Supporting Information

Reductive amination of tertiary anilines and aldehydes

Yunhe Lv, Yiying Zheng, Yan Li,* Tao Xiong, Jingping Zhang, Qun Liu and Qian Zhang*

Department of Chemistry, Northeast Normal University, Changchun 130024, China

E-mail: <u>liy078@nenu.edu.cn</u>; <u>zhangq651@nenu.edu.cn</u>

Table of Contents

I. General information	2
II. Synthesis procedure	2
III. DFT theoretical study	3
IV. Spectra data for the products	10
V. ¹ H NMR and ¹³ C NMR spectra for the products	15
VI. The HRMS spectrum of [¹³ C ₁]-3hb	38
VII. The ¹ H NMR spectrum of [D ₄]-3aa	39

I. General information

All reagents were purchased from commercial sources and used without further treatment, unless otherwise indicated. 1, 2-dichloroethane (DCE) was dried over CaH_2 and distilled. The ¹H NMR spectra were recorded at 400 or 500 MHz in CDCl₃ and the ¹³C NMR spectra were recorded at 100 or 125 MHz in CDCl₃ with TMS as internal standard. Melting points were obtained with a micro melting point XT4A Beijing Keyi electrooptic apparatus and were uncorrected. High resolution mass spectra were recorded on Bruck microtof. All reactions were monitored by TLC with Taizhou GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

II. Synthesis procedure

(i) General procedure for the preparation of *N*,*N*-dimethylanilines

1a was purchased from J & K Chemical Limited. Substrates **1b–n** were prepared through the reaction of corresponding anilines and alkyl halide in anhydrous DMF at room temperature (**1b as an example**).

To the well stirred anhydrous DMF (25 mL), cooling by ice-water, added 2,4-dimethylaniline (1.41 g, 10 mmol), NaH (70%) (0.82 g, 24 mmol) and CH₃I (1.49 mL, 24 mmol). The reaction mixture was stirred at room temperature for 24 h (monitored by TLC) before it was slowly poured into water (80 mL). Extracted with CH₂Cl₂ (4×10 mL), then the organic phase was washed with water (3×20 mL), the solvent was removed under reduced pressure, and the residue was purified by column chromatography (eluent: diethyl ether/petroleum ether = 1/50) afforded the product **1b**.

(ii) General procedure for the Selectfluor-mediated reductive amination (3aa as an example)

To a solution of *N*,*N*-dimethyl-*p*-toluidine (**1a**) (54.0 mg, 0.4 mmol) in anhydrous DCE (3.0 mL) was added ethyl 2oxoacetate (**2a**)(0.33 ml, 1.6 mmol) and Selectfluor (283 mg, 0.8 mmol) under nitrogen atmosphere at room temperature. The mixture was stirred at 90 °C for 9.0 h (monitored by TLC), extracted with dichloromethane (5×3 mL), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by a shot flash silica gel column chromatography (eluent: diethyl ether/petroleum ether = 1/40) to give compound **3aa** as a colorless oil (65 mg, 79%).

III. DFT study

All calculations were carried out by using Gaussian 09 program package¹ at the B3LYP/6-31G(d) level of theory. Frequency calculations at the same theoretical level were perform to verify the stationary points to be real minima with zero imaginary frequency or transition states with only one imaginary frequency, and also to provide free energies at 289.15 K. The NBO analysis was performed as implemented in the Gaussian 09 code.

Through DFT calculations, the possible mechanism and corresponding Gibbs energy profiles is depicted in Scheme 1. Initially, the interaction between **1a** and Selectfluor forms complex **Com** exothermically, then the F^+ reagent nucleophililic attacks the nitrogen centre of **1a**, and F^+ is reduced to F. Simultaneously, the counter anion BF_4^- of Selectfluor abstracts the proton from α -carbon to the nitrogen atom in an intramolecular fashion with the Gibbs energy barrier ($\Delta\Delta G^+_{+}$) 16.7 kcal/mol, forming an iminium ion **A**. This redox process was confirmed by the NBO analysis that **1a**, severving as reductive agent, transferred 1.16e to Selectflour in transition state **I**. In the next step, a key nucleophilic attack of the oxygen atom on the carbonyl group of **2a** to **A** takes place via a four-membered transition state **B**, providing an ammonium ylide **C** with the relative Gibbs energy (ΔG) of -24.2 kcal/mol. This ring forming process is the rate-limiting step, and the calculated ΔG value (29.5 kcal/mol) of **B** suggests that the reaction can proceed under the condition of heating, which agrees well with the experimental temperature (90 °C). The calculation result showed that the formation of **C** via **B** from **A** is exothermic by approximately 24.0 kcal/mol. Finally, the proton transfer via a sixmembered transitional state **II** (-19.0 kcal/mol) results in the reductive amination product **3aa**. This proposed mechanism show qualitative accordance with our labelling experiments.

Scheme 1 Gibbs energy profiles for the plausible mechanism at the B3LYP/6-31G(d) level. The relative energy is given in kcal/mol relative to the formation of **3aa**.

1a

Electronic and zero-point energy: -405.330738 a.u. Enthalpy: -405.319258 a.u.

Free energy: -405.367666 a.u.				
-1.46767000	-1.19134800	-0.03460800		
-0.07583900	-1.20346000	-0.07116900		
0.66200700	-0.00000900	-0.10139800		
-0.07580900	1.20342400	-0.07038900		
-1.46765600	1.19129800	-0.03385600		
-2.20108400	-0.00001900	-0.01376900		
-1.99527600	-2.14333700	-0.01825000		
0.43310600	-2.16008600	-0.08136700		
0.43312700	2.16006100	-0.07980500		
-1.99524500	2.14328400	-0.01684700		
-3.71023900	-0.00004400	0.06150800		
-4.06753200	-0.00094700	1.10090700		
-4.13607000	0.88536600	-0.42396400		
-4.13613600	-0.88457600	-0.42551100		
2.05623900	-0.00006700	-0.17790500		
2.77088100	1.24133000	0.06251800		
3.84275200	1.06300500	-0.04888000		
2.48808900	2.00360500	-0.67268400		
2.59215300	1.65734900	1.06840400		
2.77078500	-1.24128900	0.06387300		
3.84278400	-1.06275300	-0.04587500		
2.59054500	-1.65700100	1.06959400		
2.48933700	-2.00388800	-0.67153400		
	ergy: -405.367666 -1.46767000 -0.07583900 0.66200700 -0.07580900 -1.46765600 -2.20108400 -1.99527600 0.43310600 0.43312700 -1.99524500 -3.71023900 -4.06753200 -4.13607000 -4.13613600 2.05623900 2.77088100 3.84275200 2.48808900 2.59215300 2.77078500 3.84278400 2.59054500 2.48933700	ergy: -405.367666 a.u. -1.46767000 -1.19134800 -0.07583900 -1.20346000 0.66200700 -0.00000900 -0.07580900 1.20342400 -1.46765600 1.19129800 -2.20108400 -0.00001900 -1.99527600 -2.14333700 0.43310600 -2.16008600 0.43312700 2.16006100 -1.99524500 2.14328400 -3.71023900 -0.00094700 -4.13607000 0.88536600 -4.13613600 -0.88457600 2.05623900 -0.00006700 2.77088100 1.24133000 3.84275200 1.06300500 2.4808900 2.00360500 2.59215300 1.65734900 2.77078500 -1.24128900 3.84278400 -1.06275300 2.59054500 -1.6570100 2.48933700 -2.00388800		

Selectflour

Electronic and zero-point energy: -1793.191537 a.u. Enthalpy: -1793.169191 a.u. Free energy: -1793.244218 a.u.

N	-0.28933600	0.51018200	0.94266900
С	1.09424900	0.22453600	1.49590200
Н	1.82156800	0.82206200	0.94786800
Η	1.09353700	0.49620300	2.55342900
С	-1.28801500	-0.38203400	1.67251700
Н	-1.16149800	-0.16958600	2.73621700
Η	-2.29001100	-0.10374600	1.33751000
С	-0.24786100	0.22716600	-0.56135200
Η	-1.20637900	0.50523000	-1.00247600
Н	0.57208800	0.82775300	-0.95517500
С	-1.00196400	-1.86307700	1.35718800
Н	-0.82109200	-2.46031700	2.25176000
Η	-1.80161300	-2.28035500	0.74716400
С	1.40500700	-1.28415500	1.29967700
Η	2.29843500	-1.42004700	0.68990700
Н	1.48144700	-1.82722100	2.24266500
С	0.05712700	-1.26844200	-0.79699100
Η	-0.79175300	-1.77280500	-1.25627800
Н	0.99872100	-1.40332100	-1.33244200
Ν	0.25487900	-1.89864800	0.55274700
F	0.57053300	-3.25099200	0.35015100
С	-0.76425800	1.93431700	1.19204000
Н	-1.75731100	1.99679200	0.74297300
Η	-0.81130100	2.06778400	2.27322600
Cl	0.31006100	3.16288800	0.51153700
В	-3.67546700	0.01623300	-0.87364400
F	-4.97477300	-0.22548700	-1.19469600
F	-3.57519700	0.80404800	0.33005500
F	-2.95819500	0.68772600	-1.87195600
F	-2.97430300	-1.21639900	-0.60141600
В	3.59379700	0.10997400	-0.84828400
F	2.58989200	1.11323900	-1.01740700
F	3.87654600	0.03536900	0.53829500
F	4.70101200	0.36602400	-1.59740300
F	2.99203600	-1.14565800	-1.21169500

Com

Electronic and zero-point energy: -2198.530345 a.u. Enthalpy: -2198.496325 a.u. Free energy: -2198.600780 a.u.

С	-6.28892500	-0.52926600	-1.27865500
C	-5 26788900	0 34139300	-0.90433100
C	-4 54638500	0.14751500	0.29369600
C	-4 93403500	-0.04/02800	1 10082000
C	-4.93403300	-0.94492800	0.70710200
C	-5.95705800	-1.60237100	0.70719200
C H	-0.03/20800	-1.02578800	-0.49220200
н	-0.82004000	-0.336/4300	-2.208/9/00
H	-5.04/69/00	1.18518900	-1.54/46500
H	-4.44522400	-1.12/13/00	2.05065/00
H	-6.22357900	-2.62914500	1.36358600
С	-7.74837200	-2.57943100	-0.919/8600
Н	-7.34509100	-3.44237600	-1.46819900
Н	-8.29641400	-2.97575000	-0.05744900
Н	-8.47339700	-2.08919300	-1.57887400
Ν	-3.48329000	0.98360700	0.65273900
С	-3.00862400	0.96009500	2.03082400
Н	-2.16352800	1.64411100	2.12253900
Н	-3.78345300	1.25348100	2.75771600
Н	-2.65791300	-0.04214500	2.30193100
С	-3.32640500	2.25257700	-0.04663500
Н	-2.43145000	2.75278300	0.32512300
н	-3.19135600	2.08586300	-1.12190500
Н	-4.19068800	2.92483200	0.08096300
N	2.67735500	-0.06931000	-1.01861800
C	1.91625600	1.10770700	-1.60085000
Ĥ	2.23780300	2.01647300	-1.09383700
н	2 14367400	1 16174200	-2.66736800
C	2 12406200	-1 34859600	-1 64372900
н	2 19230700	-1 20670900	-2.72444300
н	2 75573100	-2 17976700	-1 32024600
C	2 48144100	-0.03329900	0.49869400
н	3 07048900	-0.83325800	0.94954900
н	2 82260300	0.03323000	0.94994900
C	0.66775500	-1 56980500	-1 19106100
ч	-0.01876400	-1.70368400	-2 02798300
и П	0.61136000	2 30708200	-2.02798300
C	0.01130000	-2.39798200	1 25844700
U U	0.40169600	1 72782700	-1.55644700
п	-0.03003900	1.72782700	-0.85450800
п	-0.14977000	0.00072300	-2.2/3/1800
U U	0.97970700	-0.1/090500	0.82451900
н	0.78890400	-1.08595900	1.39353800
H	0.5/434900	0.72147500	1.29329000
IN T	0.24881000	-0.32/2/100	-0.4/891400
F	-1.12052000	-0.44/03100	-0.18939800
C	4.16038900	-0.06420300	-1.35172000
Н	4.58117200	-0.94323700	-0.859/5600
Н	4.24360100	-0.14224300	-2.43608/00
Cl	4.98899800	1.40813200	-0.82207000
В	3.54077900	-3.29114600	0.91002700
F	3.77231600	-4.56094200	1.33774500
F	4.11247100	-3.06556300	-0.39338700
F	4.05494100	-2.30289100	1.76300100
F	2.12634500	-3.04048600	0.77539400
В	0.83779100	3.54629200	0.67386500
F	2.09165800	2.89431800	0.86723300
F	0.66170700	3.71493400	-0.71797500
F	0.75429700	4.71402100	1.36647700
F	-0.17856200	2.60954200	1.10265900

I

 Imaginary frequency: -844.7255 cm**-1

 Electronic and zero-point energy: -2198.502874 a.u.

 Enthalpy: -2198.468328 a.u.

 Free energy: -2198.574196 a.u.

 C
 -4.55526100
 2.62324600
 0.77869300

С	-3.87238300	1.41844900	0.87128500
С	-4.06540000	0.44811500	-0.11932300
С	-4.94997700	0.67965500	-1.17607100
С	-5.62853500	1.89595900	-1.24508900
С	-5.44192600	2.88991600	-0.27874600
Η	-4.38400200	3.38202800	1.53764500
Н	-3.15319400	1.23826000	1.65803000
Η	-5.14117800	-0.08577600	-1.91972300
Н	-6.31893300	2.06614900	-2.06644300
С	-6.15232300	4.21696200	-0.37050000
Η	-5.45097800	5.01516600	-0.64447300
Н	-6.94538800	4.19821400	-1.12344200
Η	-6.59864100	4.49656700	0.59031400
Ν	-3.43516200	-0.86275000	-0.01145900
С	-3.06960800	-1.52127800	-1.14257300
Η	-1.66415700	-1.75046000	-0.98824800
Н	-3.29585200	-2.58456500	-1.16434300
Η	-3.11994900	-0.94704700	-2.06091300
С	-3.89268700	-1.71140500	1.12485100
Н	-3.17304400	-2.51915300	1.24337800
Η	-3.93654100	-1.10031300	2.02152100
Н	-4.88656100	-2.09006600	0.86822500
Ν	2.86249900	-0.48492300	0.55672500
С	2.18074900	-1.61974900	1.29585700
Н	1.79173000	-2.32313000	0.56036300
Н	2.95798600	-2.11758200	1.88344300
С	3.56778800	0.38626000	1.60170800
Н	4.33541800	-0.25184000	2.04910600
Н	4.03282500	1.20872500	1.06299500
С	1.78215800	0.31627100	-0.17695100
Н	2.27389700	1.02536500	-0.84479000
Н	1.22760100	-0.42110800	-0.75862500
С	2.51084200	0.86465900	2.63145700
Н	2.71622200	0.44730700	3.62302900
Н	2.55878700	1.95419000	2.69252200
С	1.05991700	-0.99239500	2.18560200
Н	0.07512400	-1.25537700	1.79327200
Н	1.14020800	-1.38721300	3.20378900
С	0.89394200	1.01090300	0.88434400
Н	1.11455000	2.07985000	0.88932000
Н	-0.15952000	0.84737500	0.64814100
Ν	1.15944400	0.47040600	2.22772500
F	-1.93340200	-0.38207600	0.83576400
С	3.93767600	-0.93662200	-0.39343100
Н	4.37731300	-0.03414300	-0.82374600
Н	4.66984300	-1.50233300	0.18271700
Cl	3.33434500	-1.99937100	-1.69678500
В	3.98901700	2.98741500	-0.84106900
F	4.61062800	4.17046800	-1.15011800
F	4.95643000	1.94112200	-0.65527100
F	3.10094100	2.56712300	-1.85069600
F	3.25647400	3.09435400	0.37808500
B	-0.67022000	-3.69504500	-0.37066200
F	0.63082100	-4.05959200	-0.41603200
F	-1.19269400	-3.52843500	0.88450800
F	-1.51160600	-4.29822600	-1.25080000
F	-0.61300500	-2.14189500	-0.93618000

A Electronic and zero-point energy: -504.483429 a.u. Enthalpy: -504.470974 a.u. Free energy: -504.521463 a.u.

С	-1.56996600	1.17755800	-0.07027200
С	-0.18389600	1.05611800	-0.10557000
С	0.36804000	-0.22326500	-0.04320400
С	-0.43284700	-1.36107100	0.05156500
С	-1.82008400	-1.21125100	0.08541400
С	-2.41038300	0.05655100	0.02460500
Н	-2.01293900	2.16959500	-0.12731500

Н	0.54185700	1.86494000	-0.20692700
Н	0.01664500	-2.34837200	0.11216100
Н	-2.44872500	-2.09485900	0.16309600
С	-3.91244400	0.21877100	0.04078400
Н	-4.28899000	0.52066800	-0.94510300
Н	-4.41514200	-0.71408600	0.31479000
Н	-4.22261100	0.99206200	0.75295100
Ν	1.81781300	-0.39797100	-0.04726900
С	2.36480000	-1.09077400	-0.99061300
Н	3.41599400	-1.34277200	-0.92229900
Н	1.79798500	-1.30536000	-1.88703800
С	2.52914600	-0.19117600	1.23476100
Н	3.56847800	0.03700300	1.01435500
Н	2.08601400	0.66332400	1.73119000
Н	2.43045800	-1.10769400	1.83185700
F	2.35689900	1.65139800	-0.31840700

B

D Imaginary frequency: -351.5309 cm**-1 Electronic and zero-point energy: -886.038128 a.u. Enthalpy: -886.017646 a.u.

1.2	
Free energy:	-886.089390 a.u.

С	-3.91388100	0.56680400	-0.45992700
С	-2.62943200	1.11007400	-0.40513000
С	-1.57906800	0.37087600	0.14700700
С	-1.83628500	-0.91377200	0.64329500
С	-3.12274000	-1.44345200	0.58473300
С	-4.18532800	-0.71574100	0.02990100
Н	-4.71982400	1.15813300	-0.88810400
Н	-2.45615900	2.11700700	-0.77198500
Н	-1.01868700	-1.50179100	1.05182600
Н	-3.30215300	-2.44449300	0.96990500
С	-5.57094600	-1.31021200	-0.06127500
Н	-5.68083200	-1.92412600	-0.96512300
Н	-5.78720700	-1.95601600	0.79645800
Н	-6.33917000	-0.53124500	-0.10134400
Ν	-0.24317400	0.91332100	0.26448200
С	0.34451900	1.79108200	-0.82843800
Н	1.22053000	2.90153700	-0.16794200
Н	-0.41773200	2.08577000	-1.55559500
С	0.00462500	1.46165100	1.61978600
Н	1.02232600	1.84414500	1.66675300
Н	-0.68165200	2.29673500	1.81728200
Н	-0.17359700	0.67715900	2.36022500
F	1.76739300	3.49331700	0.47482800
С	0.92619100	-0.28626200	-0.93610100
0	1.31419300	0.85758300	-1.43263100
С	1.92887200	-1.24363700	-0.37178900
0	1.59602100	-2.35603400	-0.00475500
0	3.15167600	-0.72090600	-0.29345800
С	4.17962800	-1.57873300	0.26878500
Н	3.86859800	-1.86952500	1.27723000
Н	4.24065600	-2.48820900	-0.33749800
С	5.47510100	-0.79228700	0.26686000
Н	5.37924100	0.11860000	0.86527300
Н	6.27732600	-1.40526600	0.69170200
Н	5.75822300	-0.50812500	-0.75118300
Н	-0.01685300	-0.74687900	-1.22218100

C Electronic and zero-point energy: -886.126079 a.u. Enthalpy: -886.105848 a.u. Free energy: -886.175014 a.u.

С	3.09767300	-1.39532500	0.35122900
С	1.78680000	-0.92960000	0.39229400
С	1.47226300	0.28553700	-0.22914300
С	2.47092200	1.02092800	-0.86688100
С	3.77646800	0.52692800	-0.90239700
С	4.11712900	-0.68526300	-0.29761500

Н	3.32651800	-2.34062100	0.83724400
Н	1.02491100	-1.51216900	0.89790100
Н	2.26550700	1.96754500	-1.34791100
Н	4.54045300	1.10688700	-1.41352200
С	5.52851500	-1.21935000	-0.33931100
Н	5.57213800	-2.18454300	-0.85886700
Н	6.20326700	-0.53041600	-0.85614300
Н	5.92161100	-1.38145400	0.67148300
Ν	0.06250900	0.80263100	-0.14365000
С	-0.13440900	1.19860200	1.36797100
Н	-0.86360800	-1.31807300	0.80669000
Н	-0.40941900	0.29929700	1.93121000
С	-0.15384000	2.03735300	-0.97652000
Н	-1.19610500	2.31972300	-0.85244700
Н	0.48236100	2.84439600	-0.61508400
Н	0.06625700	1.78731100	-2.01408800
F	-0.81819300	-1.96968300	1.59172300
С	-0.93543100	-0.28768300	-0.43467800
0	0.14420100	2.28567400	1.75398300
С	-2.26692000	0.16212800	-0.14288900
0	-2.51353600	1.09875800	0.63338800
0	-3.23346100	-0.59742300	-0.70233700
С	-4.58035800	-0.35154800	-0.24229800
Н	-4.61285400	-0.47214500	0.84529100
Н	-4.85352800	0.68433500	-0.46917300
С	-5.48537500	-1.34370200	-0.94885400
Н	-5.19570700	-2.37220500	-0.71139100
Н	-6.52284500	-1.19375700	-0.63015900
Н	-5.43608100	-1.21399600	-2.03500100
Н	-0.72494400	-0.79147500	-1.37170300

II

Imaginary frequency: -404.8901 cm**-1 Electronic and zero-point energy: -886.118678 a.u. Enthalpy: -886.098997 a.u. Free energy: -886.166661 a.u.

С	3.16077800	-0.89260200	1.03582700
С	1.89038700	-0.33114400	0.94791800
С	1.46527400	0.20067000	-0.27717500
С	2.30657400	0.16343800	-1.38962600
С	3.57604400	-0.40727400	-1.27271400
С	4.02809900	-0.94441600	-0.06459200
Н	3.48413700	-1.29915200	1.99140800
Н	1.21890500	-0.27272600	1.80939700
Н	2.00489300	0.55760000	-2.35157000
Н	4.22111300	-0.43152500	-2.14734900
С	5.39945800	-1.56494100	0.05630000
Н	5.97857300	-1.09593900	0.86063200
Н	5.33163800	-2.63438600	0.29145100
Н	5.96988300	-1.46283900	-0.87196100
Ν	0.09639700	0.79694500	-0.35083900
С	0.06023800	2.05573900	0.75476100
Н	-0.80901900	-0.29895900	1.17665000
Н	0.61675500	1.76144600	1.64558800
С	-0.21664200	1.39754800	-1.68289900
Н	-1.17878000	1.89320700	-1.60053600
Н	0.55315100	2.12585200	-1.93722400
Н	-0.25413900	0.60297400	-2.43037000
F	-0.34068400	0.52489600	2.46388300
С	-0.91207700	-0.27348200	0.05224600
0	-0.55530700	3.01723200	0.45515300
С	-2.35947900	0.03520300	-0.23444300
0	-2.86547600	1.11911300	-0.43636400
0	-3.05388200	-1.11681000	-0.15153900
С	-4.49589600	-0.99603200	-0.23399700
Н	-4.83120200	-0.29106600	0.53252400
Н	-4.75669700	-0.57582800	-1.21071900
С	-5.07833000	-2.38187300	-0.03323600
Н	-4.79930600	-2.78368700	0.94574200

Н	-6.17132800	-2.33482100	-0.08881300
Н	-4.72355100	-3.07280300	-0.80482300
Η	-0.61290200	-1.21131600	-0.41732300

2a

Electronic and zero-point energy: -381.592786 a.u. Enthalpy: -381.584100 a.u. Free energy: -381.625581 a.u.

riee (energy: -581.025581	a.u.	
С	-1.78730500	-0.73951900	-0.00026000
Н	-1.48531700	-1.80566400	-0.00096200
0	-2.93669500	-0.37886200	0.00037200
С	-0.62606000	0.26673300	-0.00013400
0	-0.75592300	1.46672400	-0.00018600
0	0.53954000	-0.40298200	0.00003500
С	1.74075000	0.41179600	0.00017800
Н	1.71779100	1.05733800	-0.88348500
Н	1.71782900	1.05703900	0.88406500
С	2.93234500	-0.52507000	0.00000600
Н	2.92830800	-1.16467300	-0.88821100
Н	3.85931200	0.05829300	0.00010700
Н	2.92832100	-1.16501000	0.88798000

3aa

Electronic and zero-point energy: -672.448875 a.u. Enthalpy: -672.431936 a.u.

Free energy: -672.495303 a.u.

1100	energy. 072.195505		
С	2.33065800	-0.64866500	-1.13152000
С	1.14644600	0.08217400	-1.10550000
С	0.81656500	0.89035800	0.00471200
С	1.72415800	0.90080300	1.08315700
С	2.90388200	0.16078700	1.03476900
С	3.24047400	-0.63038200	-0.06758700
Н	2.54553100	-1.25513300	-2.00941500
Н	0.48132300	0.01018200	-1.95847200
Н	1.52006700	1.49287100	1.96732400
Н	3.57889000	0.20313600	1.88742500
С	4.50940400	-1.45001100	-0.10134300
Н	4.31102900	-2.51622500	0.07456800
Н	5.01323100	-1.37470000	-1.07243500
Н	5.21707200	-1.12024400	0.66683600
Ν	-0.34707400	1.66841200	0.03033600
Н	-0.89679900	1.60099400	-1.99991600
С	-0.77762900	2.25388400	1.28981600
Н	-1.70526100	2.80680100	1.12558900
Н	-0.96194800	1.49818300	2.06749200
Н	-0.03198000	2.96472600	1.66520300
С	-1.33735900	1.48863500	-1.00459400
С	-2.10221500	0.15681100	-1.01245200
0	-2.55327800	-0.35127700	-2.01608600
0	-2.24649700	-0.34712500	0.22695000
С	-2.95725900	-1.60548200	0.32040100
Η	-3.96754400	-1.46776600	-0.07849500
Н	-2.44838900	-2.33997300	-0.31133200
С	-2.96767300	-2.01623400	1.78032000
Η	-3.47557300	-1.26622000	2.39532700
Η	-3.49599800	-2.96918700	1.89374600
Н	-1.94765200	-2.13974800	2.15758900
Н	-2.08499700	2.28456400	-0.91137700

Reference

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov J., Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

IV. Spectra data for the products

ethyl 2-(methyl(p-tolyl)amino)acetate 3aa

Colorless oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.24$ (t, J = 7.0 Hz, 3H), 2.24 (s, 3H), 3.03 (s, 3H), 4.02 (s, 2H), 4.16 (q, J = 7.0 Hz, 2H), 6.62 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 14.2$, 20.2, 39.6, 54.7, 60.7, 112.6, 126.5, 129.7, 146.8, 171.1. HRMS (ESI-TOF) Calcd for C₁₂H₁₇NO₂, [M+H]⁺ 208.1332; Found 208.1338.

ethyl 2-((2,4-dimethylphenyl)(methyl)amino)acetate 3ba

Colorless oil. ¹H NMR (500 MHz; CDCl₃): δ = 1.25 (t, *J* = 7.0 Hz, 3H), 2.26 (s, 3H), 2.28 (s, 3H), 2.83 (s, 3H), 3.68 (s, 2H), 4.16 (q, *J* = 7.0 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.98 (s, 1H), 7.01 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 14.0, 18.0, 20.5, 41.5, 57.4, 60.3, 120.0, 126.6, 131.7, 131.9, 132.3, 148.0, 170.9. HRMS (ESI-TOF) Calcd for C₁₃H₁₉NO₂, [M+H]⁺ 222.1489; Found 222.1490.

ethyl 2-(mesityl(methyl)amino)acetate 3ca

Colorless oil. ^IH NMR (500 MHz; CDCl₃): δ = 1.27 (t, *J* = 7.0 Hz, 3H), 2.23 (s, 3H), 2.30 (s, 6H), 2.83 (s, 3H), 3.74 (s, 2H), 4.17 (q, *J* = 7.0 Hz, 2H), 6.82 (s, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 14.2, 18.8, 20.7, 40.9, 57.7, 60.4, 129.3, 134.8, 137.0, 146.4, 172.2. HRMS (ESI-TOF) Calcd for C₁₄H₂₁NO₂, [M+H]⁺ 236.1645; Found 236.1649.

ethyl 2-((3-chloro-4-methylphenyl)(methyl)amino)acetate 3da

Colorless oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.24$ (t, J = 7.0 Hz, 3H), 2.25 (s, 3H), 3.02 (s, 3H), 4.01 (s, 2H), 4.17 (q, J = 7.0 Hz, 2H), 6.48 (dd, $J_I = 2.5$ Hz, $J_2 = 8.5$ Hz, 1H). 6.68 (d, J = 3.0 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 14.2$, 18.8, 39.6, 54.4, 60.9, 110.9, 113.0, 124.2, 131.2, 134.9, 148.1, 170.7. HRMS (ESI-TOF) Calcd for C₁₂H₁₆ClNO₂, [M+H]⁺ 242.0942; Found 242.0949.

ethyl 2-((3-fluoro-4-methylphenyl)(methyl)amino)acetate 3ea

Colorless oil. ¹H NMR (500 MHz; CDCl₃): δ = 1.25 (t, *J* = 7.0 Hz, 3H), 2.15 (d, *J* = 1.0 Hz, 3H), 3.03 (s, 3H), 4.01 (s, 2H), 4.17 (q, *J* = 7.0 Hz, 2H), 6.35-6.38 (m, 2H), 7.00 (t, *J* = 8.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 13.5, 13.5, 14.2, 39.6, 54.4, 60.9, 99.5, 99.7, 107.7, 107.7, 112.6, 112.8, 131.5, 131.6, 148.6, 148.7, 161.0, 163.0, 170.7. HRMS (ESI-TOF) Calcd for C₁₂H₁₆FNO₂, [M+H]⁺ 226.1238; Found 226.1242.

ethyl 2-((2-chloro-4-methylphenyl)(methyl)amino)acetate 3fa

Colorless oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.24$ (t, J = 7.0 Hz, 3H), 2.26 (s, 3H), 2.95 (s, 3H), 3.94 (s, 2H), 4.15 (q, J = 7.0 Hz, 2H), 7.00 (dd, $J_I = 1.5$ Hz, $J_2 = 8.0$ Hz, 1H). 7.10 (d, J = 8.5 Hz, 1H), 7.15 (d, J = 1.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 14.2$, 20.3, 40.7, 56.2, 60.4, 121.8, 127.3, 127.7, 130.8, 133.3, 145.4, 170.7. HRMS (ESI-TOF) Calcd for C₁₂H₁₆ClNO₂, [M+H]⁺ 242.0942; Found 242.0947.

ethyl 2-((3-chloro-4-methoxyphenyl)(methyl)amino)acetate 3ga

Colorless oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.25$ (t, J = 7.0 Hz, 3H), 3.00 (s, 3H), 3.82 (s, 3H), 3.99 (s, 2H), 4.17 (q, J = 7.0 Hz, 2H), 6.55 (dd, $J_I = 3.0$ Hz, $J_2 = 9.0$ Hz, 1H). 6.75 (d, J = 3.0 Hz, 1H), 6.84 (d, J = 9.0 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 14.2$, 39.8, 54.8, 56.8, 60.9, 111.7, 113.8, 114.9, 123.2, 144.0, 147.2, 170.7. HRMS (ESI-TOF) Calcd for C₁₂H₁₆ClNO₃, [M+H]⁺ 258.0891; Found 258.0898.

ethyl 2-((4-chlorophenyl)(methyl)amino)acetate 3ha

Colorless oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.24$ (t, J = 7.0 Hz, 3H), 3.04 (s, 3H), 4.03 (s, 2H), 4.17 (q, J = 7.0 Hz, 2H), 6.60 (d, J = 9.0 Hz, 2H), 7.17 (dd, $J_1 = 1.5$ Hz, $J_2 = 6.5$ Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 14.1$, 39.6, 54.4, 60.9, 113.4, 122.2, 128.9, 147.5, 170.5. HRMS (ESI-TOF) Calcd for C₁₁H₁₄ClNO₂, [M+H]⁺ 228.0786; Found 228.0785.

ethyl 2-((4-bromophenyl)(methyl)amino)acetate 3ia

Colorless oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.24$ (t, J = 7.0 Hz, 3H), 3.04 (s, 3H), 4.03 (s, 2H), 4.17 (q, J = 7.0 Hz, 2H), 6.55 (dd, $J_I = 2.0$ Hz, $J_2 = 7.0$ Hz, 2H), 7.30 (dd, $J_I = 2.0$ Hz, $J_2 = 6.5$ Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 14.1$, 39.6, 54.3, 60.9, 109.3, 113.8, 131.8, 147.8, 170.5. HRMS (ESI-TOF) Calcd for C₁₁H₁₄BrNO₂, [M+H]⁺ 272.0281; Found 272.0286.

2-((3-chloro-4-methylphenyl)(methyl)amino)-1-phenylethanone 3db

Yellow solid, m.p. 50-51 °C. ¹H NMR (500 MHz; CDCl₃): $\delta = 2.24$ (s, 3H), 3.06 (s, 3H), 4.75 (s, 2H), 6.47 (dd, $J_1 = 3.0$ Hz, $J_2 = 8.5$ Hz, 1H), 6.69 (d, J = 2.5 Hz, 1H). 7.02 (d, J = 8.5 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.61-7.64 (m, 1H), 7.97-7.99 (m, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 18.8$, 39.6, 58.8, 110.8, 112.8, 123.8, 127.8, 128.8, 131.2, 133.6, 134.9, 135.2, 148.4, 196.0. HRMS (ESI-TOF) Calcd for C₁₆H₁₆CINO, [M+H]⁺ 274.0993; Found 274.0999.

2-((3-fluoro-4-methylphenyl)(methyl)amino)-1-phenylethanone 3eb

White solid, m.p. 134-135 °C. ¹H NMR (500 MHz; CDCl₃): $\delta = 2.13$ (s, 3H), 3.06 (s, 3H), 4.74 (s, 2H), 6.33 (t, J = 5.0 Hz, 2H), 6.96 (t, J = 8.5 Hz, 1H). 7.49 (t, J = 7.5 Hz, 2H), 7.61 (t, J = 7.0 Hz, 1H), 7.97 (d, J = 8.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 13.4$, 13.5, 39.6, 58.8, 99.3, 99.5, 107.6, 107.6, 112.3, 112.5, 127.7, 128.8, 131.5, 131.6, 133.6,

135.2, 148.9, 149.0, 161.1, 163.0, 196.1. HRMS (ESI-TOF) Calcd for C₁₆H₁₆FNO, [M+H]⁺ 258.1289; Found 258.1294.

2-((2-chloro-4-methylphenyl)(methyl)amino)-1-phenylethanone 3fb

Yellow oil. ¹H NMR (500 MHz; CDCl₃): δ = 2.26 (s, 3H), 2.97 (s, 3H), 4.60 (s, 2H), 7.02 (dd, J_1 = 1.5 Hz, J_2 = 8.0 Hz, 1H), 7.16 (d, J = 8.5 Hz, 2H). 7.44 (t, J = 7.5 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.95 (s, 1H), 7.96 (d, J = 7.5 Hz, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 20.4, 41.2, 61.3, 121.7, 127.4, 127.9, 127.9, 128.6, 130.9, 133.3, 135.6, 146.1, 196.8. HRMS (ESI-TOF) Calcd for C₁₆H₁₆ClNO, [M+H]⁺ 274.0993; Found 274.0998.

2-((3-chloro-4-methoxyphenyl)(methyl)amino)-1-phenylethanone 3gb

Yellow solid, m.p. 77-78 °C. ¹H NMR (500 MHz; CDCl₃): δ = 3.05 (s, 3H), 3.81 (s, 3H), 4.72 (s, 2H), 6.53 (dd, J_1 = 3.0 Hz, J_2 = 9.0 Hz, 1H), 6.75 (d, J = 3.5 Hz, 1H). 6.82 (d, J = 9.0 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.62 (t, J = 7.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 39.9, 56.9, 59.3, 111.6, 114.0, 114.8, 123.4, 127.8, 128.8, 133.6, 135.3, 144.5, 147.1, 196.2. HRMS (ESI-TOF) Calcd for C₁₆H₁₆ClNO₂, [M+H]⁺ 290.0942; Found 290.0953.

2-((4-chlorophenyl)(methyl)amino)-1-phenylethanone 3hb

Yellow solid, m.p. 99-100 °C. ¹H NMR (500 MHz; CDCl₃): $\delta = 3.06$ (s, 3H), 4.74 (s, 2H), 6.56 (d, J = 8.5 Hz, 2H). 7.12 (d, J = 8.5 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.60 (t, J = 7.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 39.7$, 58.8, 113.3, 121.8, 127.7, 128.8, 128.9, 133.7, 135.2, 147.8, 195.9. HRMS (ESI-TOF) Calcd for C₁₅H₁₄CINO, [M+H]⁺ 260.0837; Found 260.0844.

2-(methyl(4-(trifluoromethyl)phenyl)amino)-1-phenylethanone 3jb

White solid, m.p. 106-107 °C. ¹H NMR (500 MHz; CDCl₃): $\delta = 3.14$ (s, 3H), 4.84 (s, 2H), 6.64 (d, J = 9.0 Hz, 2H), 7.42 (d, J = 9.0 Hz, 2H). 7.51 (t, J = 7.5 Hz, 2H), 7.62 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 7.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 39.6$, 58.4, 111.2, 118.2, 118.4, 123.9, 126.1, 126.4, 126.5, 126.5, 127.7, 128.9, 133.9, 135.0, 151.3, 195.3. HRMS (ESI-TOF) Calcd for C₁₆H₁₄F₃NO, [M+H]⁺ 294.1100; Found 294.1103.

2-((4-fluorophenyl)(methyl)amino)-1-phenylethanone 3kb

White solid, m.p. 122 °C. ¹H NMR (500 MHz; CDCl₃): δ = 3.08 (s, 3H), 4.75 (s, 2H), 6.61 (dd, J_1 = 4.0 Hz, J_2 = 9.0 Hz, 2H). 6.91 (t, J = 8.5 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.98 (d, J = 7.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 40.1, 59.4, 113.3, 113.4, 115.5, 115.6, 127.8, 128.8, 133.6, 135.3, 145.8, 154.7, 156.6, 196.4. HRMS (ESI-TOF) Calcd for C₁₅H₁₄FNO, [M+H]⁺ 244.1132; Found 244.1138.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

2-(di-p-tolylamino)-1-phenylethanone 3mb

Yellow solid, m.p. 122-123 °C. ¹H NMR (400 MHz; CDCl₃): $\delta = 2.27$ (s, 6H), 5.12 (s, 2H), 6.89 (dd, $J_1 = 3.0$ Hz, $J_2 = 8.5$ Hz, 4H). 7.04 (d, J = 10.0 Hz, 4H), 7.45-7.49 (m, 2H), 7.56-7.60 (m, 1H), 7.96-7.99 (m, 2H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 20.6$, 58.9, 120.6, 127.8, 128.7, 129.8, 130.9, 133.4, 135.4, 145.5, 196.0. HRMS (ESI-TOF) Calcd for C₂₂H₂₂NO, [M+H]⁺ 316.1696; Found 316.1704.

N,4-dimethyl-*N*-(4-nitrobenzyl)aniline 3ac

Yellow solid, m.p. 55-56 °C. ¹H NMR (500 MHz; CDCl₃): δ = 2.25 (s, 3H), 3.02 (s, 3H), 4.57 (s, 2H), 6.63 (d, *J* = 9.0 Hz, 2H). 7.04 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 9.0 Hz, 2H), 8.17 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): δ = 20.2, 39.1, 56.8, 112.7, 123.8, 126.6, 127.4, 129.8, 147.0, 147.0, 147.3. HRMS (ESI-TOF) Calcd for C₁₅H₁₆N₂O₂, [M+H]⁺ 257.1285; Found 257.1289.

4-((methyl(p-tolyl)amino)methyl)benzonitrile 3ad

White solid, m.p. 79-80 °C. ¹H NMR (500 MHz; CDCl₃): $\delta = 2.25$ (s, 3H), 3.00 (s, 3H), 4.53 (s, 2H), 6.62 (d, J = 8.5 Hz, 2H). 7.04 (d, J = 9.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 20.2$, 39.0, 56.9, 110.6, 112.7, 118.9, 126.5, 127.4, 129.8, 132.4, 145.2, 147.1. HRMS (ESI-TOF) Calcd for C₁₆H₁₆N₂, [M+H]⁺ 237.1386; Found 237.1388.

N,4-dimethyl-*N*-(3-nitrobenzyl)aniline 3ae

Yellow oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 2.25$ (s, 3H), 3.01 (s, 3H), 4.55 (s, 2H), 6.66 (d, J = 9.0 Hz, 2H). 7.04 (d, J = 8.5 Hz, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.57 (dd, $J_1 = 0.5$ Hz, $J_2 = 8.0$ Hz, 1H), 8.11 (t, J = 8.5 Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 20.2$, 39.0, 56.8, 112.9, 121.7, 122.0, 126.7, 129.5, 129.8, 132.9, 141.8, 147.2, 148.5. HRMS (ESI-TOF) Calcd for C₁₅H₁₆N₂O₂, [M+H]⁺ 257.1285; Found 257.1288.

N-(4-chloro-3-nitrobenzyl)-N,4-dimethylaniline 3af

Yellow oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 2.26$ (s, 3H), 2.99 (s, 3H), 4.49 (s, 2H), 6.63 (d, J = 8.5 Hz, 2H). 7.04 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.75 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 20.2$, 39.0, 56.3, 113.0, 123.7, 125.1, 127.0, 129.8, 131.3, 131.9, 140.3, 147.0. HRMS (ESI-TOF) Calcd for C₁₅H₁₅ClN₂O₂, [M+H]⁺ 291.0895; Found 291.0899.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

B

ethyl 2-((4-bromophenyl)(ethyl)amino)acetate 3la

Colorless oil. ¹H NMR (500 MHz; CDCl₃): $\delta = 1.20$ (t, J = 7.0 Hz, 3H), 1.26 (t, J = 7.0 Hz, 3H), 3.43 (q, J = 7.0 Hz, 2H), 3.98 (s, 2H), 4.19 (q, J = 7.0 Hz, 2H), 6.51 (dd, $J_I = 2.0$ Hz, $J_2 = 7.0$ Hz, 2H), 7.28 (dd, $J_I = 2.0$ Hz, $J_2 = 7.0$ Hz, 2H). ¹³C NMR (125 MHz; CDCl₃): $\delta = 12.2$, 14.1, 46.2, 52.2, 61.0, 108.7, 113.6, 131.8, 146.7, 170.9. HRMS (ESI-TOF) Calcd for C₁₂H₁₆BrNO₂, [M+H]⁺ 286.0437; Found 286.0432.

N-methyl-N-(p-tolyl)formamide 4

Colorless oil. ¹H NMR (500 MHz; CDCl₃): δ = 2.37 (s, 3H), 3.30 (s, 3H), 7.06 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 8.42 (s, 1H). ¹³C NMR (125 MHz; CDCl₃): δ = 20.8, 32.2, 122.5, 130.1, 136.3, 139.6, 162.3. HRMS (ESI-TOF) Calcd for C₉H₁₁NO, [M+H]⁺ 150.0913; Found 150.0918.

V. ¹H NMR and ¹³C NMR spectra for the products

Product 3aa

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Product 3ia

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Product 3mb

Product 3ad

VI. The HRMS spectrum of [¹³C₁]-3hb

HRMS (ESI-TOF) Calcd for C_{14}^{13} CH₁₄ClNO, [M+H]⁺ 261.0870 ; Found 261.0870.

Analysis Info Analysis Name D:\Data\user\B2012\1030\B-a206_18_01_3 Method Sample 5 min.m Sample Name B-a206 Comment B-a206		952.d	Acquisition Da Operator Instrument / S	ate 10/30/20 Ger# micrOT	012 12:45:10 PM OF 10328	
Acquisition Pa Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 ∨ -500 ∨	Set Neb Set Dry Set Dry Set Dive	ulizer Heater Gas ert Valve	1.5 Bar 180 °C 8.0 I/min Waste
		¹³ CH ₃ 0	261.0870		+MS, 0.6min #3	4
	CI CI] []-				
			263.0843			
	227.1752					
as. m/z # F	ormula	Score m/z	err Mea [ppm] n err [ppm]	mSig rdb ma	e N Conf R	l- ul e
61.0870 1 C	: 14 H 15 CI Ct N O	100.00 261.0870	-0.0 0.1	22.1 8.5	even	-
Bruker Com	bass DataAnalysis 4.0	printed: 1	0/31/2012 2:24	:11 PM	Page 1 d	of 1

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

VII. The ¹H NMR spectrum of [D₄]-3aa

$$\overbrace{H D}^{CD_3 O}$$

¹H NMR (500 MHz; CDCl₃): $\delta = 1.24$ (t, J = 7.0 Hz, 3H), 2.24 (s, 3H), 4.00 (d, J = 2.0 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H), 6.61 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H).

