Utilizing Electronic Effects in the Modulation of BTPhen Ligands with Respect to the Partitioning of Minor Actinides from Lanthanides

Ashfaq Afsar, ${ }^{a}$ Dominic L. Laventine, ${ }^{a}$ Laurence M. Harwood, ** Michael J. Hudson ${ }^{a}$ and Andreas Geist ${ }^{b}$

Table of contents

1.0 Experimental Procedures S2
2.0 NMR Spectroscopic Titrations with Lanthanide Salts S12
3.0 Solvent Extraction Properties S12

1.0 Experimental Procedures

General procedure

NMR spectra were recorded using either a Bruker AMX400 or an Avance DFX400 instrument. Deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ and Deuterated DMSO (dimethyl sulfoxide- d_{6}) were used as solvents. Chemical shifts (δ values) were reported in parts per million (ppm) with the abbreviations $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}, \mathrm{qn}, \mathrm{sx}$, dd, ddd and br denoting singlet, doublet, triplet, quartet, quintet, sextet, double doublets, doublet of doublets of doublets and broad resonances respectively. Coupling constants (J) are quoted in Hertz.

IR spectra were recorded as Nujol $_{\circledast}$ mulls (N) on a Perkin Elmer RX1 FT-IR instrument.

All the melting points were determined on a Gallenkamp melting point apparatus.

Mass spectra (${ }^{m} / \mathrm{z}$) were recorded under conditions of electrospray ionisation (ESI). The ions observed were quasimolecular ions created by the addition of a hydrogen ion denoted as $[\mathrm{MH}]^{+}$or of sodium ion, $[\mathrm{M}+\mathrm{Na}]$. The instrument used was Xcalibur Tune 2.1 (SP1).

2,9-Bis(5,6-dipentyl-1,2,4-triazin-3-yl)-1,10-phenanthroline (7a)

To a suspension of $\mathbf{6 a}(0.50 \mathrm{~g}, 1.7 \mathrm{mmol})$ in THF (50 mL) was added dodecane-6,7-dione $(0.76 \mathrm{~g}, 3.8 \mathrm{mmol}, 2.2 \mathrm{eq}) . \mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{~mL}, 21.3 \mathrm{mmol})$ was added and the mixture was heated under reflux for 3 days. After allowing the solution to cool to room temperature, the solvent was evaporated and the remaining semi-solid residue was triturated with ice-cold $\mathrm{Et}_{2} \mathrm{O}$ (100 $\mathrm{mL})$. The insoluble solid was filtered and washed with further ice-cold $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and allowed to dry in air to afford the ligand $7 \mathbf{a}$ as a yellow solid $(0.27 \mathrm{~g}, 25 \%) ; \mathrm{Mp}\left(138-141^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=0.94(\mathrm{~m}, 12 \mathrm{H}), 1.45(\mathrm{~m}, 16 \mathrm{H}), 1.90(\mathrm{~m}, 8 \mathrm{H}), 3.11(\mathrm{~m}, 8 \mathrm{H}), 7.96(\mathrm{~s}$, $2 \mathrm{H}), 8.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}=14,14.1,22.5$,
$22.5,28.2,28.3,31.7,32.1,32.4,34.4,123.1,127.5,129.7,137.2,146.6,153.6,160,161.6$, 162.6; $\mathrm{C}_{76} \mathrm{H}_{100} \mathrm{~N}_{16}[2 \mathrm{M}+\mathrm{Na}]$ requires m / z 1259.8209; (FTMS + c ESI) MS found m / z 1259.8235; IR $v_{\max } / \mathrm{cm}^{-1}=3511,2956,2926,2858,2674,2490,1622,1585,1518,1496$, 1466, 1441.

5-Bromo-2,9-dimethyl-1,10-phenonthroline (2)

2

Fuming sulfuric acid (75 mL) was added to 2,9-dimethyl-1,10-phenanthroline $\mathbf{5 1}(5.11 \mathrm{~g}, 24.5$ mmol). Bromine ($0.76 \mathrm{~mL}, 14.7 \mathrm{mmol}, 0.6 \mathrm{eq}$) was added and the mixture was heated under reflux overnight. The flask was allowed to cool to room temperature and the solution was quenched with water (200 mL). NaOH pellets were added until the pH of the solution was between 7-8. The resulting mixture was extracted with chloroform ($2 \times 200 \mathrm{~mL}$) and the combined organic phases were dried over MgSO_{4}, filtered and the solvent removed under vacuum to afford the product 151 as a yellow solid $(6.51 \mathrm{~g}, 93 \%) ; \mathrm{Mp}\left(175-178^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=2.94(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.03(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}=25.7$, $26.0,119.7,124.1,124.3,126.0,127.1,128.6,135.4,136.1,144.8,145.8,160.0,160.3$; $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{Br}_{1}[\mathrm{MH}]^{+}$requires ${ }^{\mathrm{m}} / \mathrm{z}$ 287.0178; (FTMS + p ESI) MS found m / z 287.0180; IR $v_{\text {max }} /$ $\mathrm{cm}^{-1}=3385,3048,2916,2163,1603,1589,1546,1491,1435,1400$.

5-Bromo-1,10-phenanthroline-2,9-dicarbaldehyde (4b)

Selenium dioxide ($12.34 \mathrm{~g}, 111.2 \mathrm{mmol}$, 2.1 eq) dissolved in 1,4-dioxane (250 mL) and water ($\sim 7 \mathrm{~mL}$) was heated to reflux. To this solution was added a solution of $2(15.08 \mathrm{~g}, 52.5 \mathrm{mmol}$) in dioxane (250 mL) dropwise over 30 min . The solution was heated under reflux for 2.5 h .

After allowing the solution to cool to room temperature, the precipitated selenium metal was filtered off. The filtrate was evaporated and the solid was triturated with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The insoluble solid was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and allowed to dry in vacuum oven $\left(40{ }^{\circ} \mathrm{C}\right)$ to afford the product $\mathbf{4 b}$ as a dark brown solid (14.94 g, 90%); $\mathrm{Mp}\left(207-210^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-$ NMR (DMSO- d_{6}): $\delta_{\mathrm{H}}=8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 10.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}){ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta_{\mathrm{C}}=120.7,121.1,122.4,129.9,131.7,132.3,137.7,137.7,144.5,145.5$, 152.4, 152.4, 193.1, 193.4; $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}[\mathrm{MH}]^{+}$requires ${ }^{\mathrm{m} / \mathrm{z}} 314.9764$ and 316.9743; (FTMS + p ESI) MS found ${ }^{\mathrm{m}} / \mathrm{z} 314.9764$ and 316.9743; IR $v_{\max } / \mathrm{cm}^{-1}=3068,2856,2191,1973,1697$, 1598, 1548, 1351, 1237.

5-Bromo-1,10-phenanthroline-2,9-dicarbonitrile (5b)

5b

To a suspension of $\mathbf{4 b}(11.33 \mathrm{~g}, 36 \mathrm{mmol})$ in dry $\mathrm{MeCN}(500 \mathrm{~mL})$ was added hydroxylamine hydrochloride ($5.80 \mathrm{~g}, 83.4 \mathrm{mmol}, 2.3 \mathrm{eq}$) and $\mathrm{Et}_{3} \mathrm{~N}(33.1 \mathrm{~mL}, 235.5 \mathrm{mmol}, 6.5 \mathrm{eq})$. The solution was heated under reflux for 4 h . After allowing the mixture to cool to room temperature, p-toluenesulfonylchloride ($22.67 \mathrm{~g}, 118.9 \mathrm{mmol}, 3.3 \mathrm{eq}$) and pyridine (18 mL , $223.5 \mathrm{mmol}, 6.2 \mathrm{eq}$) were added and the mixture was heated under reflux for 24 h . The mixture was filtered while hot and the solid residue was washed with hot MeCN (40 mL). The filtrate was evaporated to afford a brown semi-solid which was triturated with MeOH (200 $\mathrm{mL})$ and then filtered and washed with $\mathrm{MeOH}(200 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ to afford the product $\mathbf{5 b}$ as a brown solid $(7.19 \mathrm{~g}, 65 \%) ; \mathrm{Mp}\left(151-154^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}=8.39$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $8.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta_{\mathrm{C}}=117,117.4,122.3,126.8,129.1,130.4,132.3$,
 310.9750; (FTMS + p ESI) MS found $\mathrm{m} / \mathrm{z} 308.9773$ and 310.9751 ; IR $v_{\max } / \mathrm{cm}^{-1}=3082$, 2984, 2238, 1616, 1497, 1366.

5-Bromo-1,10-phenanthroline-2,9-dicarbohydrazonamide (6b)

To a suspension of $\mathbf{5 b}(2.50 \mathrm{~g}, 8.1 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ was added hydrazine hydrate (50 $\mathrm{mL}, 64 \%)$. The suspension was stirred at room temperature for 2 days. $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{MeOH}(50 \mathrm{~mL})$ were added and the solid was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and allowed to dry in a vacuum oven $\left(40^{\circ} \mathrm{C}\right)$ to afford the product $\mathbf{6 b}$ as a brown solid $(2.10 \mathrm{~g}, 70$ $\%$); Mp (above $335^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta_{\mathrm{H}}=5.86$ (br s, 4H, $\mathrm{NH} \mathrm{H}_{2}$), 6.15 (br s, 4H, NH2), $8.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.54$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}=119.1,119.7,120.1,126.7,128.4,129.2$, 135.1, 135.3, 142.7, 143, 143.2, 144.2, 151.7, 151.9; $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{8} \mathrm{Br}[\mathrm{MH}]^{+}$requires $\mathrm{m} / \mathrm{z} 373.0519$ and 375.0499; (FTMS + c ESI) MS found ${ }^{\mathrm{m}} / \mathrm{z} 373.0519$ and 375.0499 ; IR $v_{\max } / \mathrm{cm}^{-1}=3450$, 3339, 3188, 2922, 2853, 1634, 1601, 1581, 1544, 1490, 1448, 1403.

5-Bromo-2,9-bis(5,6-dipentyl-1,2,4-triazin-3-yl)-1,10-phenanthroline (7b)

To a suspension of $\mathbf{6 b}(0.50 \mathrm{~g}, 1.3 \mathrm{mmol})$ in 1,4-dioxane (75 mL) was added dodecane-6,7dione ($0.61 \mathrm{~g}, 3.1 \mathrm{mmol}, 2.4 \mathrm{eq}$). Triethylamine ($2 \mathrm{~mL}, 14.2 \mathrm{mmol}$) was added and the mixture was heated under reflux for 3 days. After allowing the solution to cool to room temperature, the solvent was evaporated and the remaining semi-solid residue was triturated with ice-cold $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The insoluble solid was filtered and washed with further ice-cold $\mathrm{Et}_{2} \mathrm{O}$ (200 mL) and allowed to dry in air to afford the ligand $\mathbf{7 b}$ as a yellow solid ($0.28 \mathrm{~g}, 30 \%$); Mp $\left(130-133^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}=0.93(\mathrm{~m}, 12 \mathrm{H}), 1.44(\mathrm{~m}, 16 \mathrm{H}), 1.90(\mathrm{~m}, 8 \mathrm{H}), 3.09(\mathrm{~m}$, $8 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$9.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}=14,14.1,22.5,22.5,28.1,28.3,31.7,32.1$, $32.5,34.3,122.0,123.7,123.8,129.0,129.8,130.6,136.3,137.3,146.0,146.9,154.0,154.2$, 160.1, 160.3, 161.1, 161.3, 162.6; $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{Br}[\mathrm{MH}]^{+}$requires ${ }^{\mathrm{m} / \mathrm{z}} 697.3336$ and 699.3316; (FTMS + p ESI) MS found $\frac{\mathrm{m} / \mathrm{z}}{} 697.3335$ and 699.3315; IR $v_{\text {max }} / \mathrm{cm}^{-1}=3513,3468,2959$, 2927, 2860, 1604, 1515, 1488, 1466, 1439.

5,6-Dibromo-2,9-dimethyl-1,10-phenonthroline (3)

Fuming sulfuric acid (110 mL) was added to $\mathbf{1}(13.12 \mathrm{~g}, 63 \mathrm{mmol})$. Bromine ($6.5 \mathrm{~mL}, 252.4$ $\mathrm{mmol}, 4 \mathrm{eq})$ was added and the mixture was heated under reflux for 3 days. The flask was allowed to cool to room temperature and the solution was quenched with water (500 mL). NaOH pellets were added until the pH of the solution was between7-8. The resulting mixture was extracted with chloroform $(10 \times 100 \mathrm{~mL})$ and the combined organic phases were dried over MgSO_{4}, filtered and the solvent removed under vacuum to afford the product $\mathbf{3}$ as a yellow solid ($21.63 \mathrm{~g}, 94 \%$); $\mathrm{Mp}\left(163-166^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=3.00(\mathrm{~s}, 6 \mathrm{H}) .7 .57(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 8.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}=25.7$, 124.9, 126.9, 137.4, 145, 160.6; $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Br}_{2}[\mathrm{MH}]^{+}$requires $\mathrm{m} / \mathrm{z} 364.9284,366.9263$ and 368.9243; (FTMS +p ESI) MS found $\frac{\mathrm{m}}{\mathrm{z}} 364.9279,366.9255$ and 368.9233 ; IR $v_{\max } / \mathrm{cm}^{-1}=3513,3410,1586,1483$, 1434, 1358, 1300, 1201, 1148, 1099.

5,6-Dibromo-1,10-phenanthroline-2,9-dicarbaldehyde (4c)

Selenium dioxide ($8.64 \mathrm{~g}, 77.9 \mathrm{mmol}, 2.1 \mathrm{eq}$) dissolved in 1,4-dioxane (250 mL) and water (\sim $8 \mathrm{~mL})$ was heated to reflux. To this solution was added a $3(13.45 \mathrm{~g}, 36.8 \mathrm{mmol})$ in dioxane $(250 \mathrm{~mL})$ dropwise over 15 min . The solution was heated under reflux for 5 h . After allowing the solution to cool to room temperature, the precipitated selenium metal was filtered off. The
filtrate was left to crystallise overnight and then filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and allowed to dry in a vacuum oven $\left(40{ }^{\circ} \mathrm{C}\right)$ to afford the product $\mathbf{4 c}$ as yellow solid $(9.33 \mathrm{~g}, 64$ $\%) ; \mathrm{Mp}\left(209-213^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=8.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 10.57(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}=121.7,127.4,130.5,139.1,144.6,152.4$, 193; $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}[\mathrm{MH}]^{+}$requires ${ }^{\mathrm{m} / \mathrm{z}} 392.8869$ and 394.8848 ; (FTMS +p ESI) MS found ${ }^{\mathrm{m} / \mathrm{z}}$ 392.8873 and 394.8853 ; IR $v_{\max } / \mathrm{cm}^{-1}=3656,3080,2865,1708,1245$.

5,6-Dibromo-1,10-phenanthroline-2,9-dicarbonitrile (5c)

To a suspension of $\mathbf{4 c}(4.50 \mathrm{~g}, 11.4 \mathrm{mmol})$ in dry $\mathrm{MeCN}(350 \mathrm{~mL})$ was added hydroxylamine hydrochloride ($1.75 \mathrm{~g}, 26 \mathrm{mmol}, 2.3 \mathrm{eq}$) and $\mathrm{Et}_{3} \mathrm{~N}(11 \mathrm{~mL}, 78.3 \mathrm{mmol}, 6.9 \mathrm{eq})$. The solution was heated under reflux for 24 hours. After allowing the mixture to cool to room temperature, p-toluenesulfonyl chloride ($7.34 \mathrm{~g}, 38.5 \mathrm{mmol}, 3.4 \mathrm{eq}$) and pyridine ($2.8 \mathrm{~mL}, 34.76 \mathrm{mmol}, 3$ eq) were added and the mixture was heated under reflux for 2 days. The mixture was filtered while hot and the solid residue was washed with hot $\mathrm{MeCN}(20 \mathrm{~mL})$. The filtrate was evaporated to afford a dark brown semi-solid which was triturated with $\mathrm{MeOH}(100 \mathrm{~mL})$ and then filtered and washed with $\mathrm{MeOH}(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ to afford the product $\mathbf{5 c}$ as a pale brown solid ($2.59 \mathrm{~g}, 58 \%$); $\mathrm{Mp}\left(135-138^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}=8.38(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 8.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta_{\mathrm{C}}=117,125.4,128,129.1,133.6$, 139.2, 144.1; $\mathrm{C}_{14} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{Br}_{2}[\mathrm{MH}]^{+}$requires $\mathrm{m} / \mathrm{z} 386.8883$; (FTMS +p ESI) MS found m / z 386.8886; IR $v_{\max } / \mathrm{cm}^{-1}=3260,3083,2944,2608,2241,1758,1700,1571,1472,1361,1209$.

5,6-Dibromo-1,10-phenanthroline-2,9-dicarbohydrazonamide (6c)

To a suspension of $\mathbf{5 c}(2.59 \mathrm{~g}, 6.7 \mathrm{mmol})$ in $\mathrm{EtOH}(150 \mathrm{~mL})$ was added hydrazine hydrate ($100 \mathrm{~mL}, 64 \%$). The suspension was stirred at room temperature for 7 days. $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and $\mathrm{EtOH}(200 \mathrm{~mL})$ were added and the solid was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and allowed to dry in a vacuum oven $\left(40^{\circ} \mathrm{C}\right)$ to afford the product $\mathbf{6 c}$ as a yellow solid $(2.83 \mathrm{~g}$, 94%); $\mathrm{Mp}\left(335-338^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta_{\mathrm{H}}=5.80\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{NH} \mathrm{H}_{2}\right), 6.11$ (br s, 4H, NH2), $8.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}=120.9,123.7$, 127.5, 136.4, 142.7, 143.4, 152.1; $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{8} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{Na}]$ requires $\mathrm{m} / \mathrm{z} 472.9444$ and 474.9423; (FTMS + c ESI) MS found $\mathrm{m} / \mathrm{z} 472.9450$ and 474.9430 ; IR $v_{\text {max }} / \mathrm{cm}^{-1}=3459,3353,3190$, 1642, 1591, 1490, 1358, 1198.

5,6-Dibromo-2,9-bis(5,6-dipentyl-1,2,4-triazin-3-yl)-1,10-phenanthroline (7c)

To a suspension of $\mathbf{6 c}(0.50 \mathrm{~g}, 1.1 \mathrm{mmol})$ in 1,4-dioxane (50 mL) was added dodecane-6,7dione ($0.52 \mathrm{~g}, 2.6 \mathrm{mmol}, 2.4 \mathrm{eq}$). Triethylamine ($2 \mathrm{~mL}, 14.2 \mathrm{mmol}$) was added and the mixture was heated under reflux for 3 days. After allowing the solution to cool to room temperature, the solvent was evaporated and the remaining semi-solid residue was triturated with ice-cold $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The insoluble solid was filtered and washed with further icecold $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and allowed to dry in air to afford the ligand 7 c as a yellow solid $(0.09 \mathrm{~g}$, $11 \%) ; \operatorname{Mp}\left(132-135^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}=0.94(\mathrm{~m}, 12 \mathrm{H}), 1.45(\mathrm{~m}, 16 \mathrm{H}), 1.90(\mathrm{~m}, 8 \mathrm{H})$, $3.07(\mathrm{t}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.13(\mathrm{t}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 9.04(\mathrm{~s}, 4 \mathrm{H}, 3-\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}=14$, $14.1,22.5,22.5,28.1,28.3,31.6,32.1,32.5,34.4,124.4,126.3,129.6,138.5,146,154.6$, 160.3, 161.6, 162.5; $\mathrm{C}_{76} \mathrm{H}_{96} \mathrm{~N}_{16} \mathrm{Br}_{2}{ }^{81} \mathrm{Br}_{2}[2 \mathrm{M}+\mathrm{Na}]$ requires ${ }^{\mathrm{m} / \mathrm{z}} 1575.4589$; (FTMS + c ESI) MS found ${ }^{\mathrm{m}} / \mathrm{z} 1575.4639$; IR $v_{\max } / \mathrm{cm}^{-1}=3512,3458,2957,2925,2858,2163,1628,1588$, 1519, 1479, 1459, 1442.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for ligands

 9

2.0 NMR Spectroscopic Titrations with Lanthanide Salts

General Procedure

A $0.5 \mathrm{~mL}, 0.01 \mathrm{M}$ solution of C 5 -BTPhen ($7 \mathbf{a}, 5 \mu \mathrm{~mol}$) in $\mathrm{CD}_{3} \mathrm{CN}$ was made up in an NMR tube. A 0.01 M solution of $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ was added in $25-50 \mu \mathrm{~L}$ aliquots $(0.25-0.5 \mu \mathrm{~mol}$ per aliquot) and the ${ }^{1} \mathrm{H}$ NMR spectrum was recorded after each addition.
C5-BTPhen: $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)=0.94(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) 1.46(\mathrm{~m}, 16 \mathrm{H})$, 1.96 (quint, $J=4.9 \mathrm{~Hz}, 8 \mathrm{H}$), $3.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.09(\mathrm{~s}, 2 \mathrm{H})$, $8.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 8.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
$\mathbf{L a}(\mathbf{C 5}-\mathrm{BTPhen})_{2}\left(\mathrm{NO}_{3}\right)_{\mathbf{x}}: \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)=0.62$ (quint, $\left.J=7.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 0.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$, 0.80 (quint, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$), $0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.93$ (quint, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.33(\mathrm{~m}$, 8 H), 1.76 (quint, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$), $2.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.49(\mathrm{~s}$, $2 \mathrm{H}), 9.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
$\mathbf{L n}(\mathbf{C} 5-\mathbf{B T P h e n})_{2}\left(\mathrm{NO}_{3}\right)_{\mathbf{x}}: \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)=0.52$ (quint, $\left.J=7.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$, $0.80-0.87(\mathrm{~m}, 10 \mathrm{H}), 1.06$ (quint, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.30(\mathrm{~m}, 8 \mathrm{H}), 1.69$ (quint, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$), $2.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.55(\mathrm{~s}, 2 \mathrm{H}), 8.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.15$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

3.0 Solvent Extraction Properties

General Procedure

$500 \mu \mathrm{~L}$ of solutions of BTPhen ($10 \mathrm{mmol} / \mathrm{L}$) in 1-octanol and $500 \mu \mathrm{~L}$ of solutions of ${ }^{241} \mathrm{Am}$ (III) $+{ }^{152} \mathrm{Eu}$ (III) ($1 \mathrm{kBq} / \mathrm{mL}$ each) in nitric acid of varied concentrations were shaken for 90 minutes on an orbital shaker at $2500 / \mathrm{min}$ in 2 mL glass screw-cap vials at $T=20^{\circ} \mathrm{C}$. Phases were separated by centrifugation, and $300 \mu \mathrm{~L}$ of each organic and aqueous phase were taken for analysis on a gamma counter (Packard Cobra Auto Gamma 5003).

Distribution ratios D_{M} were determined from the gamma count rates of both samples,
$D_{\mathrm{M}}=[M]_{\text {org }} /[M]_{\mathrm{aq}}=\left(c p m_{\text {org }} * V_{\mathrm{aq}} /\left(c p m_{\mathrm{aq}} * V_{\text {org }}\right)\right.$
The separation factor is
$S F_{\mathrm{Am} / \mathrm{Eu}}=D_{\mathrm{Am}} / D_{\mathrm{Eu}}$

Extraction of $\mathrm{Am}($ III) and $\mathrm{Eu}($ III $)$ into octanol

Table 1. Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ into octanol by C5-BTPhen $7 \mathrm{a}(0.01 \mathrm{M})$ as a function of nitric acid concentration

$\left[\mathrm{HNO}_{3}\right]$ Initial $(\mathrm{mol} / \mathrm{L})$	D_{Am}	D_{Eu}	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Eu}}$
0.1	66	0.851	77.6
0.2	72.7	1.11	65.8
0.5	69.4	0.914	75.9
0.7	70.7	1.12	63
1	68.4	1.01	67.6
1.5	127	0.831	153
2	115	0.728	158
3	121	0.656	184
4	101	0.567	178

Table 2. Extraction of Am(III) and Eu(III) into octanol by BrC5-BTPhen 7b $(0.01 \mathrm{M})$ as a function of nitric acid concentration

$\left[\mathrm{HNO}_{3}\right]$ Initial $(\mathrm{mol} / \mathrm{L})$	D_{Am}	D_{Eu}	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Eu}}$
0.1	25.1	0.134	187
0.2	63.4	0.257	247
0.5	102	0.479	212
0.7	98.7	0.537	184
1	99.6	0.551	181
1.5	104	0.520	199
2	93.6	0.526	178
3	96.9	0.466	208
4	108	0.434	250

Table 3. Extraction of Am (III) and Eu (III) into octanol by $\mathrm{Br}_{2} \mathrm{C} 5$-BTPhen $7 \mathrm{c}(0.01 \mathrm{M})$ as a function of nitric acid concentration

$\left[\mathrm{HNO}_{3}\right]$ Initial $(\mathrm{mol} / \mathrm{L})$	D_{Am}	D_{Eu}	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Eu}}$
0.1	1.01	0.00892	114
0.2	8.52	0.0488	175
0.5	9.76	0.0926	105
0.7	23.5	0.131	179
1	57.4	0.143	401
1.5	87.5	0.152	574
2	75.2	0.144	522
3	86.7	0.131	660
4	99.1	0.130	763

