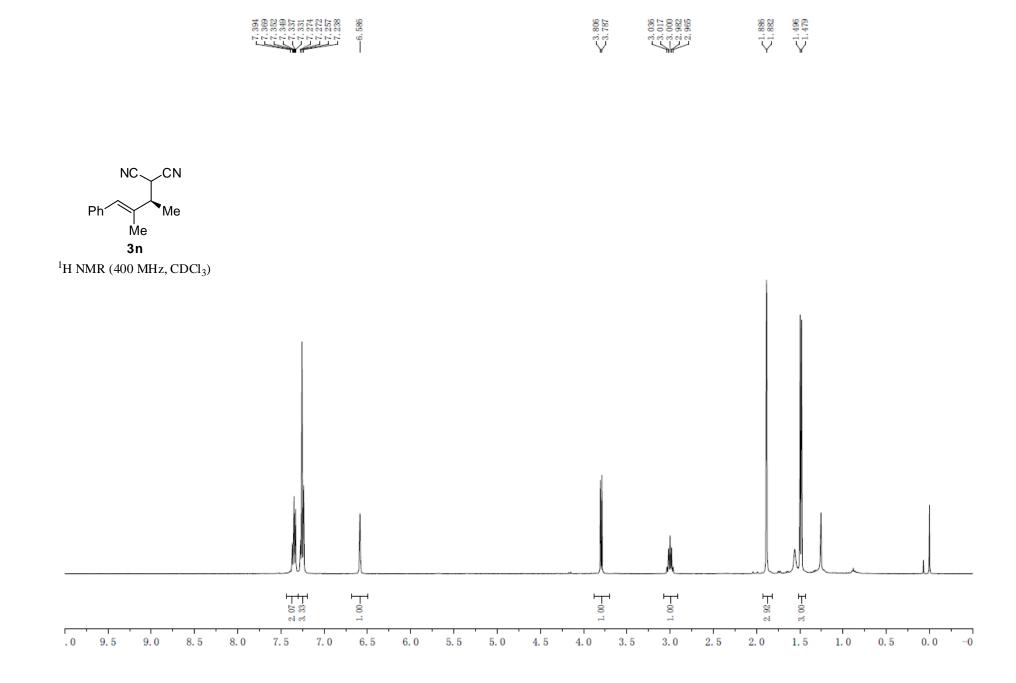


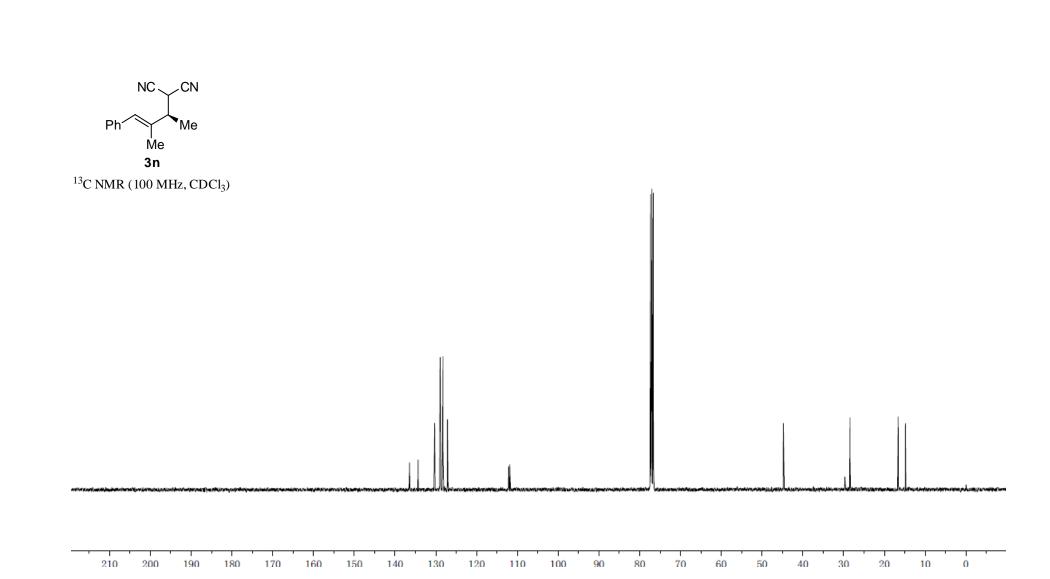
¹³C NMR (100 MHz, CDCl₃)

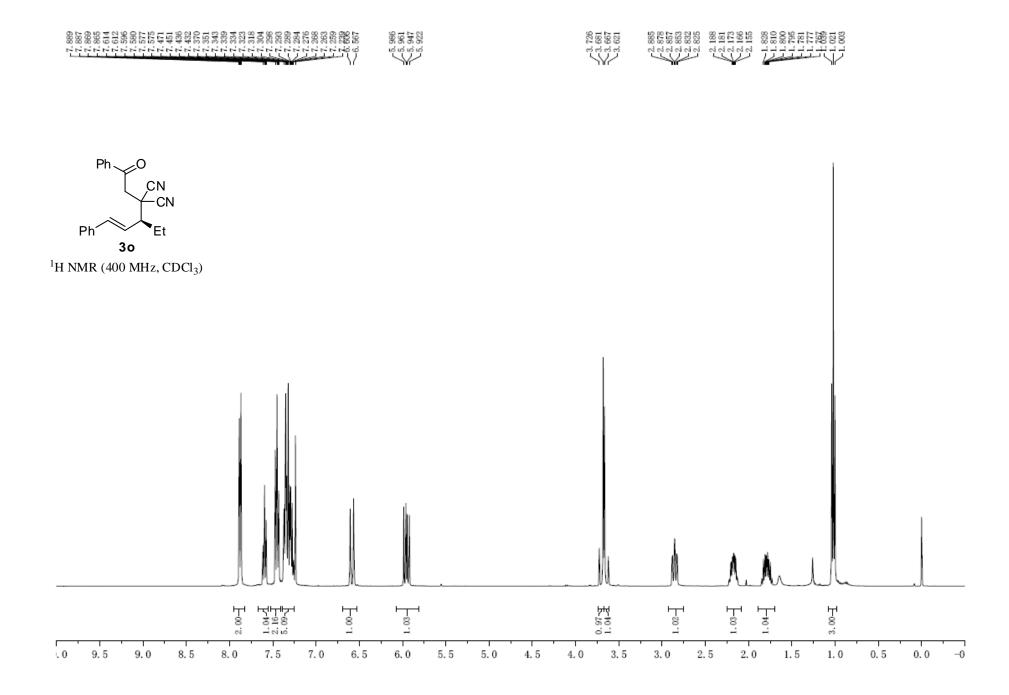

๛๛๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	Keysel season and a new of the season of the seas

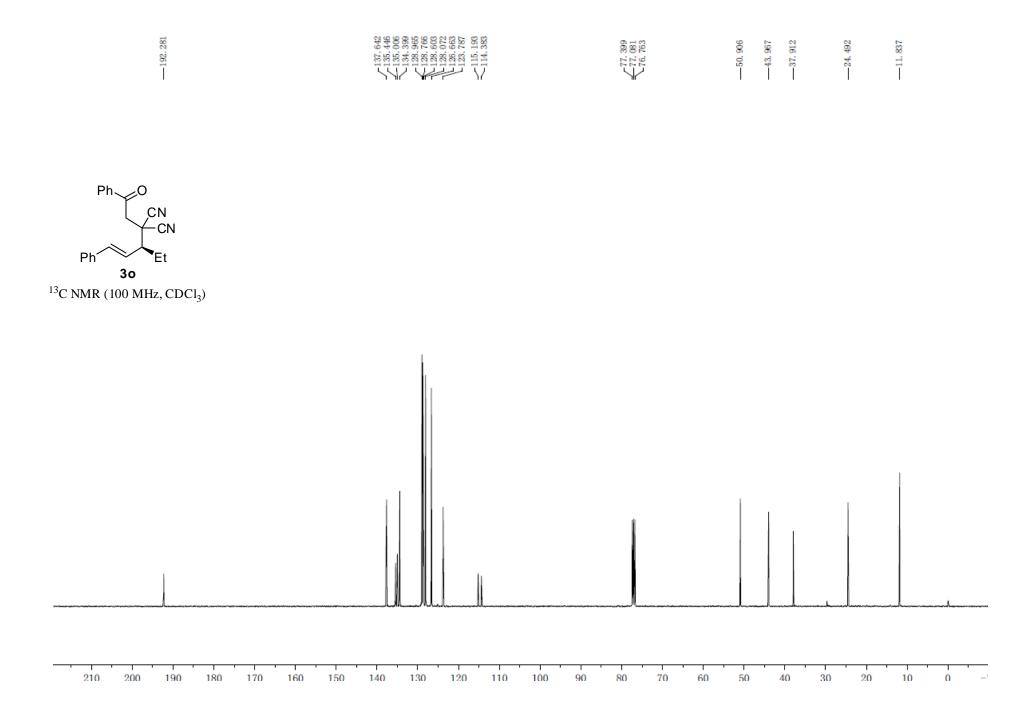


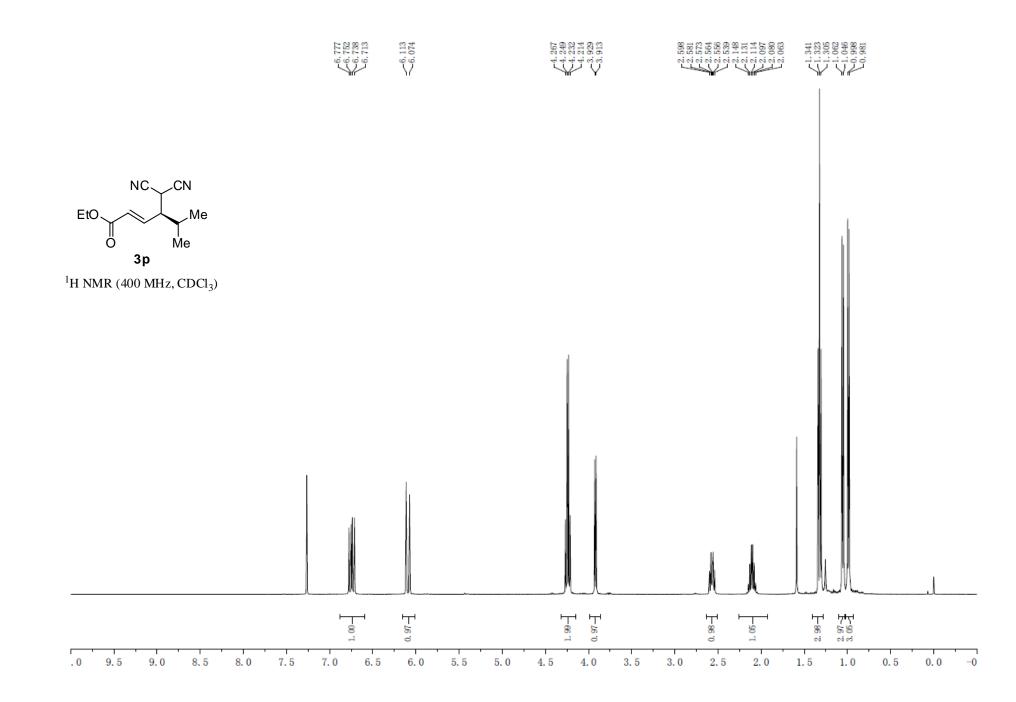


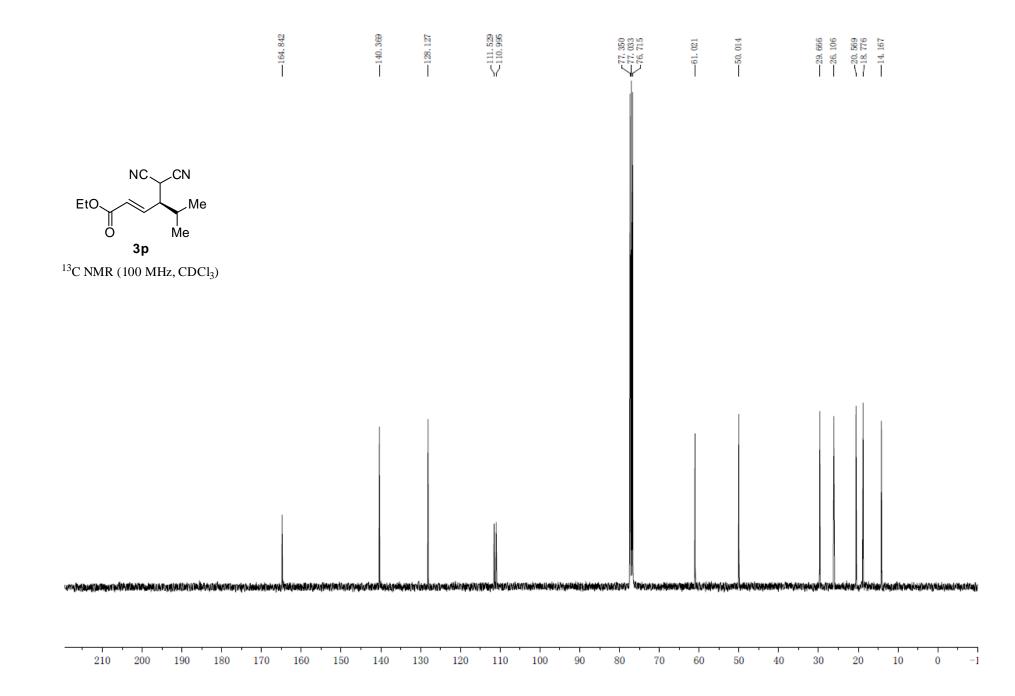

$\begin{array}{c} 709 \\ 341 \\ 341 \\ 341 \\ 341 \\ 341 \\ 341 \\ 341 \\ 341 \\ 361 \\ 361 \\ 361 \\ 361 \\ 361 \\ 361 \\ 361 \\ 361 \\ 307 \\$		322 687	388	516	725
133 133 133 134 135 135 135 135 135 135 135 135 135 135	==	77.7.7.	39.	29.	17.
	Ŷ	Ŷ	Ĩ	Ĩ	Ĩ

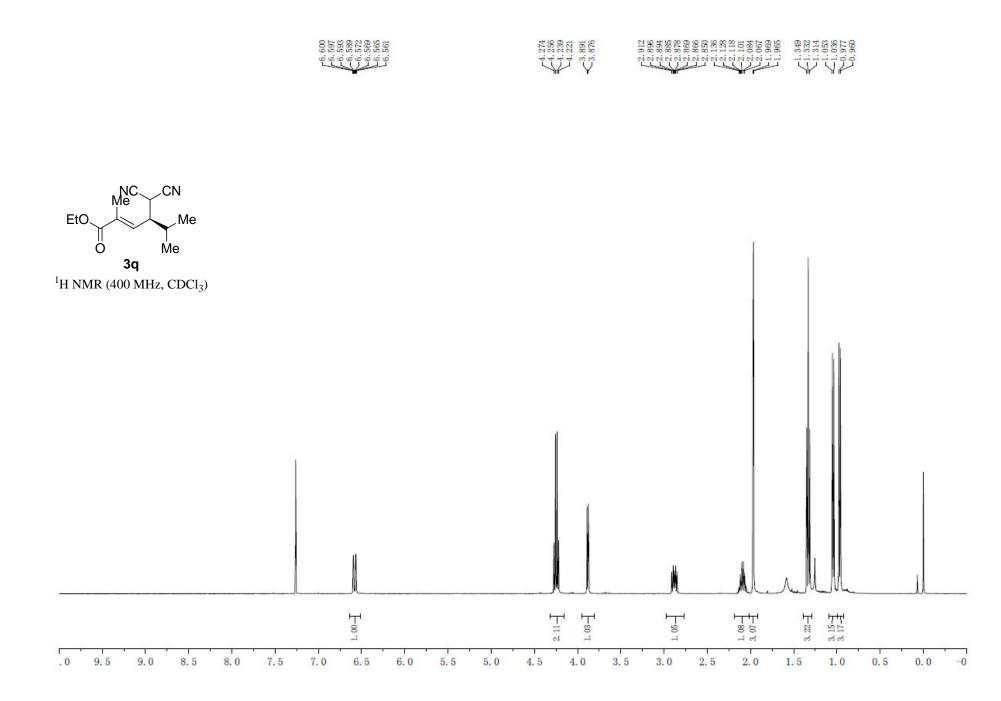


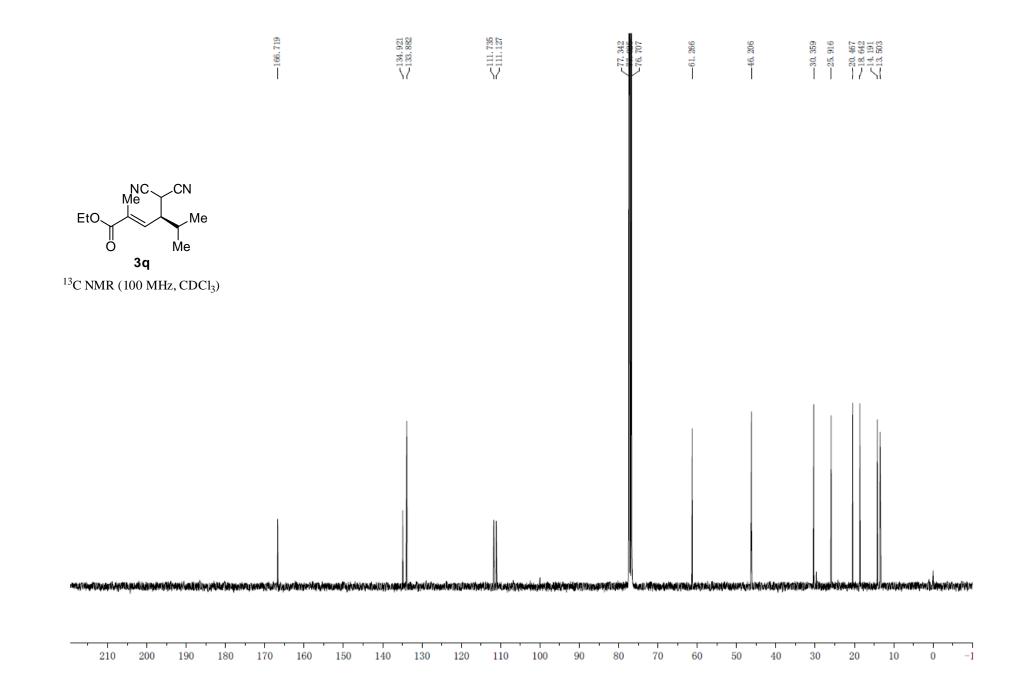

	122,658 130,169 128,855 128,581 128,581	$<^{115.042}_{114.417}$	77, 388 77, 070 76, 753	45, 116 44, 245 41, 462 40, 725	$<^{32.798}_{32.734}$	$<_{25, 843}^{26, 017}$		-1.019
--	---	-------------------------	-------------------------------	--	-----------------------	-------------------------	--	--------

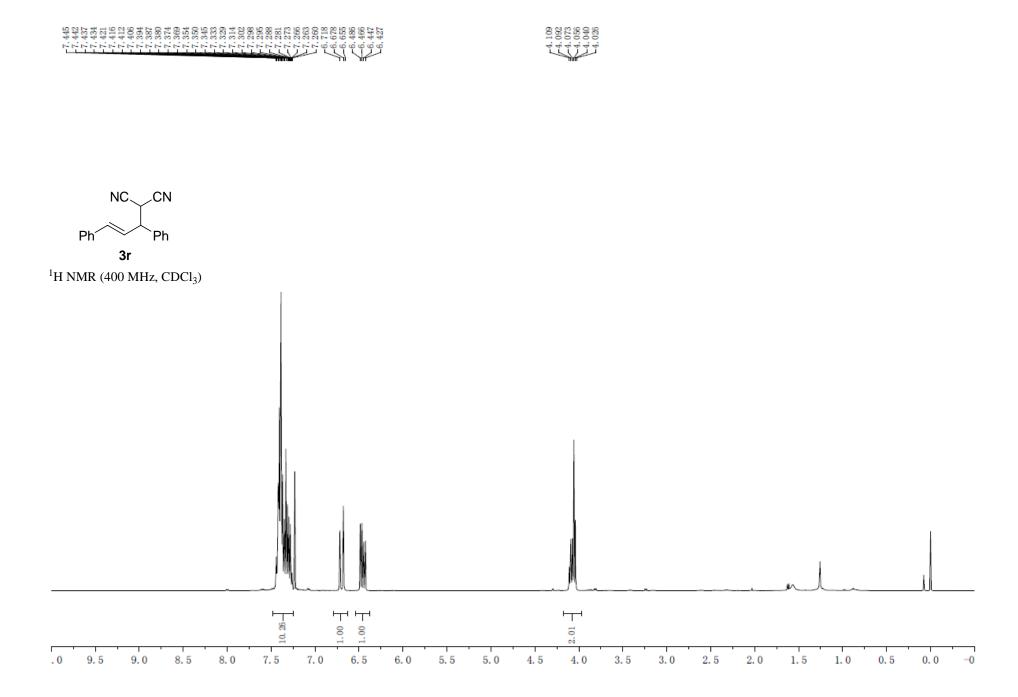


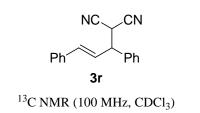




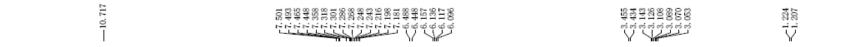


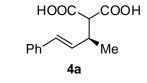




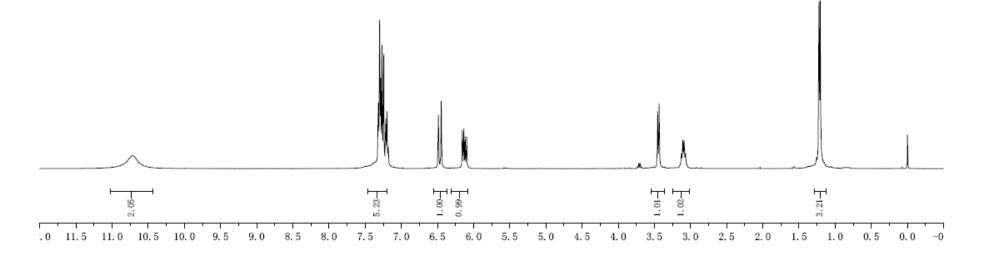


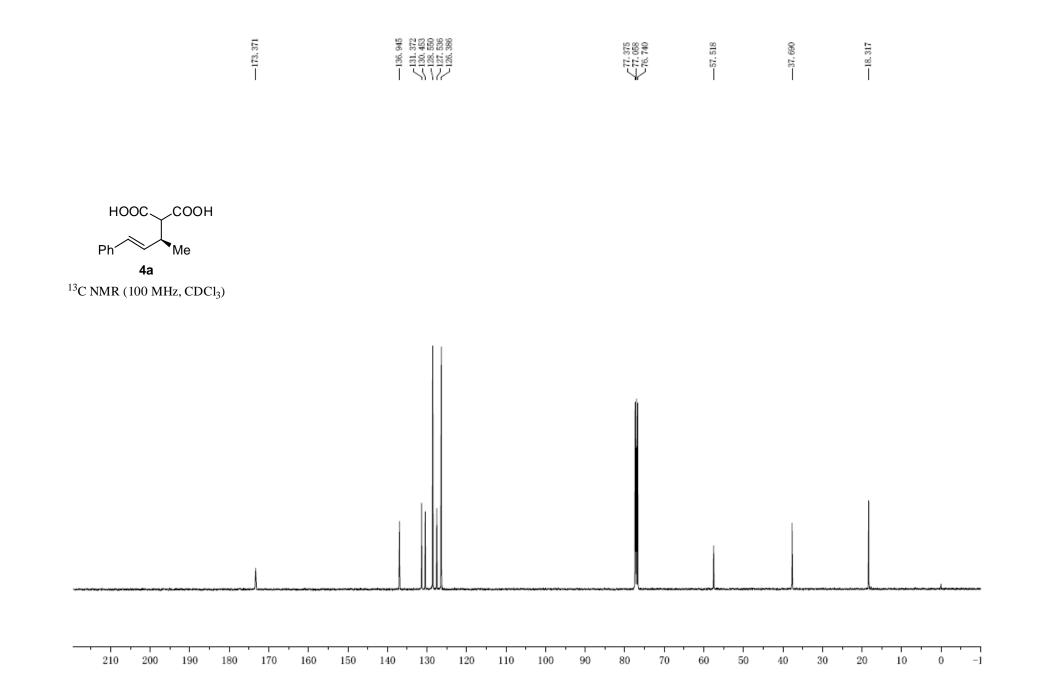


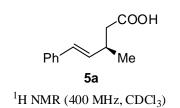


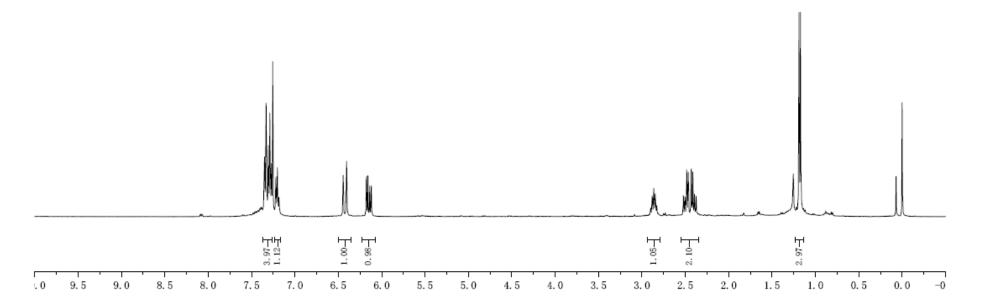


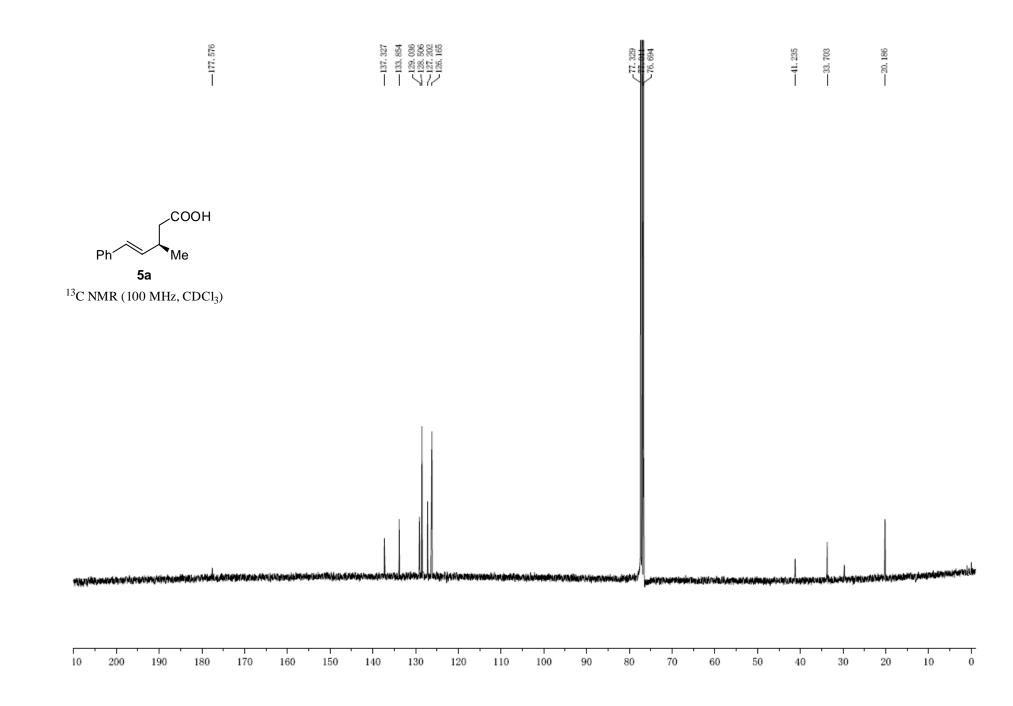
-136.573 136.573 136.779 -135.779 -136.422 -128.422 -128.423 -128.743 -128.743 -128.743 -128.743 -128.743 -128.743 -128.743 -128.743 -128.743 -128.743 -128.743 -128.743 -128.7444 -128.744 -128	-111.768 -111.690	-77, 388 -77, 070 -76, 752	-49, 734	-30. 182
	Y	\rightarrow		

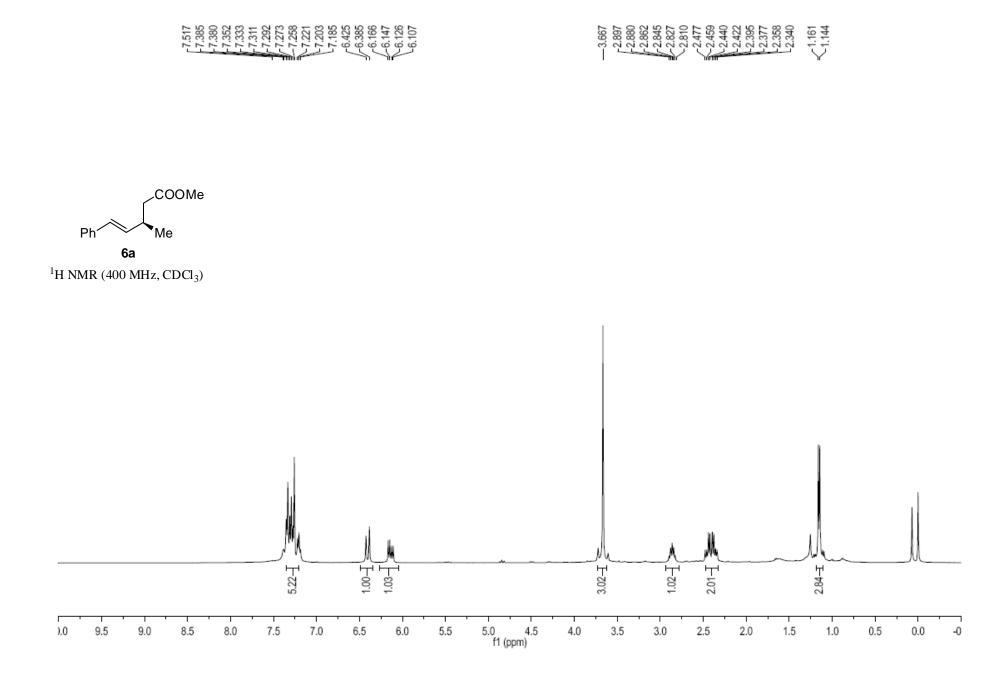


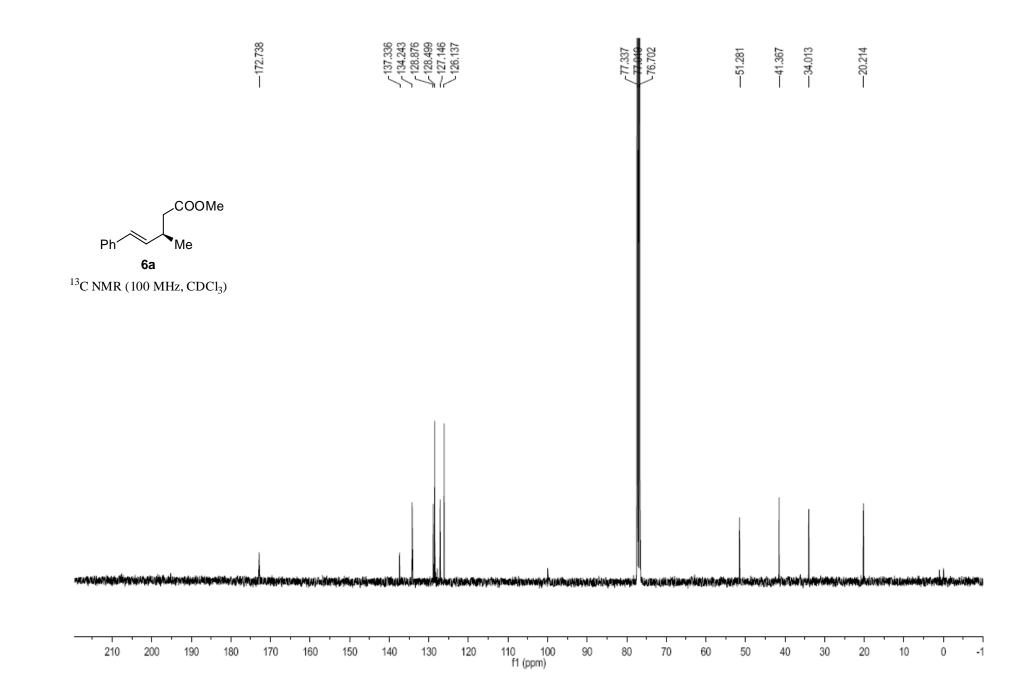


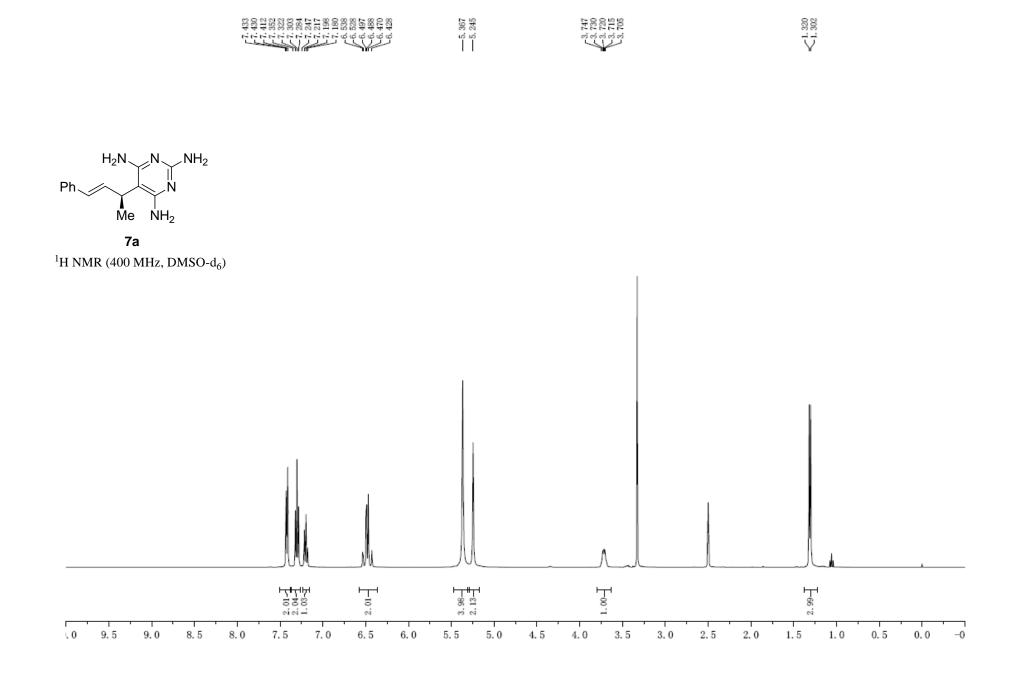


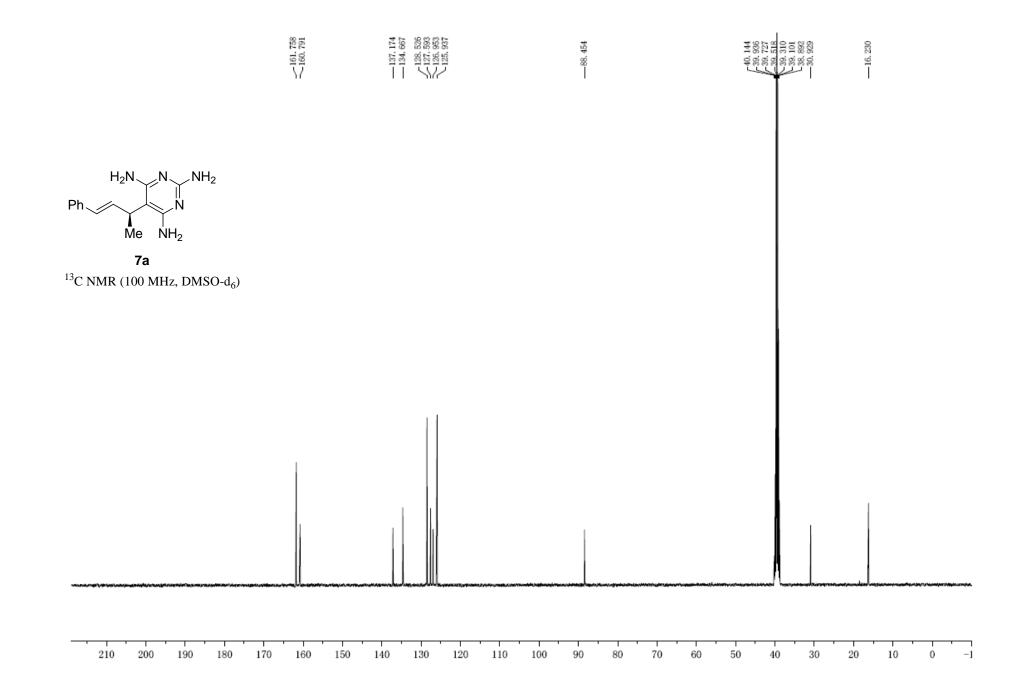

¹H NMR (400 MHz, $CDCl_3$)

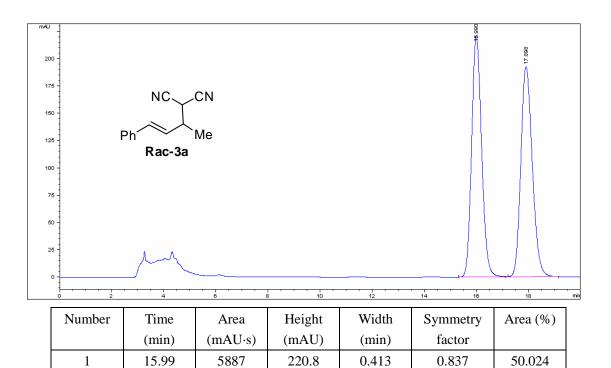





424 331 333 333 333 333 333 333 333 333 33	444 404 1159 1138 119	888 881 8846 882 882 882 882 882 882 882 882 882 88	189
****	ဖ်ဖ်ဖ်ဖ်ဖ်	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
The second se	VYZ		- Y -

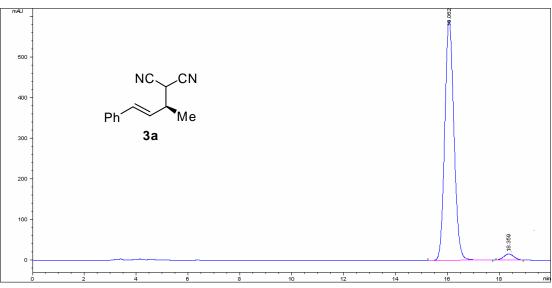




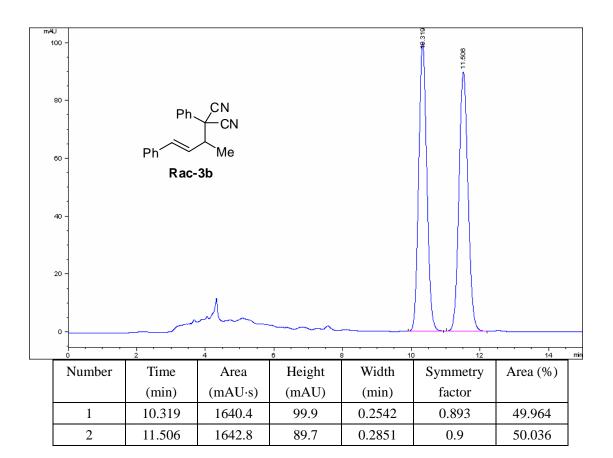


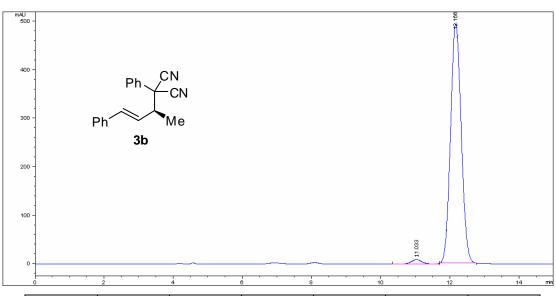
2

17.898


192.4

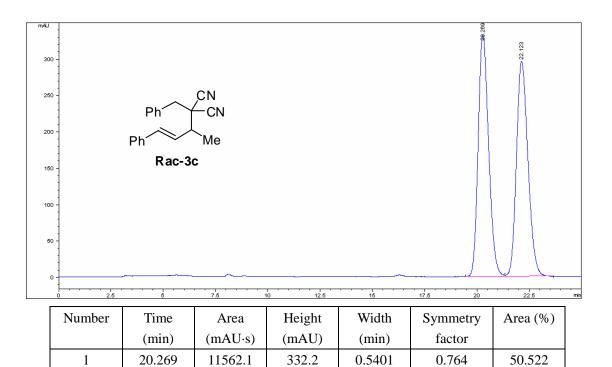
0.4731


0.782


49.976

5881.4

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	16.062	14666.6	592.6	0.4125	0.865	97.288
2	18.359	408.8	15	0.4541	0.911	2.712



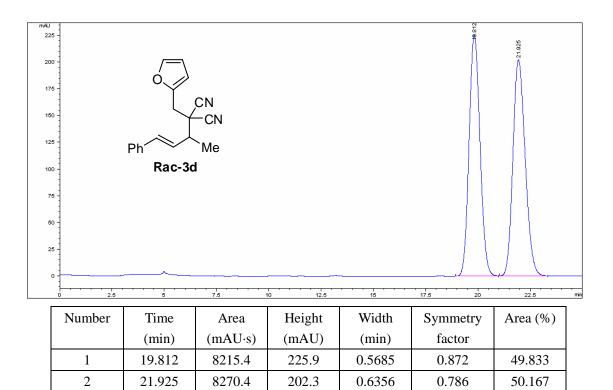
Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.033	270.5	9.9	0.4568	0.895	2.491
2	12.166	10589	494.1	0.3572	0.919	97.509

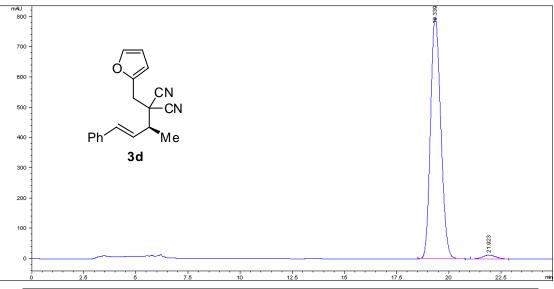
2

22.123

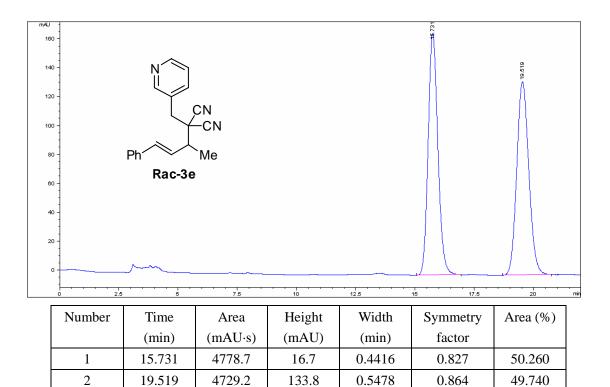
11323

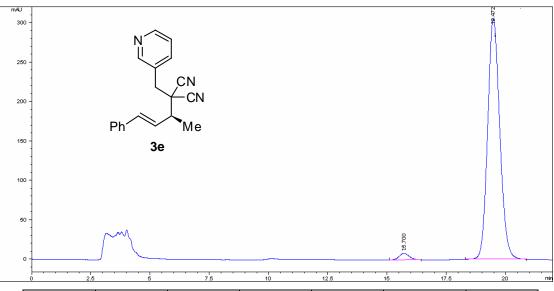
mAU - - 160 -		24.011
140 -		
120 -		
100 -	Ph	
80 -	Ph Me 3c	
60 -		
40 -		
20 -	10 C	
0-		
	2.5 6 7.5 10 12.5 16 17.5 20	22.5 min

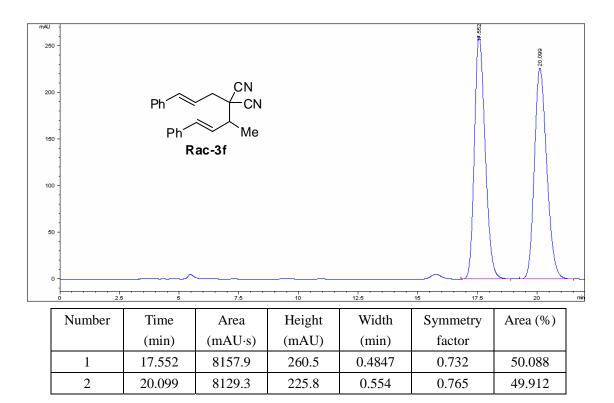

295.2

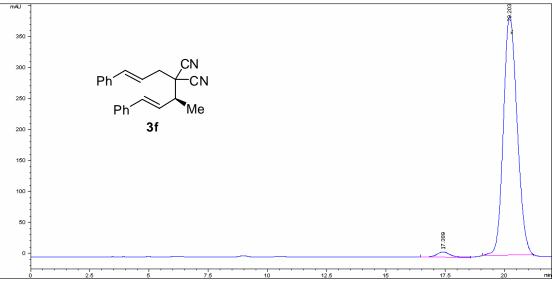

0.5931

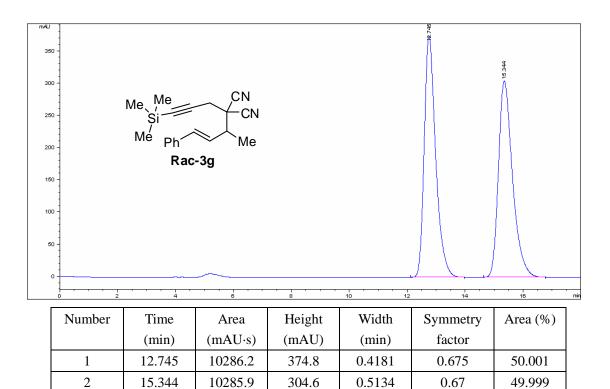
0.771

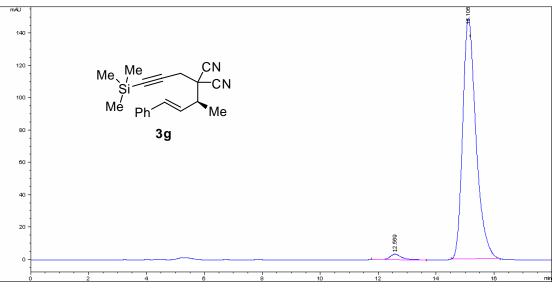

49.478

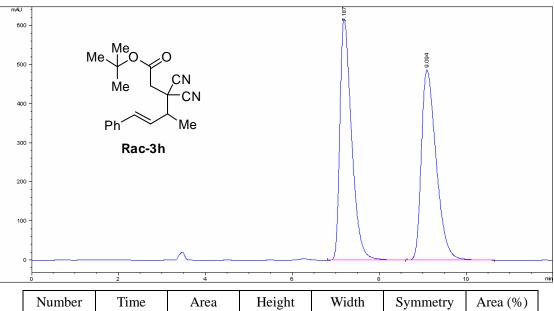

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	20.311	153.7	3.8	0.6801	0.954	2.383
2	21.611	6294.9	166.9	0.6285	0.775	97.617



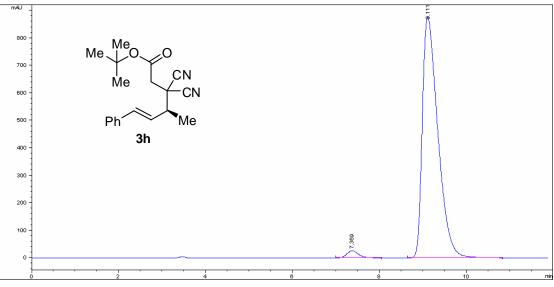

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	19.339	27362.5	796.5	0.5391	0.803	97.617
2	21.923	667.9	13.8	0.8043	0.861	2.383




Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	15.7	261.5	8.5	0.5112	0.859	2.353
2	19.472	10852.1	305.2	0.5926	0.858	97.647

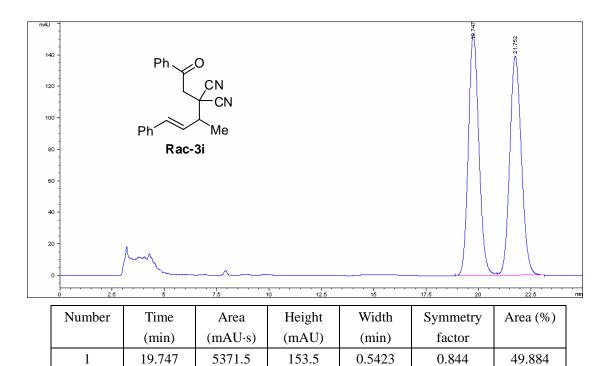


Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	17.389	369.4	8.6	0.716	0.784	2.312
2	20.203	15608.9	386.6	0.6729	0.822	97.688



Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	12.569	117.2	3.6	0.5407	0.772	2.401
2	15.106	4763	148.7	0.5337	0.722	97.599

Number	Time	Alea	neight	vv iduli	Symmetry	Alea (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	7.187	11603.2	617.7	0.2861	0.527	50.099
2	9.094	11557.5	487	0.3642	0.571	49.901



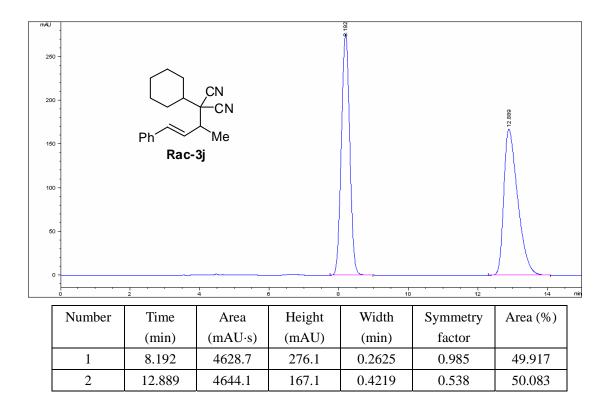
Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	7.369	480	26	0.2837	0.779	2.164
2	9.111	21701.3	877.3	0.3774	0.495	97.836

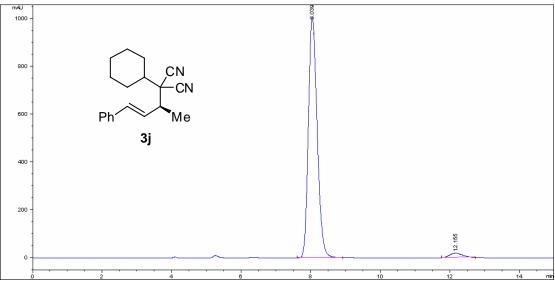
2

21.752

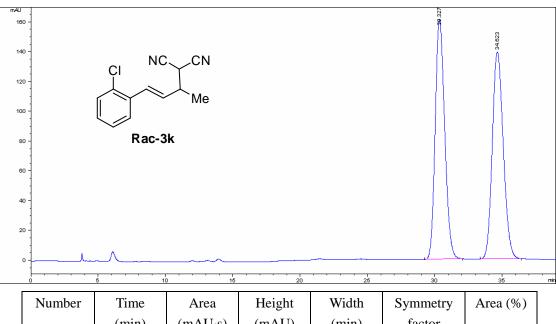
5396.4

139.2

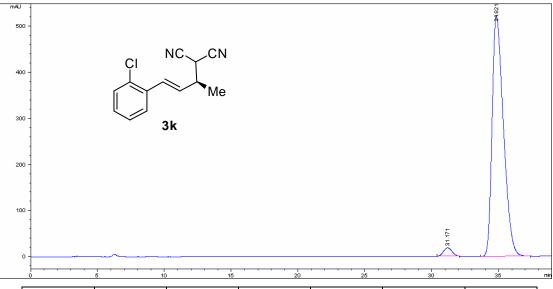

0.6008

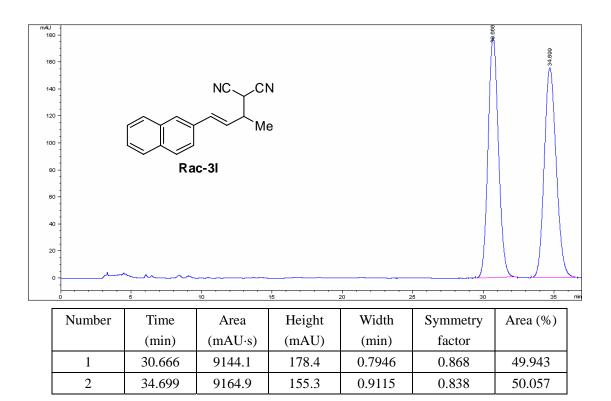

0.862

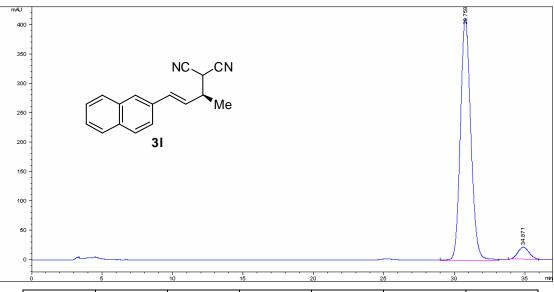
50.116


mAU .	257 4	
80 -		
60 -	Ph Me 3i	
40 -		
20 -		
0-		20 22.5 min

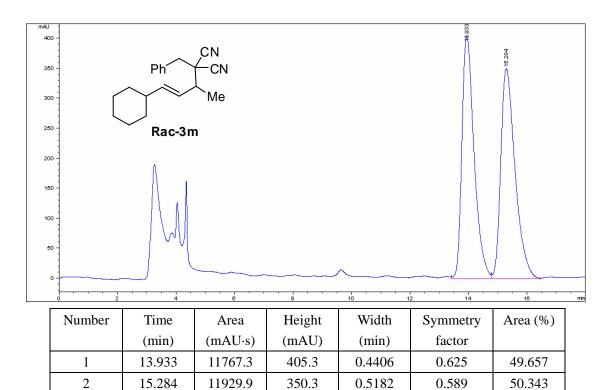
Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	19.752	3270.6	92.4	0.5898	0.867	97.232
2	21.795	93.1	2.6	0.6039	0.96	2.768

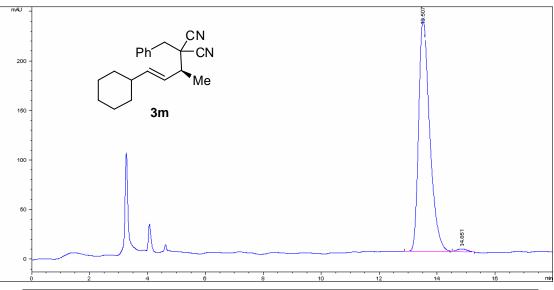


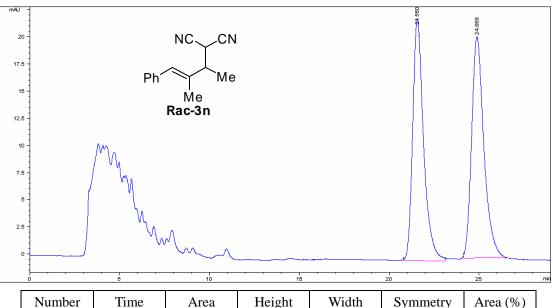

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	8.039	17769.8	1008.8	0.2936	0.778	97.445
2	12.155	465.9	17.9	0.4347	0.781	2.555



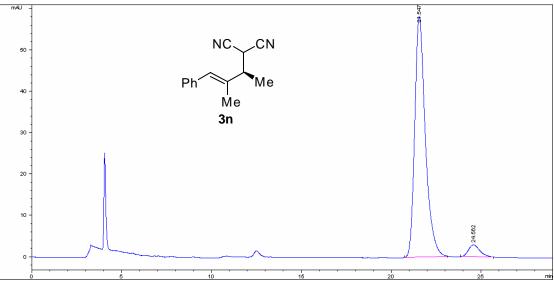
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	30.327	7925.5	161.1	0.7675	0.793	50.076
2	34.623	7901.4	139	0.8831	0.813	49.924

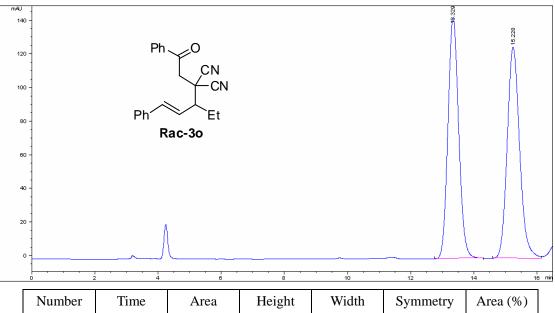


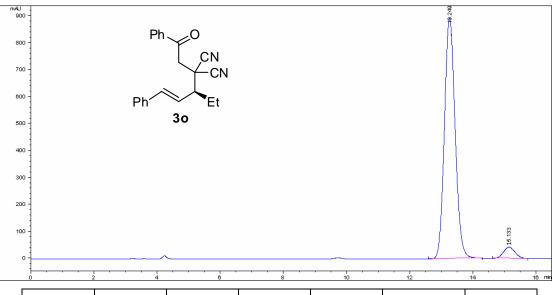

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	31.171	861.2	18.5	0.7744	0.914	2.690
2	34.821	31150.3	523.1	0.9926	0.59	97.310

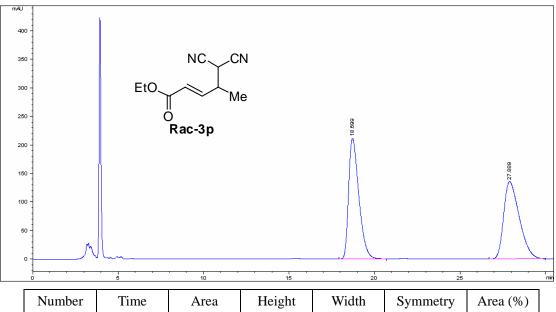


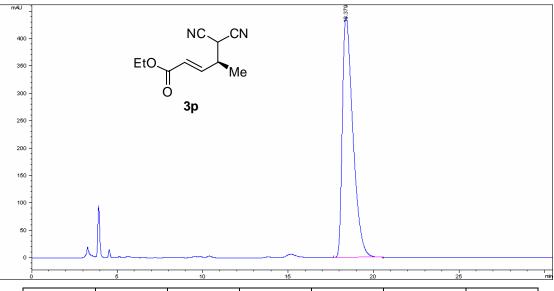
Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	30.758	21364.4	411.5	0.8653	0.849	94.761
2	34.871	1181.2	20.8	0.9444	0.894	5.239

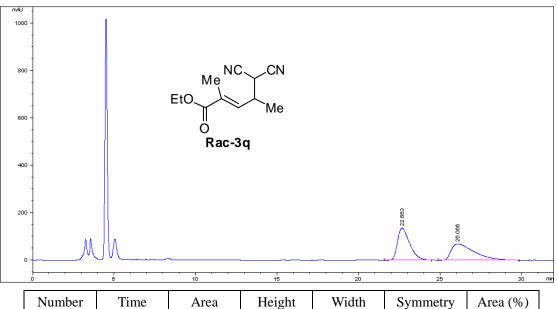


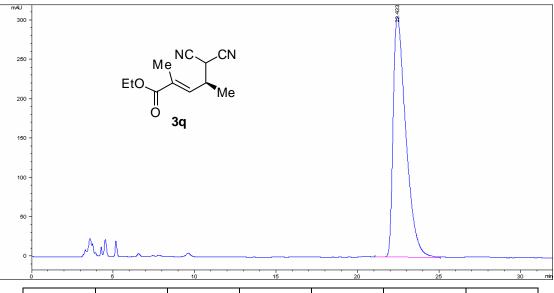

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	13.507	6235	234.8	0.4425	0.649	98.914
2	14.851	68.5	2.8	0.4091	0.755	1.086


Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	21.55	940.8	22.3	0.7038	0.699	49.332
2	24.868	966.2	20.4	0.79	0.733	50.668


Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	21.547	2395.6	58.2	0.6202	0.69	94.752
2	24.562	132.7	2.9	0.664	0.743	5.248


Number	TIME	Alea	neigin	widui	Symmetry	Alea (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	13.329	3387.9	143.2	0.3677	0.877	49.655
2	15.228	3434.9	125.5	0.4227	0.846	50.345


Numb	er	Time	Area	Height	Width	Symmetry	Area (%)
	((min)	(mAU·s)	(mAU)	(min)	factor	
1	1	3.249	21050.5	893.8	0.3925	0.877	95.106
2	1	5.133	1083.3	41.8	0.4321	0.905	4.894


rumber	Time	7 HCa	mengin	Wittin	Symmetry	7 mea (70)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	18.699	8816.4	211.6	0.6375	0.575	50.508
2	27.889	8639.2	135.5	1.0044	0.581	49.492

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	18.379	18856	439.5	0.6506	0.496	100.000

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	22.663	7016.4	135.9	0.7769	0.582	50.600
2	26.066	6850.1	68.5	1.4363	0.357	49.400

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	22.433	16608.4	305.6	0.8117	0.458	100.000