Supporting Information

Asymmetric Formation of tert-Alkylamines from Serinols by a Dual Function Catalyst

Young Suk You, Tae Woo Kim and Sung Ho Kang*
Molecular-Level Interface Research Center (MIRC), Department of Chemistry, KAIST, Daejeon 305-701, Korea

E-mail: shkang@kaist.ac.kr

Contents

I. General Information S2
II. Preparation of the Substrates $\mathbf{1}$ and 12-23 S2
III. General Procedure for the Consecutive Asymmetric Desymmetrization and Kinetic S8 Resolution
IV. HPLC Analysis Conditions to Determine the \% ee Values of the Oxazolidinone S8
Benzoates $\mathbf{1 1}$ and 24-35
V. HPLC Chromatograms of the Oxazolidinone Benzoates 11 and 24-35 S9
VI. Spectral Data of the Oxazolidinone Benzoates 11 and 24-35 Prepared from the S23
Consecutive Asymmetric Desymmetrization and Kinetic Resolution
VII. Determination of the Absolute Configuration of the Oxazolidinone Benzoates 11, S28
24-26, 28-32 and 35
VIII. References S35
IX. Selected NMR Spectral Charts S36

I. General Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Bruker AVANCE 400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ NMR, 100 MHz for ${ }^{13} \mathrm{C}$ NMR) and measured in CDCl_{3}. Chemical shifts were recorded in ppm relative to $\mathrm{SiMe}_{4}(\delta=0.00)$ and referenced internally to the protio impurity of $\mathrm{CDCl}_{3}(\delta$ $=7.24$) as the internal standard; coupling constants were reported in Hz. The high resolution mass spectra were recorded on Bruker microTOF-Q II spectrometer. The enantioselectivity were determined by HPLC. HPLC measurements were done on a DIONEX model equipped with P580G pump, UV 525 detector (Thermo Science, Waltham, MA) measured at 254 nm , and chiral columns DAICEL AD-H. Eluting solvent was a mixture of 2-propanol and hexane. Optical rotations were measured on a polarimeter (JASCO) in a $10-\mathrm{cm}$ cell. All reactions were carried out in oven-dried glassware under a N_{2} atmosphere. All solvents were distilled from the indicated drying reagents right before use: $\mathrm{Et}_{2} \mathrm{O}$, THF and toluene (Na , benzophenone), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$, and $\mathrm{MeCN}\left(\mathrm{CaH}_{2}\right)$. The normal work-up included extraction, drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of volatile materials in vacuo. Purification by column chromatography was performed using Merck (Darmstadt, Germany) silica gel (200-400 mesh).

II. Preparation of the Substrates

1) Diols 1, 13-15, 17 and $\mathbf{1 8}$

$36,42,1$	$R=\mathrm{Bn}$
$\mathbf{3 7 , 4 3 , 1 3}$	$R=E t$
$\mathbf{3 8 , 4 4 , 1 4}$	$R=\mathrm{CH}_{2} \mathrm{Bn}$

39, 45, $15 \quad \mathrm{R}=\mathrm{CH}_{2}-\mathrm{cHx}$
40, 46, $17 \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
41, 47, $18 \quad \mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$

Diols 1, 13-15, 17 and 18 were obtained by the same procedure starting from the known acetonides 36-41. ${ }^{12,13}$ The detailed procedure to prepare $\mathbf{1}$ from $\mathbf{3 6}$ is described as a representative. To $36(423 \mathrm{mg}, 1.32 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added 2,6lutidine ($0.23 \mathrm{~mL}, 2.0 \mathrm{mmol}$) and TMSOTf $(0.31 \mathrm{~mL}, 1.71 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ in sequence. After completing the additions, the dry ice/acetone bath was replaced by an ice/water bath.

The reaction mixture was stirred at that temperature for 2 hours, and then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The normal work-up with EtOAc (7 mL , four times) and the following purification by column chromatography (EtOAc/hexane $=1 / 1$, then $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20 / 1\right)$ afforded $42(252 \mathrm{mg}, 86 \%$ yield). 42 ($252 \mathrm{mg}, 1.14 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and then $\mathrm{Et}_{3} \mathrm{~N}(0.19 \mathrm{~mL}, 1.37 \mathrm{mmol})$ and phenyl chloroformate ($0.16 \mathrm{~mL}, 1.25 \mathrm{mmol}$) were injected to the substrate in an ice/water bath. After stirring the resulting solution at that temperature for an hour, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The normal work-up with EtOAc (7 mL, three times) followed by evaporation of all the volatile materials furnished the crude pheny carbamate acetonide. The crude product was heated in a $1: 1$ mixture of AcOH and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for an hour. Removal of all the volatile materials in vacuo and the subsequent chromatographic separation (EtOAc/hexane $=1 / 1)$ gave diol $1\left(319 \mathrm{mg}, 93 \%\right.$ yield). For $\mathbf{1}:{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H})$, $5.53(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.07,150.67,135.72,130.55,129.51,128.75,127.17$, 125.81, 121.79, 65.24, 60.15, 37.80. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$, 324.1206 ; found, 324.1211.

From 37 ($320 \mathrm{mg}, 1.23 \mathrm{mmol}$) through $43(158 \mathrm{mg}, 1.00 \mathrm{mmol}, 81 \%$ yield) to $\mathbf{1 3}(210 \mathrm{mg}, 88 \%$ yield). For 13: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.12-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.02,150.76,129.46$, 125.67, 121.75, 66.02, 59.90, 25.27, 7.61. HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NNaO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 262.1050$; found, 262.1055 .

From 38 ($402 \mathrm{mg}, 1.20 \mathrm{mmol}$) through 44 ($248 \mathrm{mg}, 1.06 \mathrm{mmol}, 86 \%$ yield) to 14 (307 mg , $0.98 \mathrm{mmol}, 92 \%$ yield). For 14: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.32$ (m, 2H), $7.30-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}$, 2 H), $3.72(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.96,150.80,141.55,129.54,128.72,128.44,126.30,125.78,121.76,66.59$, 59.95, 34.92, 29.78. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 338.1363$; found, 338.1361 .

From 39 ($407 \mathrm{mg}, 1.24 \mathrm{mmol}$) through $45(252 \mathrm{mg}, 1.10 \mathrm{mmol}, 89 \%$ yield) to 15 (301 mg , $0.98 \mathrm{mmol}, 89 \%$ yield). For 15: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35$ (dd, $J=8.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}$),
$7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=$ $11.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.41 (s, 2H), $1.77-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40$ (dddt, $J=14.0$, $8.8,5.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.06(\mathrm{~m}, 3 \mathrm{H}), 1.05-0.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.94,150.76,129.50,125.73,121.79,66.97,60.26,40.30,35.22,33.01,26.46,26.18$. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 330.1676$; found, 330.1670.

From 40 ($346 \mathrm{mg}, 1.27 \mathrm{mmol}$) through 46 ($182 \mathrm{mg}, 1.07 \mathrm{mmol}, 84 \%$ yield) to 17 (228 mg , $0.91 \mathrm{mmol}, 85 \%$ yield). For 17: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{dd}, J=8.5,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{ddt}, J=15.3,10.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H})$, $5.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.17(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.15,150.73,132.26,129.52,125.82,121.75,120.32,66.07,59.49$, 37.49. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$, 274.1050; found, 274.1051.

From 41 ($520 \mathrm{mg}, 2.00 \mathrm{mmol}$) through $47(252 \mathrm{mg}, 1.60 \mathrm{mmol}, 80 \%$ yield) to $18(316 \mathrm{mg}$, $1.33 \mathrm{mmol}, 83 \%$ yield). For 18: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.91-5.81(\mathrm{~m}, 2 \mathrm{H}), 5.37-5.26(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.73(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.12, 150.73, 136.32, 129.51, 125.81, 121.74, 116.73, 66.19, 62.65. HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 260.0893$; found, 260.0885.
2) $\operatorname{Diol} 12$

To the commercial amino diol $48(315 \mathrm{mg}, 3.0 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(380 \mathrm{mg}, 4.5 \mathrm{mmol})$ and phenyl chloroformate $(0.41 \mathrm{~mL}, 3.3 \mathrm{mmol})$ in sequence in an ice/water bath. The reaction mixture was stirred at that temperature for 3 hours and then at room temperature for 8 hours. After quenching the reaction with water (10 mL), the normal work-up with EtOAc (7 mL , three times) and the subsequent chromatographic purification (EtOAc/hexane $=1 / 1$) offered diol $12\left(304 \mathrm{mg}, 45 \%\right.$ yield). For 12: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35$ (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.15-7.07$ (m, 2H), $5.64(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.91,150.78,129.50,125.73,121.79,67.92,57.56,19.97$.

HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 248.0893$; found, 248.0897.
3) Diols $\mathbf{1 6}$ and $\mathbf{1 9}$

To triethyl phosphonoacetate ($0.35 \mathrm{~mL}, 3.50 \mathrm{mmol}$) in THF (5 mL) was added $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $140 \mathrm{mg}, 3.50 \mathrm{mmol}$) in an ice/water bath. After stirring the mixture for 30 minutes, the known aldehyde $49^{14}(260 \mathrm{mg}, 1.00 \mathrm{mmol})$ was injected using THF (5 mL), and then the resulting solution was stirred at that temperature for 30 minutes. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and water (5 mL), and the subsequent normal work-up with EtOAc (5 mL , three times), and chromatographic separation $(\mathrm{EtOAc} /$ hexane $=1 / 3)$ gave rise to the conjugated ester $50\left(316 \mathrm{mg}, 96 \%\right.$ yield). $\mathrm{LiBH}_{4}(2.0$ M in THF, $0.6 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added to $\mathbf{5 0}(165 \mathrm{mg}, 0.50 \mathrm{mmol})$ dissolved in THF (5 mL) in an ice/water bath and the mixture was stirred at that temperature for 12 hours. After quenching the reaction with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ in an ice/water bath, the resulting solution was subjected to the normal work-up with EtOAc (5 mL , three times) and column chromatography $(\mathrm{EtOAc} /$ hexane $=1 / 1)$ to impart the corresponding allylic alcohol ($103 \mathrm{mg}, 72 \%$ yield). To the allylic alcohol ($400 \mathrm{mg}, 1.39 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%, 20 \mathrm{mg})$ at room temperature, and then the mixture was stirred under a hydrogen atmosphere (1 atm) at room temperature for 12 hours. After filtering the mixture through celite (500 mg) with $\mathrm{MeOH}(10 \mathrm{~mL})$, the subsequent evaporation of all the volatile materials in vacuo and column chromatography ($\mathrm{EtOAc} /$ hexane $=1 / 1$) provided the saturated alcohol ($367 \mathrm{mg}, 91 \%$ yield). Benzyl chloride ($0.16 \mathrm{~mL}, 1.36 \mathrm{mmol}$) and KOH ($104 \mathrm{mg}, 1.86$ mmol) were added sequentially to the saturated alcohol ($360 \mathrm{mg}, 1.24 \mathrm{mmol}$) dissolved in

DMF (5 mL) at room temperature, and the resulting mixture was stirred at that temperature for 12 hours. The normal work-up with $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL}$, three times) and column chromatography ($\mathrm{EtOAc} /$ hexane $=1 / 10$) revealed the benzyl ether 51 ($306 \mathrm{mg}, 65 \%$ yield). 51 ($569 \mathrm{mg}, 1.50$ mmol) was converted to the corresponding amine acetonide ($368 \mathrm{mg}, 1.32 \mathrm{mmol}, 88 \%$ yield) and then to diol $\mathbf{1 6}(409 \mathrm{mg}, 1.14 \mathrm{mmol}, 86 \%$ yield) by the same procedure as disclosed in the synthesis of 1 from 36. Similarly, $50(659 \mathrm{mg}, 2.00 \mathrm{mmol})$ was deprotected to the amine acetonide ($357 \mathrm{mg}, 1.56 \mathrm{mmol}, 78 \%$ yield), and subsequently formylated and hydrolyzed to diol 19 ($437 \mathrm{mg}, 1.41 \mathrm{mmol}, 89 \%$ yield). For 16: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.30$ (m, 6H), 7.28 (ddt, $J=8.2,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{ddt}, J=7.9,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06$ (m, 2H), $6.02(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{ddt}, J=9.2,6.1,3.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.13,150.74,137.97,129.38,128.52,127.94,127.87$, 125.59, 121.72, 73.28, 70.48, 65.68, 59.75, 29.34, 23.40. HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}, 382.1625$; found, 382.1606.

For 19: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.07$ $(\mathrm{m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.34, 154.69, 150.54, 145.97, 129.42, 125.76, 122.59, 121.64, 64.97, 62.04, 60.99, 14.19. HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}, 332.1105$; found, 332.1101.
4) Diols 20-22

Diols 20-22 were supplied starting from the known amino acetonides $\mathbf{5 2 - 5 4}{ }^{12}$ by the synthetic process identical to that explained for the preparation of $\mathbf{1}$ from $\mathbf{4 2}$.

From $52(517 \mathrm{mg}, 2.49 \mathrm{mmol})$ to $20\left(637 \mathrm{mg}, 2.21 \mathrm{mmol}, 89 \%\right.$ yield). For 20: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, $4.04(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 155.20,150.78,139.36,129.50,129.03,128.01,126.03,125.80,121.73,67.79$, 64.26. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 310.1050$; found, 310.1039.

From 53 ($297 \mathrm{mg}, 1.23 \mathrm{mmol}$) to $21\left(344 \mathrm{mg}, 1.07 \mathrm{mmol}, 87 \%\right.$ yield). For 21: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}$, $1 \mathrm{H}), 3.99(\mathrm{q}, J=11.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.11,150.69$, $133.95,129.55,129.15,127.59,125.90,121.67,67.65,63.78$. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 344.0660$; found, 344.0659.
From 54 ($313 \mathrm{mg}, 1.41 \mathrm{mmol}$) to 22 ($386 \mathrm{mg}, 1.28 \mathrm{mmol}, 91 \%$ yield). For 22: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.18(\mathrm{~s}$, $1 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.17,150.81,137.72,136.31,129.72,129.46,125.92,125.73,121.75$, 67.83, 64.07, 21.10. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 324.1206$; found, 324.1207.
5) Diol 23

To the known acetylenic acetonide $\mathbf{5 5}^{15}(511 \mathrm{mg}, 2.00 \mathrm{mmol})$ dissolved in THF (10 mL) was injected $\mathrm{n}-\mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ in hexane, $1.8 \mathrm{~mL}, 4.40 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and then the reaction temperature was increased to $0^{\circ} \mathrm{C}$ over 30 minutes. After cooling down the resulting solution to $-78^{\circ} \mathrm{C}, \mathrm{TMSCl}(0.38 \mathrm{~mL}, 3.00 \mathrm{mmol})$ was added to the generated acetylide anion, and then the reaction mixture was stirred at that temperature for an hour. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$, and the following normal work-up with EtOAc (7 mL , three times) and chromatographic separation (EtOAc/hexane $=1 / 10$) delivered the silylated acetylene acetonide $\mathbf{5 6}$ ($602 \mathrm{mg}, \mathbf{9 2 \%}$ yield). $\mathbf{5 6}$ was converted to $\mathbf{2 3}$ by the same procedure as depicted in the formation of $\mathbf{1}$ from $\mathbf{3 6}$. From $56(400 \mathrm{mg}, 1.22$ mmol) through 57 ($225 \mathrm{mg}, 0.99 \mathrm{mmol}, 81 \%$ yield) to 23 ($243 \mathrm{mg}, 0.79 \mathrm{mmol}, 80 \%$ yield). For 23: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.09$
(m, 2H), $5.86(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 2 \mathrm{H}), 0.16$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.23,150.72,129.50,125.81,121.72,101.77$, $91.49,66.52,58.15,0.28,0.00,-0.18$. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$, 330.1132; found, 330.1132 .
III. General Procedure for the Consecutive Asymmetric Desymmetrization and Kinetic Resolution

PhMe (10 mL) and N, N-dimethylbenzylamine ($45 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) were added in sequence to a mixture of the substrate $\mathbf{1}(75.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ and the chiral catalyst $7-\mathrm{CuCl}_{2}(6.6 \mathrm{mg}$, 0.0125 mmol) at room temperature, and then the mixture was stirred at that temperature for 3 hours. To the resulting solution were injected THF (10 mL), benzoyl chloride ($55 \mu \mathrm{~L}, 0.48$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(70 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ sequentially at room temperature. After stirring the reaction mixture at that temperature for 24 hours, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$, and the following normal work-up with EtOAc (7 mL , three times) and chromatographic purification (EtOAc/hexane $=1 / 3$) produced the oxazolidinone benzoate 11 ($66.2 \mathrm{mg}, 85 \%$ yield).

IV. HPLC Analysis Conditions to Determine the \% ee Values of the Oxazolidinone Benzoates 11 and 24-35

Prior to the HPLC analysis of all the oxazolidinone benzoates from the consecutive asymmetric desymmetrization and kinetic resolution, the corresponding racemic mixtures were prepared, and then their HPLC analysis conditions were determined. All the oxazolidinone benzoates were analyzed by the identical HPLC analysis conditions using DAICEL AD-H as chiral column, $10 \% \mathrm{i}$-PrOH in hexane as eluent and $1 \mathrm{~mL} / \mathrm{min}$ of flow rate.

V. HPLC Chromatograms of the Oxazolidinone Benzoates 11 and 24-35

Prior to the HPLC analysis of the monobenzoates from the asymmetric desymmetrization, the corresponding racemic mixtures were prepared, and then their HPLC analysis conditions were determined. The HPLC analyses were carried out after the first rough purification of the crude benzoate products. Therefore, some chromatograms may contain impurity peaks probably from benzoyl chloride and/or the ligand.

Electronic Supplementary Material (ESI) for Chemical Communications

시료명:
수집 일시: 2012-05-23 오章 2:23:17

	머무름 시간 [min]	$\begin{array}{r} \text { 면적 } \\ {\left[\mathrm{u}^{\star} \mathrm{sec}\right]} \end{array}$	면적\% 표지
$\mathrm{A}^{\text {? }}$	30.349	692077.34	1.475 BB
$\wedge^{\text {a }}$	49.133	46226530.91	98.525 BB
Σ		46918608.25	100.000

11

Electronic Supplementary Material (ESI) for Chemical Communications

시료명:

	머우름 시간 [min]	$\begin{array}{r} \text { 면적 } \\ {[\mathrm{UV} \mathrm{sec}]} \end{array}$	$\begin{gathered} \text { 면적\% 표지 } \\ {[\%]} \end{gathered}$
A?	19.133	331479.01	1.743 BB
A?	23.416	18684508.68	98.257 BB
Σ		19015987.69	100.000

24

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications

시료명:
수집 일시: 2012-07-03 오후 1:16:43

	머무름 시간 [min]	면적 [uVsec	면적\% [\%]
$\mathbb{A}^{?}$	22.966	445172.65	0.720 BB
$\mathbb{\Lambda}^{?}$	33.499	61399006.96	99.280 BB
Σ		61844179.61	100.000

26

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

시료명:
수집 일시: 2012-09-10 오전 8:29:15

	머무름 시간 [min]	면적 [uV*sec]	면적\% 표지 [\%]
$\widehat{\Lambda ?}^{?}$	17.716	234982.79	0.945 BV
$\mathbf{\Lambda}^{?}$	19.083	24625759.72	99.055 VB
Σ		24860742.51	100.000

27

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

시료명:
수집 일시: 2012-10-08 오전 5:56:01

	$\begin{aligned} & \text { ㅇㅡㅡㅁ시간 } \\ & \text { [min] } \end{aligned}$	$\begin{array}{r} \text { 면 적 } \\ {\left[\mathrm{u}^{\star} \mathrm{sec}\right]} \end{array}$	면적\% 표지 [\%]
A?	31.966	439279.23	1.251 BB
$\mathbb{A}^{\text {? }}$	40.433	34661166.82	98.749 BB
Σ		35100446.05	100.000

28

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

시료명:
수집 일시: 2012-07-11 오전 8:25:30

	머무름 시간 [min]	$\begin{array}{r} \text { 면적 } \\ {[\mathrm{uV} \mathrm{sec}]} \end{array}$	면적\% 표지 [\%]
	17.983	318503.68	1.040 BB
$\mathbb{A}^{\text {? }}$	22.966	30306135.96	98.960 BB
Σ		30624639.64	100.000

29

Electronic Supplementary Material (ESI) for Chemical Communications

시료명:
수집 일시: 2013-01-02 오전 7:44:10

	어우롬 시간 [min]	$\begin{array}{r} \text { 면적 } \\ {\left[\mathrm{u}^{\star} \mathrm{sec}\right]} \end{array}$	면적\% 표지 $[\%]$
A?	21.183	385567.90	1.340 BB
$\mathbb{A}^{\text {? }}$	25.616	28377737.94	98.660 BV
Σ		28763305.84	100.000

30

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

시료명:
수집 일시: 2012-08-02 오후 5:36:14

	름 시간 [min]	$\begin{array}{r} \text { 면적 } \\ \text { [uV*sec\| } \end{array}$	면적\% 표지 [\%]	
	28.683	698479.24	1.722 BB	
	37.116	39852222.57	98.278 BB	
Σ		40550701.81	100.000	

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

시료명:
수집 일시: 2012-08-02 오전 8:58:58

	름 시간 [min]	$\begin{gathered} \text { 면적 } \\ {\left[u^{\star} \mathrm{sec}\right]} \end{gathered}$	$\begin{gathered} \text { 면적\% 표지 } \\ \text { [\%] } \end{gathered}$
A?	30.983	129688.25	0.380 BB
A?	36.749	33983620.58	99.620 BB
Σ		34113308.83	100.000

32

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

시료명:
수집 일시: 2012-11-26 오전 6:28:40

	$\begin{aligned} & \text { 름 시간 } \\ & \text { [min] } \end{aligned}$	$\begin{array}{r} \text { 면적 } \\ {[\mathrm{UV} \mathrm{sec}]} \end{array}$	면적\% 표지 [\%]
	44.683	1183391.15	2.756 BB
$\mathbb{A}^{\text {? }}$	65.882	41756436.82	97.244 BB
Σ		42939827.98	100.000

33

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

시료명:
수집 일시: 2012-11-20 오전 11:08:02

| | 어무름 시간
 $[\mathrm{min}]$ | 면적
 $\left[\mathrm{uV}^{\star} \mathrm{sec}\right]$ | 면적\%
 $[\%]$ |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{A}^{?}$ 표지 | | | |

34

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

시료명:
수집 일시: 2012-11-03 오후 12:20:20

	머무름 시간 [min]	$\begin{array}{r} \text { 면적 } \\ {\left[u^{*} \mathrm{sec}\right]} \end{array}$	면적\% 표지 [\%]
A?	6.433	706855.40	3.066 BV
A?	7.467	22347072.97	96.934 VB
Σ		23053928.38	100.000

35
VI. Spectral Data of the Oxazolidinone Benzoates 11 and 24-35 Prepared from the Consecutive Asymmetric Desymmetrization and Kinetic Resolution

11
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.13,159.01,134.06,133.61,130.24,129.79,129.15,129.00,128.67,127.68$, $71.27,67.43,60.35,41.92 .[\alpha]_{\mathrm{D}}{ }^{14}=+15.6\left(0.048 \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 97.0 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 334.1050$; found, 334.1065.

24
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.27, $159.00,133.65,129.86,129.27,128.72,73.26,68.89,57.42,23.11 .[\alpha]_{\mathrm{D}}{ }^{14}=+6.9(0.042 \mathrm{M}$ in $\mathrm{CHCl}_{3}, 96.5 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 258.0737$; found, 258.0735 .

25
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{ddd}, J=8.6,1.6,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.42$ (ddt, $J=8.6,6.9,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 2 \mathrm{H}), 1.82-$
$1.64(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.30,159.24$, $133.66,129.85,129.26,128.72,71.33,67.68,60.39,28.73,7.67 .[\alpha]_{\mathrm{D}}{ }^{14}=+2.4(0.060 \mathrm{M}$ in $\mathrm{CHCl}_{3}, 98.3 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 272.0893$; found, 272.0891.

26
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=9.4,7.5 \mathrm{~Hz}$, 2H), 2.11 - 1.91 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.24,159.46,140.35,133.63$, $129.82,129.17,128.80,128.69,128.35,126.54,71.73,67.81,60.06,37.74,29.77 .[\alpha]_{\mathrm{D}}{ }^{13}=$ $+11.2\left(0.068 \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 98.5 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$, 348.1206 ; found, 348.1212.

27
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{ddt}, J=8.1,7.0,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 2 \mathrm{H})$, $1.77-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.44(\mathrm{ddq}, J=11.1,5.9,3.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{dddd}, J=16.3,7.0,4.2$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.17-0.93(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.34,159.16,133.60$, 129.83, 129.26, 128.71, 72.57, 68.21, 60.07, 43.76, 34.82, 34.62, 33.55, 26.24, 26.20, 26.02. $[\alpha]_{\mathrm{D}}{ }^{14}=+5.8\left(0.063 \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 98.1 \%$ ee $)$. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NNaO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 340.1519$; found, 340.1528 .

28
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{ddt}, J=8.0,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{td}, J=5.9,2.1 \mathrm{~Hz}$, 2H), $1.92-1.62(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.12,158.74,137.93,133.50$, 129.70, 129.11, 128.58, 128.46, 127.76, 127.69, 73.12, 71.75, 69.55, 67.62, 59.58, 33.11, 23.80. $[\alpha]_{\mathrm{D}}{ }^{21}=+13.6\left(0.041 \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 97.5 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}, 392.1468$; found, 392.1465.

29
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00$ (ddt, $\left.J=7.5,1.3,0.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 5.85-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.31-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{dd}, \mathrm{J}=11.7,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=8.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=3.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=5.7,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.24,158.61,133.76,130.15$, $129.87,129.18,128.78,121.75,71.34,67.54,59.69,40.63 .[\alpha]_{\mathrm{D}}{ }^{29}=-2.5\left(0.076 \mathrm{M} \mathrm{in} \mathrm{CHCl}_{3}\right.$, 97.9% ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 284.0893$; found, 284.0881 .

30
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{ddt}, J=8.0,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=17.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}$, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.22,159.26,135.67,133.65,129.86,129.15,128.69,117.74$,
72.46, 67.52, 61.53. $[\alpha]_{\mathrm{D}}{ }^{24}=-46.8\left(0.044 \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 97.1 \%$ ee $)$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 270.0737$; found, 270.0733.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{ddt}, J=7.9,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (dd, $J=8.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.07, $165.43,158.66,143.61,133.84,129.91,128.88,128.76,123.88,71.75,67.13,61.29,61.12$, 14.28. $[\alpha]_{\mathrm{D}}{ }^{15}=-45.7\left(0.063 \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 96.5 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNaO}_{6} \quad[\mathrm{M}+\mathrm{Na}]^{+}, 342.0948$; found, 342.0946.

32
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 8 \mathrm{H})$, $7.09(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.15,159.36,139.25,133.48$, $129.72,129.27,128.95,128.65,128.53,124.87,73.83,69.18,63.16 .[\alpha]_{\mathrm{D}}{ }^{13}=-57.3(0.067 \mathrm{M}$ in $\mathrm{CHCl}_{3}, 99.2 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 320.0893$; found, 320.0899 .

33
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{ddt}, J=7.9,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-$ $7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=8.7,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{t}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=8.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.21$, $159.38,137.97,134.89,133.75,129.86,129.62,128.94,128.72,128.23,127.55,127.46$, 126.56, 73.82, 68.98, 63.05. $[\alpha]_{\mathrm{D}}{ }^{26}=-32.0\left(0.090 \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 94.5 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 354.0504$; found, 354.0507.

34
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{ddt}, J=7.6,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.30,159.56,138.63,136.40,133.58,130.02,129.86,129.14,128.65$, 124.91, 74.08, 69.33, 63.10, 21.18. $[\alpha]_{\mathrm{D}}{ }^{28}=-35.9\left(0.077 \mathrm{M}^{2}\right.$ in $\mathrm{CHCl}_{3}, 97.2 \%$ ee $)$. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}, 334.1050$; found, 334.1052.

35
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{ddt}, J=8.0,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-$ 7.39 (m, 2H), 5.77 (s, 1H), $4.54-4.49$ (m, 2H), 4.46 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.00, 157.80, 133.78, 129.94, 129.06, $128.73,100.42,93.11,72.64,67.61,55.19,-0.32 .[\alpha]_{\mathrm{D}}{ }^{27}=+25.5\left(0.063 \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}, 93.9 \%$ ee). HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}, 340.0976$; found, 340.0968 .

VII. Determination of the Absolute Configuration of the Oxazolidinone Benzoates 11 and 24-35

1) The oxazolidinone benzoate $\mathbf{1 1}$

To $11(31 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{mg})$ at $-20^{\circ} \mathrm{C}$ and the mixture was stirred at that temperature for a day. The resulting solution was directly loaded on a silica gel column, and eluted with EtOAc/hexane (1/3) and then $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the alcohol $\mathbf{1 0}\left(19 \mathrm{mg}, 91 \%\right.$ yield). $[\alpha]_{\mathrm{D}}{ }^{22}$ of $\mathbf{1 0}=-23.0\left(c 0.4, \mathrm{CHCl}_{3}\right.$, measured, 95.5% ee) vs $[\alpha]_{\mathrm{D}}{ }^{26}$ of $(S)-\mathbf{1 0}=-24.3\left(c 0.4, \mathrm{CHCl}_{3}\right.$, known, $>99 \%$ ee). ${ }^{16}$ It was determined that the major enantiomers of our synthetic $\mathbf{1 0}$ and $\mathbf{1 1}$ have (S)-configurations, respectively.
2) The oxazolidinone benzoate $\mathbf{2 4}$

To $24(12 \mathrm{mg}, 0.051 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{mg})$ at $-20^{\circ} \mathrm{C}$ and the mixture was stirred at that temperature for a day. The resulting solution was directly loaded on a silica gel column, and eluted with EtOAc/hexane (1/3) and then $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to furnish the corresponding alcohol ($6.3 \mathrm{mg}, 94 \%$ yield). The alcohol ($6.3 \mathrm{mg}, 0.048 \mathrm{mmol}$) was dissolved in a mixture of THF (2 mL) and DMF (0.5 mL), and then tetra- n butylammonium iodide (1 mg), benzyl chloride ($9 \mu \mathrm{~L}, 0.070 \mathrm{mmol}$) and $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $4 \mathrm{mg}, 0.10 \mathrm{mmol}$) were added sequentially in an ice-water bath. The mixture was stirred at that temperature for 2 hours and then at room temperature for 10 hours. After quenching the reaction with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, the normal work-up with EtOAc (2 mL , three times) and column chromatography ($\mathrm{EtOAc} /$ hexane $=1 / 3$, then $1 / 1$) gave the benzyl ether 58 ($4.5 \mathrm{mg}, 42 \%$ yield, 95% ee). The HPLC retention time of the major enantiomer of $\mathbf{5 8}$ (6.2 minutes, measured) was identical with that of (S) - $\mathbf{5 8}$ (6.2 minutes,
known) using a chiral column DAICEL OD with $30 \% i-\mathrm{PrOH}$ in hexane as an eluent and a flow rate of $1.0 \mathrm{~mL} / \mathrm{min} .{ }^{17}$ That of the minor enantiomer was found to be 9.0 minutes, which is the reported value of (R) - $\mathbf{5 8}$. It was determined that the major enantiomers of our synthetic 58 and 24 have (S)-configurations, respectively.
3) The oxazolidinone benzoate $\mathbf{3 0}$

To $30(48.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{mg})$ at $-20^{\circ} \mathrm{C}$ and the mixture was stirred at that temperature for a day. The resulting solution was directly loaded on a silica gel column, and eluted with EtOAc/hexane (1/3) and then $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the corresponding alcohol ($27.5 \mathrm{mg}, 96 \%$ yield). Imidazole ($38.8 \mathrm{mg}, 0.57 \mathrm{mmol}$) and TBSCl ($57.3 \mathrm{mg}, 0.38 \mathrm{mmol}$) were added to the alcohol ($27.5 \mathrm{mg}, 0.19 \mathrm{mmol}$) in an ice-water bath in sequence, and subsequently the resulting solution was stirred at that temperature for an hour and then at room temperature for a day. After quenching the reaction with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, the normal work-up with $\mathrm{EtOAc}(2 \mathrm{~mL}$, three times) and chromatographic purification (EtOAc/hexane $=1 / 10$, then $1 / 5$) delivered the silyl ether 59 $(39.6 \mathrm{mg}, 81 \%$ yield $) .[\alpha]_{\mathrm{D}}{ }^{23}$ of $\mathbf{5 9}=-69.3\left(c \quad 0.48, \mathrm{CHCl}_{3}\right.$, measured $)$ vs $[\alpha]_{\mathrm{D}}{ }^{20}$ of $(S)-\mathbf{5 9}=$ +66.6 (c 0.36, CHCl_{3}, known, $>99 \%$ ee). ${ }^{18}$ It was determined that the major enantiomers of our synthetic 59 and $\mathbf{3 0}$ have (R)- and (S)-configuration, respectively.
4) The oxazolidinone benzoate 25

To $30(10 \mathrm{mg}, 0.04 \mathrm{mmol})$ in EtOAc (1 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(3 \mathrm{mg})$ and the mixture was stirred under an atmospheric hydrogen balloon at room temperature for 4 hours. The resulting solution was filtered through celite (1.5 g) with EtOAc (6 mL) and evaporated in vacuo. The residue was separated chromatographically ($\mathrm{EtOAc} /$ hexane $=1 / 3$, then $1 / 1$) to
give rise to $\mathbf{2 5}$ ($9.9 \mathrm{mg}, 99 \%$ yield, 98% ee). Since its chiral HPLC chromatogram was identical with that of $\mathbf{2 5}$ prepared from $\mathbf{1 3}$ by consecutive desymmetrization and kinetic resolution, the major enantiomer of $\mathbf{2 5}$ was determined to have (S)-configuration.
5) The oxazolidinone benzoates $\mathbf{2 6}$ and $\mathbf{3 1}$

To $(S)-\mathbf{3 0}(20 \mathrm{mg}, 0.081 \mathrm{mmol})$ in a 4 to 1 mixture of THF and water $(2.5 \mathrm{~mL})$ were added $\mathrm{NaIO}_{4}(173 \mathrm{mg}, 0.81 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(3 \mathrm{mg})$ in an ice-water bath, and the mixture was stirred at room temperature for 12 hours. After quenching the reaction with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1 \mathrm{~mL})$, the normal work-up with EtOAc (3 mL , three times) and chromatographic purification ($\mathrm{EtOAc} /$ hexane $=1 / 1$, then $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) produced the aldehyde $\mathbf{6 0}$ (19.3 $\mathrm{mg}, 96 \%$ yield). To benzyltriphenylphosphonium chloride ($94 \mathrm{mg}, 0.24 \mathrm{mmol}$) in THF (2 mL) was injected KHMDS (0.5 M in toluene, $0.48 \mathrm{~mL}, 0.24 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, the mixture was stirred at that temperature for 30 minutes, and cooled down to $-78^{\circ} \mathrm{C}$. The aldehyde $\mathbf{6 0}(20 \mathrm{mg}, 0.08$ mmol) was added to the cooled ylid and stirred at that temperature for 2 hours. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, and the following normal work-up with EtOAc (2 mL , three times) and chromatographic separation (EtOAc/hexane $=1 / 3$) provided the corresponding alkenes ($23.8 \mathrm{mg}, 92 \%$ yield). To the alkenes ($23.8 \mathrm{mg}, 0.074 \mathrm{mmol}$) in EtOAc (1 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(2 \mathrm{mg})$ and the mixture was stirred under an atmospheric hydrogen balloon at room temperature for 4 hours. The resulting solution was filtered through celite (1.5 g) with EtOAc (6 mL) and evaporated in vacuo. The residue was separated chromatographically $(E t O A c /$ hexane $=1 / 3$, then $1 / 1)$ to procure $(S)-26(23.4 \mathrm{mg}, 97 \%$ yield, $\mathbf{9 7 \%}$ ee). Since its chiral HPLC chromatogram was identical with that of $\mathbf{2 6}$ prepared from 14
by consecutive desymmetrization and kinetic resolution, the major enantiomer of 26 was determined to have (S)-configuration.

To the aldehyde $\mathbf{6 0}(19.3 \mathrm{mg}, 0.077 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added (carbethoxymethylene)triphenylphosphorane ($53.5 \mathrm{mg}, 0.154 \mathrm{mmol}$) and the mixture was stirred at room temperature for 4 hours. The subsequent normal work-up with EtOAc (2 mL , three times) and chromatographic purification $(E t O A c /$ hexane $=1 / 3$, then $1 / 1)$ rendered (S) - $\mathbf{3 1}(22.2 \mathrm{mg}, 91 \%$ yield, 93.5% ee). Since its chiral HPLC chromatogram was identical with that of $\mathbf{3 1}$ prepared from 19 by consecutive desymmetrization and kinetic resolution, the major enantiomer of $\mathbf{3 1}$ was determined to have (S)-configuration.
6) The oxazolidinone benzoate $\mathbf{2 8}$

To $\mathbf{5 9}(20 \mathrm{mg}, 0.081 \mathrm{mmol})$ in a 4 to 1 mixture of THF and water $(2.5 \mathrm{~mL})$ were $\mathrm{NaIO}_{4}(173$ $\mathrm{mg}, 0.809 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(3 \mathrm{mg})$ in an ice-water bath, and the mixture was stirred at room temperature for 12 hours. After quenching the reaction with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1 \mathrm{~mL})$, the normal work-up with EtOAc (3 mL , three times) and chromatographic purification ($\mathrm{EtOAc} /$ hexane $=1 / 1$, then $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) revealed the corresponding aldehyde (20 $\mathrm{mg}, 99 \%$ yield). To the aldehyde ($20 \mathrm{mg}, 0.080 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added (carbethoxymethylene)triphenylphosphorane ($56 \mathrm{mg}, 0.160 \mathrm{mmol}$) and the mixture was stirred at room temperature for 3 hours. The subsequent normal work-up with EtOAc (2 mL , three times) and chromatographic purification (EtOAc/hexane $=1 / 5$, then $1 / 3$) afforded $\mathbf{6 1}$ ($25.1 \mathrm{mg}, 97 \%$ yield). To $61(25.1 \mathrm{mg}, 0.078 \mathrm{mmol})$ in EtOAc (1 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}$ $(2 \mathrm{mg})$ and the mixture was stirred under an atmospheric hydrogen balloon at room temperature for 8 hours. The resulting solution was filtered through celite (1.5 g) with EtOAc
$(6 \mathrm{~mL})$ and evaporated in vacuo. The residue was separated chromatographically ($\mathrm{EtOAc} /$ hexane $=1 / 5$, then $1 / 3$) to furnish the corresponding saturated ester $(25 \mathrm{mg}, 99 \%$ yield). To the saturated ester ($25 \mathrm{mg}, 0.078 \mathrm{mmol}$) in THF (1.5 mL) was injected diisobutylaluminum hydride (1.0 M in $\mathrm{THF}, 0.18 \mathrm{~mL}, 0.18 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at that temperature for 8 hours. After quenching the reaction with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, the normal work-up with EtOAc (2 mL , three times) followed by the chromatographic separation $(\mathrm{EtOAc} /$ hexane $=1 / 3$, then $1 / 1)$ to yield the alcohol $\mathbf{6 2}(19.8 \mathrm{mg}$, 89% yield). $62(19.8 \mathrm{mg}, 0.069 \mathrm{mmol})$ was dissolved in a mixture of THF (2 mL) and DMF $(0.5 \mathrm{~mL})$, and then tetra- n-butylammonium iodide $(1 \mathrm{mg})$, benzyl chloride ($16 \mu \mathrm{~L}, 0.138$ mmol) and NaH (60% dispersion in mineral oil, $4.2 \mathrm{mg}, 0.104 \mathrm{mmol}$) were added sequentially in an ice-water bath. The mixture was stirred at that temperature for 2 hours and then at room temperature for 10 hours. After quenching the reaction with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the normal work-up with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL}$, three times) and column chromatography $(\mathrm{EtOAc} /$ hexane $=1 / 7$, then $1 / 3$) gave the corresponding benzyl ether (18.2 $\mathrm{mg}, 69 \%$ yield). To the benzyl ether ($18.2 \mathrm{mg}, 0.047 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added TBAF ($75 \mathrm{wt} \%, 0.1 \mathrm{~mL}$) in an ice-water bath and the mixture was stirred at that temperature for an hour. After adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, the normal work-up with EtOAc (2 mL , three times) and chromatographic purification ($\mathrm{EtOAc} /$ hexane $=1 / 1$, then $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the alcohol 63 ($9.3 \mathrm{mg}, 74 \%$ yield). To 63 ($9.3 \mathrm{mg}, 0.035 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ were added imidazole ($9.5 \mathrm{mg}, 0.14 \mathrm{mmol}$) and benzoyl chloride ($8 \mu \mathrm{~L}, 0.070 \mathrm{mmol}$) at room temperature, and the mixture was stirred at that temperature for 12 hours. After quenching the reaction with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, the normal work-up with EtOAc (2 mL , three times) followed by chromatographic separation (EtOAc/hexane $=1 / 3$, then $1 / 1$) to deliver (S) $\mathbf{- 2 8}$ ($11.5 \mathrm{mg}, 89 \%$ yield, 96.8% ee). Since its chiral HPLC chromatogram was identical with that of 28 prepared from 16 by consecutive desymmetrization and kinetic resolution, the major enantiomer of $\mathbf{2 8}$ was determined to have (S)-configuration.
7) The oxazolidinone benzoate 29

To $29(13 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF (1 mL) was injected 9-BBN (0.5 M in THF, $0.05 \mathrm{~mL}, 0.25$ mmol) in an ice-water bath and the mixture was stirred at room temperature for 8 hours. The reaction was quenched with aqueous NaBO_{3} solution (41 mg in 2 mL of water) in an icewater bath and the resulting solution was stirred at that temperature for 12 hours. After adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ to the solution, all the volatile materials were evaporated in vacuo and the residue was purified chromatographically (EtOAc/hexane $=1 / 1$, then 5% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the corresponding alcohol ($12.8 \mathrm{mg}, 92 \%$ yield). The alcohol (12.8 $\mathrm{mg}, 0.046 \mathrm{mmol}$) was dissolved in a mixture of THF (2 mL) and DMF $(0.5 \mathrm{~mL})$, and then tetra-n-butylammonium iodide (1 mg), benzyl chloride ($11 \mu \mathrm{~L}, 0.092 \mathrm{mmol}$) and $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $2.8 \mathrm{mg}, 0.070 \mathrm{mmol}$) were added sequentially in an ice-water bath. The mixture was stirred at that temperature for 2 hours and then at room temperature for 10 hours. After quenching the reaction with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the normal workup with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL}$, three times) and column chromatography ($\mathrm{EtOAc} /$ hexane $=1 / 3$, then $1 / 1$) gave rise to the benzyl ether 28 ($10.5 \mathrm{mg}, 62 \%$ yield, 97.8% ee). Since its chiral HPLC chromatogram was identical with that of (S)-28 prepared from $\mathbf{5 9}$ or $\mathbf{1 6}$ by consecutive desymmetrization and kinetic resolution, the major enantiomer of $\mathbf{2 9}$ was determined to have (S)-configuration.
8) The oxazolidinone benzoate 32

To $32(15 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{mg})$ at $-20^{\circ} \mathrm{C}$ and the mixture was stirred at that temperature for a day. The resulting solution was directly loaded
on a silica gel column, and eluted with EtOAc/hexane (1/3) and then $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to produce the corresponding alcohol ($9.1 \mathrm{mg}, 94 \%$ yield). To the alcohol ($9.1 \mathrm{mg}, 0.047 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(20 \mu \mathrm{~L}, 0.141 \mathrm{mmol})$ and $p-\mathrm{TsCl}(27 \mathrm{mg}, 0.141 \mathrm{mmol})$ in an ice-water bath, and the mixture was stirred at room temperature for 12 hours. After quenching the reaction with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, the normal work-up with EtOAc (2 mL , three times) and the subsequent chromatographic separation (EtOAc/hexane $=$ $1 / 5$, then $1 / 1$) provided the tosylate $\mathbf{6 5}(14.8 \mathrm{mg}, 91 \%$ yield). To $\mathbf{6 5}(14.8 \mathrm{mg}, 0.043 \mathrm{mmol})$ in acetone (1 mL) were added KI ($35.7 \mathrm{mg}, 0.215 \mathrm{mmol}$) and 18 -crown-6 (1 mg) at room temperature, and the mixture was heated at reflux $\left(80^{\circ} \mathrm{C}\right)$ for 12 hours. After adding 1 mL of water, the normal work-up with EtOAc (2 mL , three times) followed by chromatographic purification $(E t O A c /$ hexane $=1 / 5$, then $1 / 1)$ procured the corresponding iodide $(9.4 \mathrm{mg}, 72 \%$ yield). To the iodide ($9.4 \mathrm{mg}, 0.031 \mathrm{mmol}$) in $t-\mathrm{BuOH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added $\mathrm{Zn}(20 \mathrm{mg}, 0.31 \mathrm{mmol})$, and the mixture was heated at reflux $\left(100^{\circ} \mathrm{C}\right)$ for 12 hours. After adding water (2 mL) to the solution at room temperature, the normal work-up with EtOAc (2 mL , three times) and chromatographic separation (EtOAc/hexane $=1 / 5$, then $1 / 3$) revealed $\mathbf{6 6}$ ($4.1 \mathrm{mg}, 75 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{22}$ of $\mathbf{6 6}=-105.6\left(c 0.2, \mathrm{EeOH}\right.$, measured) vs $[\alpha]_{\mathrm{D}}{ }^{25}$ of $(S)-66=$ +107.2 (c 3, EtOH, known, $>99 \%$ ee). ${ }^{19}$ It was determined that the major enantiomers of our synthetic $\mathbf{6 6}$ and $\mathbf{3 2}$ have (R) - and (S)-configuration, respectively.
9) The Oxazolidinone benzoate 35

To $35(14 \mathrm{mg}, 0.044 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added TBAF ($75 \mathrm{wt} \%, 0.1 \mathrm{~mL}$) in an icewater bath and the mixture was stirred at that temperature for 30 minutes. After adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, the normal work-up with EtOAc (2 mL , three times) and chromatographic purification (EtOAc/hexane $=1 / 5$, then $1 / 3$) yielded the corresponding acetylene ($10.5 \mathrm{mg}, 97 \%$ yield). To the acetylene ($10.5 \mathrm{mg}, 0.043 \mathrm{mmol}$) in EtOAc (1 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(3 \mathrm{mg})$ and the mixture was stirred under an atmospheric hydrogen balloon at room temperature for 12 hours. The resulting solution was filtered through celite
$(1.5 \mathrm{~g})$ with EtOAc (6 mL) and evaporated in vacuo. The residue was separated chromatographically $(\mathrm{EtOAc} /$ hexane $=1 / 3$, then $1 / 1)$ to supply $25(10.5 \mathrm{mg}, 98 \%$ yield, 95% ee). Since its chiral HPLC chromatogram was identical with that of (S)-25 prepared from $\mathbf{1 3}$ by consecutive desymmetrization and kinetic resolution, the major enantiomer of $\mathbf{3 5}$ was determined to have (S)-configuration.

VIII. References

12 M. S. Hong, T. W. Kim, B. Jung, S. H. Kang, Chem. Eur. J. 2008, 14, 3290.
13 T. Fukuda, K. Sugiyama, S. Arima, Y. Harigaya, T. Nagamitsu, S. Omura, Org. Lett. 2008, 10, 4239.

14 H. Ooi, N. Ishibashi, Y. Iwabuchi, J. Ishihara, S. Hatakeyama, J. Org. Chem. 2004, 69, 7765

15 S. Kim, H. Lee, M. Lee, T. Lee, Synthesis 2006, 5, 753.
16 S. Sugiyama, S. Arai, K. Ishii, Tetrahedron 2012, 68, 8033.
17 Y. Iio, M. Yamaoka, M. Jin, Y. Nakamura, T. Nishi, Tetrahedron: Asymmetry 2011, 22, 323.

18 M. Martinkova, J. Gonda, J. Raschmanova, A. Uhrikova, Tetrahedron: Asymmetry 2008, 19, 1879..

19 H. Pietsch, Tetrahedron Lett. 1972, 27, 2789.

IX. Selected NMR Spectral Charts

1

88\%

13

17

19

21

22

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

$\stackrel{\text { s. }}{1}$

23

11

					15		1		1		1	1	10	1	1	1	1	1	
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80.	70	60	50	40	30.	20	10

10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

$\begin{aligned} & \stackrel{N}{\otimes} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\otimes} \\ & \infty \\ & \stackrel{\infty}{\top} \end{aligned}$			∞ 8 8	-

29

$\begin{aligned} & \stackrel{\overleftarrow{\dddot{O}}}{\stackrel{0}{\circ}} \end{aligned}$	$\begin{array}{r}\overline{0} \\ \stackrel{0}{0} \\ \hline\end{array}$	

30

31

$\stackrel{\text { 〒̈ }}{\ddagger}$

32

33

苞名品

34

