Supporting information

A New Receptor with a FRET Based Fluorescence Response for Selective Recognition of Fumaric and Maleic Acid in Aqueous Medium

Upendar Reddy G., ${ }^{\text {a }}$ Rabindranath Lo, ${ }^{\text {b }}$ Sovan Roy, ${ }^{\text {a }}$ Tanmay Banerjee, ${ }^{\text {a }}$ Bishwajit Ganguly, ${ }^{\text {b }}$ 和 and Amitava Das ${ }^{\text {a }}$ *
${ }^{\text {a }}$ CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune411008, India;E-mail: a.das@ncl.res.in; Tel: +91(0)2025902385; Fax: +91(0)2025902629;
${ }^{\mathrm{b}}$ CSIR-Central Salt \& Marine Chemicals Research Institute, Bhavnagar364002, India; E-mail: ganguly@csmcri.org; Tel: +91 (0)278 2567560; Fax: +91 (0)278 2567562;

Table of contents:	Page
Materials and method	S3
Synthetic scheme	S6
Synthesis and characterisation of 2	S6
Synthesis and characterisation of 3	S6
Synthesis and characterisation of A	S7
Synthesis and characterisation of 4	S8
Synthesis and characterisation of 5	S8
Synthesis and characterisation of B	S8
${ }^{1} \mathrm{H}$ NMR spectra of 2	S9
Mass spectra of 2	S9
${ }^{1} \mathrm{H}$ NMR spectra of 3	S10
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of A	S11
Mass spectra of $\mathbf{3}$	S11
Mass spectra of A	S12
${ }^{1} \mathrm{H}$ NMR spectra of 4	S13
Mass spectra of 4	S13
${ }^{1} \mathrm{H}$ NMR spectra of 5	S14
Mass spectra of 5	S14
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of B	S15
Mass spectra of B	S16
Mass spectra of A with [TBAF] and [TBAM]	S17
Electronic and Emission spectra of \mathbf{A} and \mathbf{B}	S18
Emission spectra of \mathbf{R} and Overlap spectra of \mathbf{B} and \mathbf{R}	S18
Emission response of B with Fum and Mal acid	S19
Benesi-Hildebrand plot for binding studies of Fum and Mal acids towards A	S19
Partial ${ }^{1} \mathrm{H}$ NMR spectra of \mathbf{A} with [TBAM]	S20
${ }^{1} \mathrm{H}$ NMR titration of probe \mathbf{A} with [TBAF] and [TBAM]	S20
Computational methods	S21
Determination of the composition of Fum and Mal acid as a function of pH	S21
Fractional distribution curve for Fum and Mal acids	S23
Energy optimized structure for the receptor A	S24
HPLC analysis	S25

Experimental Section

Materials:

Dansyl chloride, Hydrazine Monohydrate (98\%), 1-Isothiocyanato-naphthalene, Tosyl chloride, Phthalic anhydride were obtained from Sigma Aldrich and were used as received. 2-2'-Diaminodiethylamine was obtained from Koch-Light laboratory in India. Various AR grade mono- and di-carboxylic acids, such as Oxalic acid, Maleic acid, Fumaric acid, Suberic acid, Sebasic acid, Malonic acid, Acetic acid, Glutaric acid, Adipicacid, Citric acid, Malic acid were purchased from SD Fine Chemicals in India.Tetrabutylammonium (TBA) salts of fumaric and maleic acids were prepared following standard procedure and used for further studies. Compound 1, 2 and A was synthesized by following the method reported in the literature. Further the reference compound (R) was synthesized following a previously reported methodology. Solvents used for synthesis of various intermediates and final compounds were of AR grade (S.D. Fine Chemicals) and were used as received without further purification. Solvents used for various spectroscopic, and HPLC studies were of HPLC grade (S.D. Fine Chemicals). Solvents were dried, as and when necessary, following standard procedures.

Analytical Methods

${ }^{1}$ H NMR spectra were recorded on a Bruker 200 MHz FT NMR (Model: Avance-DPX 200) or on a Bruker 500 MHz FT NMR (Model: Avance-DPX 500) using $\mathrm{CD}_{3} \mathrm{CN}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CD}_{3} \mathrm{OD}$ as the solvent and tetra methyl silane (TMS) as an internal standard. ESI-Ms measurements were carried out on a Waters QTof-Micro instrument. Electronic spectra were recorded with a Shimadzu UV-3101 PC spectrophotometer; while fluorescence spectra were recorded using an Edinburgh instrument Xe 900 spectrofluorometer.

General experimental procedure for UV-Vis and Fluorescence studies

$1.0 \times 10^{-4} \mathrm{M}, 1.0 \times 10^{-3} \mathrm{M}$ solution of the \mathbf{A} and $1.0 \times 10^{-4} \mathrm{M}$ solution of \mathbf{B} in aq. HEPES buffer acetonitrile ($1: 1(\mathrm{v} / \mathrm{v}) ; \mathrm{pH} 7.4$ and 6$)$ and acetonitrile medium was prepared and stored in dark. This solution was used for all spectroscopic studies after appropriate dilution. 1.0×10^{-2} M of diacid solutions was prepared in 10 mM HEPES buffer (pH 6.0): acetonitrile (1: $1, \mathrm{v} / \mathrm{v}$). Solution of the compound A was further diluted for spectroscopic titrations, and the effective final concentration of the solution of compound \mathbf{A} used for the fluorescence study was 2.0 x $10^{-5} \mathrm{M}$, while the final analyte concentration during emission spectral scanning was 4.0×10^{-3} M. For all luminescence measurements, $\lambda_{\mathrm{Ext}}=290 \mathrm{~nm}$ with an emission slit width of 2 nm . The relative fluorescence quantum yields (ϕ_{f}) were estimated using equation 1 by using the integrated emission intensity of dansyl amide ($\phi_{\mathrm{f}}=0.37$)for \mathbf{A} and naphthalene $\left(\phi_{\mathrm{f}}=0.23\right)$ for B as a reference.
$\phi_{\mathrm{f}}=\phi_{\mathrm{f}}^{\prime}\left(\mathrm{I}_{\text {sample }} / \mathrm{I}_{\text {std }}\right)\left(\mathrm{A}_{\text {std }} / \mathrm{A}_{\text {sample }}\right)\left(\eta_{\text {sample }}^{2} / \eta_{\text {std }}^{2}\right)$
Where, ϕ_{f}^{\prime} is the absolute quantum yield for the dansylamide and naphthalene used as references; $\mathrm{I}_{\text {sample }}$ and $\mathrm{I}_{\text {std }}$ are the integrated emission intensities; $\mathrm{A}_{\text {sample }}$ and $\mathrm{A}_{\text {std }}$ are the absorbances at the excitation wavelength, and $\eta_{\text {sample }}$ and $\eta_{\text {std }}$ are the refractive indices. Energy transfer efficienc ($\Phi_{E T}$) was evaluated using the expression shown in Eq. 2, $\Phi_{E T}=1-\left(F{ }^{\prime}{ }_{D} / F_{\mathrm{D}}\right)$
where F^{\prime} D and F_{D} denote the donor fluorescence intensity with and without an acceptor, respectively.

General experimental procedure for ${ }^{1} \mathrm{H}$ NMR

$2.83 \times 10^{-3} \mathrm{M}$ solution of the reagent \mathbf{A} in $\mathrm{CD}_{3} \mathrm{CN}(500 \mu \mathrm{~L})$ was taken in an NMR tube. Complexation studies with maleate and fumarate, both as their tetrabutylammonium (TBA) salts, were studied by ${ }^{1} \mathrm{H}$ NMR technique. Concentration for the stock solutions of both fumarate (in $\mathrm{CD}_{3} \mathrm{CN}$: DMSO; 99:1 (v/v)) and maleate (in $\mathrm{CD}_{3} \mathrm{CN}$) ions were maintained at $150 \times 10^{-3} \mathrm{M} \cdot{ }^{1} \mathrm{H}$ NMR spectra of the guest molecule (A) were recorded with increasing concentration of the host ions (fumarate and maleate ions). Such addition was continued until no further change in the chemical shifts was observed.

HPLC Instrument \& Methodology

Apple juice was analysed by HPLC (Waters Alliance model with Waters 2996 Photo diode array Detector (PDA)) using the Supelco Gel 610-H Column (Length: 30 cm , ID: 7.8 mm), in conjugation with a column heating device at $30^{\circ} \mathrm{C}$. Solutions with known [Fumaric acid] was analysed by HPLC method under the identical conditions. Elution was carried out with Water (100%) - contain 0.1% of Phosphoric acid at a flow rate of $0.5 \mathrm{ml} / \mathrm{min}$ for 30 min . The mobile phase was filtered through $0.2 \mu \mathrm{M}$ PVDF membrane filter and degassed before use. Detection was performed with Photo diode array Detector (PDA). Calibration standard solution of fumaric acid was freshly prepared at concentrations of $0.78,1.56,3.125,6.25$, 12.5, 25 and 50 ppm in distilled water. The elution was monitored using an UV-detector at 210 nm and for each standard fumaric acid solution injection volume was $20 \mu \mathrm{~L}$ to get the standard plot for obtaining the calibration plot, while that for commercial apple juice was 40 $\mu \mathrm{L}$, The standard curve for fumaric acid passed virtually through the origin and a good linear fit $\left(R^{2}=0.999\right)$ was obtained.

Synthesis:

Scheme 1 Methodologies that were adopted for synthesis of A,B and R.

Synthesis of 2: Compound $\mathbf{1}(700 \mathrm{mg}, 1.92 \mathrm{mmol})$ and dansyl chloride ($647 \mathrm{mg}, 2.40 \mathrm{mmol}$) were dissolved in 50 ml dry acetonitrile. To this solution, $\mathrm{Na}_{2} \mathrm{CO}_{3}(407 \mathrm{mg}, 3.84 \mathrm{mmol})$ was added and allowed to reflux for 24 h . Then the reaction mixture was filtered to separate out $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Filtrate was completely evaporated and redissolved in minimum volume of dichloromethane. To this solution, 20 mL of ethanol was added to precipitate the desired compound. This was collected through filtration and was washed further with ethanol. This isolated light yellow compound was further dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ in a dissector. Yield: 550 mg , 48%. ESI-Ms (m/z) calculated for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6}$ S: 596, observed: $597\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR [500 MHz, $\left.\mathrm{CDCl}_{3}: \delta(\mathrm{ppm})\right]: 8.16(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ; 8.12(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH})$; 7.76 ($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}$); $7.65-7.60(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; 7.38(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArH}) ; 7.22$ $(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}) ; 6.18(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}) ; 3.94\left(4 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$; $3.88\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 2.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

Synthesis of 3: To a dichloromethane solution of compound 2 ($500 \mathrm{mg}, 0.84 \mathrm{mmol}$), hydrazine monohydrate (16.8 mmol) was added. Reaction mixture was stirred for 12 h at
room temperature, while a white precipitate was formed. Precipitate was removed through filtration using a G_{4} sinter crucible. Filtrate was collected and evaporated under the vacuum. Solid residue was redissolved in dichloromethane and undesired impurities were subsequently extracted is aqueous layer. The organic layer was collected and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum. A sticky pale green compound was obtained. Yield: 250 mg ; 89%.ESI-Ms (m/z) calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: 336$, observed: $337[\mathrm{M}+$ $\left.\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR [$\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}: \delta(\mathrm{ppm})\right] .8 .53(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ; 8.30(1 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}, \mathrm{ArH}) ; 8.15(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}) ; 7.56-7.49(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; 7.17(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, $\mathrm{ArH}) ; 3.38\left(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 2.91\left(4 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 2.87\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

Synthesis of A: Compound 3 ($130 \mathrm{mg}, 0.39 \mathrm{mmol}$) and 1-isothiocyanato naphthalene (144 $\mathrm{mg}, 0.78 \mathrm{mmol}$) were dissolved in 10 ml dichloromethane and stirred at room temperature for 24 h . Progress of the reaction was monitored by checking the TLC and stopped when no further change was observed. Volume of the reaction mixture was reduced to 5 ml under reduced pressure. To this, diethyl ether was added to precipitate the desired compound. White solid compound was isolated through filtration and was further washed with cold dichloromethane. Yield: $180 \mathrm{mg}, 66 \%$. ESI-Ms(m/z) calculated for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{3}$: 706, observed: $707\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR [500 MHz, $\left.\mathrm{CDCl}_{3}: \delta(\mathrm{ppm})\right]: 8.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}$, ArH); 7.98 ($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}) ; 7.98(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{ArH}) ; 7.88-7.86(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $7.82(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{ArH}) ; 7.76(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; 7.54-7.53(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; 7.48(2 \mathrm{H}, \mathrm{t}, J=7.5$ Hz, ArH); 7.42-7.35 (4H, m, ArH); 7.08 ($1 \mathrm{H}, \mathrm{d}, ~ J=7.0 \mathrm{~Hz}, \mathrm{ArH}$); $6.28(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; 3.65$ $\left(4 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 3.39\left(4 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 2.84\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right){ }^{13} \mathrm{C}$ NMR (500 MHz , CD3CN+ 1\% DMS0-d $\left.\mathrm{d}_{6}: \delta(\mathrm{ppm})\right]: 183.72,152.64,135.71,135.34,134.96,131.18,130.70$, $130.03,129.14,128.31,127.45,126.62,124.57,123.91,120.17,116.23,47.90,45.74,43.81$. Elemental analysis (in \%): Calculated for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, 63.76; H, 5.79; N, 12.06; S, 13.80 and Observed: C, 63.55; H, 5.75; N, 12.0; S, 13.63

Synthesis of 4: Synthetic procedure that was adopted for synthesis of 4 was similar to that of 2, except 4-toluene sulphonyl chloride ($104 \mathrm{mg}, 0.55 \mathrm{mmol}$) was used for the reaction instead of dansylchloride. Similar workup procedure was also followed for isolating the desired white solid compound 5. Yield: 140 mg , 50%. ESI-Ms (m/z) calculated for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$: 517, observed: $556\left[\mathrm{M}+\mathrm{K}^{+}\right] .{ }^{1} \mathrm{H}$ NMR [200 MHz, $\left.\mathrm{CDCl}_{3}: \delta(\mathrm{ppm})\right]: 9.71(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;$ $9.38(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}) ; 8.86(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}) ; 5.83\left(4 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$; $5.63\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 4.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

Synthesis of 5: Synthetic procedure that was adopted for synthesis of 5 was similar to that of 3, except 4 ($150 \mathrm{mg}, 0.3 \mathrm{mmol}$) was used for the reaction instead of the compound 2 . After following the similar work-up procedure a white sticky compound was isolated. Yield: 40 $\mathrm{mg}, 58 \%$. ESI-Ms (m/z) calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: 257$, observed: $258\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR [200 MHz, $\left.\mathrm{CDCl}_{3}: \delta(\mathrm{ppm})\right]: 9.67(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}) ; 9.28(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{ArH})$; $5.08\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 4.82\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 4.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

Synthesis of B: Synthetic procedure that was adopted for synthesis of B was similar to that of A, except $5(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ and accordingly $57 \mathrm{mg}(0.31 \mathrm{mmol})$ of 1-isothiocyanato naphthalene were used for the reaction. After following the similar work-up procedure, as it was adopted for 4, desired compound \mathbf{B} was isolated as a white solid compound. Yield: 17 $\mathrm{mg}, 18 \%$. ESI-Ms (m/z) calculated for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}_{3}$: 627, observed: $628\left[\mathrm{M}+\mathrm{H}^{+}\right] .{ }^{1} \mathrm{H}$ NMR [500 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta(\mathrm{ppm})\right] .7 .95(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}) ; 7.92-7.87(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;$ 7.83 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); 7.58-7.53(4H, m, ArH);7.51-7.47 (4H, m, ArH); 7.42(2H, d, J = 10 Hz);6.33 (2H, s, NH); $3.66\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 3.19\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 2.37(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3, \delta(\mathrm{ppm})\right]: 182.04,143.81,134.97,134.64,131.36$, $129.88,129.03,128.55,127.38,127.03,126.91,125.89,122.36,48.67,44.43,29.70,21.50$. Elemental analysis (in \%): Calculated for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, 63.13; H, 5.30; N, 11.15; S, 15.32 and Observed: C, 63.1; H, 5.28; N, 11.08; S, 15.25.

${ }^{1}$ H NMR spectra of 2

SI Figure 1: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ in CDCl_{3} medium.

Mass spectra of 2

SI Figure 2: ESI- mass spectra of 2.

${ }^{1}$ H NMR spectra of 3

SI Figure 3: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ in CDCl_{3} medium.

Mass spectra of 3

SI Figure 4: ESI- mass spectra of 3.

${ }^{1} \mathbf{H}$ NMR spectra of A

SI Figure 5: ${ }^{1} \mathrm{H}$ NMR spectra of \mathbf{A} in CDCl_{3} medium.

${ }^{13} \mathrm{C}$ NMR spectra of A

ppm (t1)
SI Figure 6: ${ }^{13} \mathrm{C}$ NMR spectra of 4 in $\mathrm{CD}_{3} \mathrm{CN}$ having 1% DMSO- d_{6}.

Mass spectra of A

SI Figure 7: ESI- mass spectra of A.

${ }^{1}$ H NMR spectra of 4

SI Figure $8:{ }^{1} \mathrm{H}$ NMR spectra of 4 in CDCl_{3} medium.

Mass spectra of 4

SI Figure 9: ESI- mass spectra of 4.

${ }^{1}$ H NMR spectra of 5

SI Figure 10: ${ }^{1} \mathrm{H}$ NMR spectra of 5 in CDCl_{3} medium.

Mass spectra of 5

SI Figure 11: ESI- mass spectra of 5.

${ }^{1} \mathbf{H}$ NMR spectra of B

SI Figure 12: ${ }^{1} \mathrm{H}$ NMR spectra of \mathbf{B} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ medium.

${ }^{13} C$ NMR spectra of B

SI Figure 13: ${ }^{13} \mathrm{C}$ NMR spectra of \mathbf{B} in CDCl_{3} medium.

Mass spectra of B

SI Figure 14: ESI-Ms spectra of B.

Mass spectra of A with [TBAF]

SI Figure 15: ESI- mass spectra of \mathbf{A} with [TBAF].

Mass spectra of A with [TBAM]

SI Figure 16: ESI- mass spectra of \mathbf{A} with [TBAM].

Electronic and Emission spectra of A and B

SI Figure 17: Electronic and luminescence ($\lambda_{\text {Ext }}=290 \mathrm{~nm}$) spectra recorded for $2.0 \times 10^{-5} \mathrm{M}$ solution of (i) A (slit width: $2 / 2 \mathrm{~nm}$) and (ii) B (slit width: $3 / 3 \mathrm{~nm}$); All spectra were recorded in 10 mM aq. HEPES buffer: acetonitrile ($1: 1(\mathrm{v} / \mathrm{v}) ; \mathrm{pH} 7.4)$ medium.

Emission spectra of R and Overlap spectra of B and R

SI Figure 18: (i) Emission spectra for R following excitation at (red) 355and (black) 290 nm .
(ii) Spectra showing the strong overlap between the emission spectra of naphthalene and Uvvis spectra of R ; all spectra were recorded in 10 mM aq. HEPES buffer: acetonitrile (1: 1 (v/v); pH 7.4) medium.

Emission response of B with Fumaric and Maleic acid

SI Figure 19: Luminescence response of (i) B, (ii) B with Maleic acid (iii) B with Fumaric acid was recorded in 10 mM aq. HEPES buffer: acetonitrile (1: $1, \mathrm{v} / \mathrm{v} ; \mathrm{pH} 6.0$):) medium. $\lambda_{\text {Ext }}$ $=290 \mathrm{~nm}$.

Benesi-Hildebrand plot for binding studies of Fumaric and Maleic acids towards A

SI Figure 20: Figures i and ii show the respective Benesi-Hildebrand plot for fumaric and maleic acids. For both B-H plots, good linear fit confirms the 1:1 binding stoichiometry. For all studies $\lambda_{\mathrm{Ext}}=290 \mathrm{~nm}, \lambda_{\text {Mon }}=542 \mathrm{~nm}$ with slit width: 2 nm was used. All measurements were performed in 10 mM aq. HEPES buffer: acetonitrile ($1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{pH} 6.0$) medium.

Partial ${ }^{1} \mathrm{H}$ NMR spectra of A with [TBAM]

SI Figure 21: Partial ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{A}(2.83 \mathrm{mM})$ in absence and presence of varying [TBAM] in $\mathrm{CD}_{3} \mathrm{CN}$ medium.

${ }^{1}$ HNMR titration of probe A with [TBAF] and [TBAM]

SI Figure 22: Changes in chemical shift values of thiourea protons in probe molecule \mathbf{A} with varying no. of equivalents of (i) TBAF and (ii) TBAM.

Computational methods: Conformational searches for probe A was performed using the Monte Carlo algorithm for the random variation of all of the rotatable bonds combined with Semi empirical PM3 in Spartan 06. ${ }^{1}$ For each calculation, 5000 Monte Carlo steps were carried out. Lowest energy conformers were taken for the energetic comparisons with semi empirical calculations. All the geometries of probe Awere fully optimized at the PM3 level ${ }^{2}$ of theory using the Gaussian 03 program. ${ }^{3}$ The lowest energy conformer is taken for the complexation study. We have also optimized fumaric and maleic acids (in neutral, mono and bis deprotonated form) at PM3 level of theory in gas phase.The optimized geometries were checked with imaginary frequencies to identify the ground-state minimum. Next, we have taken probe Afor complexation with diastereomericdiacids (fumaric and maleic acid) in neutral, mono and bisdeprotonated form optimised at PM3 level of theory in gas phase. Single-point calculations were performed for these complexes at the B3LYP/6-31G* level ${ }^{4}$ using the PM3 level optimized complex geometries for more accurate estimation of the energies. The binding energies were computed using the equation, $\Delta \mathrm{E}=\Delta \mathrm{E}_{\text {complex }}-\left(\Delta \mathrm{E}_{\text {probee }}\right.$ $\left.+\Delta \mathrm{E}^{\text {diacid/mono/bisdeprotonated }}\right)$.

Determination of the composition of Fumaric and Maleic acid as a function of pH

In order to find the effect of pH of the solvent on the respective acids we could evaluate the fractional distribution curves, which were obtained from experimental pK_{a} values. ${ }^{5}$ The curves explain that the formation of α_{1} and α_{2} of fumaric and maleic acid at different pH range. The detailed derivation for composition calculations were given below.

Fumaric and maleic acids are the diprotic acids and shows the following equilibrium in aqueous solution.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~B}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{~K}_{1}} \mathrm{HB}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \ldots \ldots \ldots 1 \\
& K_{1}=\frac{\left[\mathrm{HB}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{~B}^{+}\right]} \text {or }\left[\mathrm{HB}^{-}\right]=\frac{\mathrm{K}_{1}\left[\mathrm{H}_{2} \mathrm{E}\right]}{\left[\mathrm{H}_{8} \mathrm{O}^{+}\right]} \cdots \cdots 2 \\
& \mathrm{HB}^{-}+\mathrm{H}_{2} \mathrm{O}^{\mathrm{F}_{2}} \mathrm{~B}^{-2}+\mathrm{H}_{8} \mathrm{O}^{+} \ldots \ldots 3
\end{aligned}
$$

$$
K_{2}=\frac{\left[\mathrm{B}^{-2}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HB}^{-}\right]} \text {or }\left[\mathbf{B}^{-2}\right]=\frac{\mathrm{K}_{8}\left[\mathrm{LD}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{0}^{+}\right]}-\cdots+\cdots 4
$$

Let the compositions of di acid $=\alpha_{0}=\frac{\left[\mathrm{H}^{2} \mathrm{~B}\right]}{\left[\mathrm{H}_{8} \mathrm{Q}^{+}\right]}$
And for the 1 st conjugate base $=\alpha_{1}=\frac{\left\lfloor\mathrm{HB}^{-}\right\rfloor}{\left\lceil\mathrm{H}_{3} 0^{+}\right\rceil}$
For the $2^{\text {nd }}$ conjugate base $=\alpha_{2}=\frac{\left[\mathrm{B}^{2-}\right]}{\left[\mathrm{H}_{3} 0^{+}\right]}$
So the total concentration of the parent acid is $\mathrm{CH}_{2} \mathrm{~B}=\left[\mathrm{H}_{2} \mathrm{~B}\right]+\left[\mathrm{HB}^{-}\right]+\left[\mathrm{B}^{2-}\right]$
Substituting the value of $\left[\mathrm{HB}^{-}\right]$and $\left[\mathrm{B}^{2-}\right]$ from equation 2 and 4 we get,

$$
\mathrm{CH}_{2} \mathrm{~B}=\left[\mathrm{H}_{2} \mathrm{~B}\right]+\frac{\mathrm{K}_{1}\left[\mathrm{H}_{2} \mathrm{E}\right]}{\left[\mathrm{H}_{3} \mathrm{a}^{+}\right]}+\frac{\mathrm{K}_{2}\left[\mathrm{HB}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]}
$$

Substituting value of HB^{-}in terms of $\mathrm{H}_{2} \mathrm{~B}$ and Multiplying with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}$ on both sides we get

$$
\begin{gathered}
\mathrm{CH}_{2} \mathrm{~B}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=\left[\mathrm{H}_{2} \mathrm{~B}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}_{2} \mathrm{~B}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}\left[\mathrm{H}_{2} \mathrm{~B}\right] \\
\text { or, } \frac{\left[\mathrm{H}^{2} \mathrm{~B}\right]}{\mathrm{CH}_{3} \mathrm{~B}}=\frac{\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]^{2}}{\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}}=\alpha_{0} \\
\text { or, } \frac{\left[\mathrm{HB}^{-}\right]}{\mathrm{CH}_{3} \mathrm{~B}}=\frac{\mathrm{K}_{1}\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}}=\alpha_{1} \\
\text { or, } \frac{\mathrm{B}^{2}-}{\mathrm{CH}_{3} \mathrm{~B}}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]^{2}+\mathrm{K}_{1}\left[\mathrm{H}_{3} \mathrm{Q}^{+}\right]+\mathrm{K}_{1} \mathrm{~K}_{2}}=\alpha_{2}
\end{gathered}
$$

The sum of α_{0}, α_{1} and α_{2} will be equal to 1 .
Respective values for $\mathrm{K}_{1} \& \mathrm{~K}_{2}$ for fumaric and maleic acids are $9.55 \times 10^{-5} \& 3.63 \times 10^{-5}$ and1.2 $\times 10^{-2} \& 8.5 \times 10^{-9}$ as derived from the respective $\mathrm{p} K_{\mathrm{a}}$ from the literature. ${ }^{6}$

References

1 Spartan'06, Wave function Inc.: Irvine, California.
2 J. J. P. Stewart, J. Comp. Chem., 1989, 10, 209.
3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.

Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.

4 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785; (c) W. J. Hehre, L. Radom, P. v. R Schleyer and J. A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1988.

5 Brown, Mc. Daniel, and Halfliger, In Determination of Organic structures by physical Methods, Braude and Nachod, Eds., Acadamic Press, New York, 1955, 567.
6 (a) D. A. Skoog, D. M. West, F. J. Holler and S. R. Crouch, Analytical Chemistry An Introduction, Pub:-Holt, Rinehart and Winston, 7th ed., 1965, 317; (b) A. Sen and B. Ganguly, Angew. Chem. Int. Ed., 2012, 51, 11279.

Fractional distribution curve for Fumaric and Maleic acids

SI Figure 23: Fractional distributions of the (a) fumaric acid (b) maleic acid calculated from the pKa values are plotted as a function of pH value. Where $\alpha_{0}, \alpha_{1}, \alpha_{2}$ are the zero, first and second dissociation constants of fumaric and maleic acids.

Energy optimized structure for the receptor A

SI Figure 24: RHF/PM3 optimized geometry of probe A. Distances are given in \AA. (Atom colour code: red = oxygen; blue = nitrogen; white = hydrogen; yellow = sulfur; dark magenta = carbon).

HPLC analysis

SI Figure 24:(i) HPLC chromatogram of (a) standard Maleic acid (6.25 ppm) solution with retention time 13.799 min . (b) commercial apple juice and (c) standard fumaric acid (6.25 ppm) with retention time 25.221 min ; (ii) Standard calibration curve obtained from the HPLC data for different standard fumaric acid ($0.78,1.56,3.125,6.25,12.5,25$ and 50 ppm) solutions and the use of that calibration plot for evaluation of [Fumaric acid] in the commercial sample of apple juice.

