Support information for: Calcium carbonate biomineralization utilizing a multifunctional β-sheet peptide template

Kazuki Murai,^a Masahiro Higuchi,^{*,a} Takatoshi Kinoshita,^b Kenji Nagata^a and Katsuya Kato^{*,c}

^a Department of Materials Science and Engineering and ^b Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (NIT), Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan.

*E-mail: higuchi.masahiro@nitech.ac.jp (Prof. Dr. M. Higuchi)

^c Bio-Integrated Processing Group, Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimosidami, Moriyama-ku, Nagoya, 463-8510, Japan. *E-mail: katsuya-kato@aist.go.jp (Dr. K. Kato)

Contents

- 1. S1. CD spectrum of peptide and the 2nd order structure in a mineralization system solution
- 2. S2. The preparation of the Ac-VHVEVS-NH2 peptide template by hierarchical self-assembly and the TEM image of peptide nanofiber
- 3. S3. The concentration change of the ammonia produced by the hydrolysis of the urea in the control system.
- 4. S4. EDX mapping images of the CaCO₃-peptide hybrid materials
- 5. S5. SEM image of CaCO₃ mineralized on control system
- 6. S6. TEM image of the CaCO $_3$ obtained by self-supplied mineralization at early-stage, 7 days
- S7. TEM images of the CaCO₃ obtained by externally-supplied mineralization at the different carbonate concentration after 3 days

S1. CD spectrum of peptide and the 2nd order structure in a mineralization system solution

The secondary structure of peptide in mineralization system solution was determined by circular dichroism (CD, J-820, JASCO) measurement, under nitrogen atmosphere. Experiment was performed in a quartz cell with a 1 mm path length over the range of 205-260 nm. The Ac-VHVEVS-NH₂ peptide sample for CD measurement is prepared by addition the 0.5 ml of peptide aq. solution (1 mM) to the mixture containing 2 ml of urea (50 mM) and 2 ml of calcium acetate solution (50 mM).

The fraction of the secondary structure was calculated by using a curve-fitting method.

S2. The preparation of the Ac-VHVEVS-NH₂ peptide template by hierarchical self-assembly and the TEM image of peptide nanofiber

The inset shows UV-vis absorption spectral change of the generated indophenol by the reaction with ammonia produced by the hydrolysis of the urea.

S4. EDX mapping images of the CaCO₃-peptide hybrid materials

S5. SEM image of CaCO₃ mineralized on control system

S6. TEM image of the CaCO $_3$ obtained by self-supplied mineralization at early-stage, 7

days

S7. TEM images of the CaCO $_3$ obtained by externally-supplied mineralization at the different carbonate concentration after 3 days

TEM images of the CaCO₃ obtained by the externally-supplied mineralization at (a) 0.3 mM and (b) $0.15 \text{ mM CO}_3^{2-}$ concentrations.