Supporting Information

A 3D Microporous Covalent Organic Framework with exceedingly high C_3H_8/CH_4 and C_2 Hydrocarbons/CH₄ Selectivity

Heping Ma,^a Hao Ren,^{*a} Shuang Meng,^a Zhuojun Yan,^a Huanyu Zhao,^a Fuxing Sun,^a and Guangshan Zhu^{*a,b}

1. Materials and Synthesis

1.1 Materials

All chemcials were purchased from Aldrich, Alfa-Aesar, and Aladdin-reagent, and used as received unless otherwise noted. Actone was dried with anhydrous CaSO₄ before used tetra(4-dihydroxyborylphenyl)methane ^[1] and 1,2,4,5-tetrahydroxybenzene^[2] were prepared according to the previously reported method.

References:

[1] J.-H. Fournier, T. Maris, J. D. Wuest, W. Guo, E. Galoppini, J. Am. Chem. Soc. 2003, 125, 1002.

[2] P. W. Weider, L. S. Hegedus, H. Asada, S. V D'Andreq, J. Org. Chem. 1985, 50, 4276.

1.2 Synthesis of the MCOF-1.

Typically, the mixture of TBPM (0.3 mmol) and THB (0.15 mmol) in 1,4-dioxane/mesitylene (1 mL : 0.5 mL) in a sealed Pyrex tube was heated at 90 $^{\circ}$ C for 3 days. The precipitate was collected by filtration, washed with anhydrous acetone, and dried at 100 $^{\circ}$ C under vacuum to give COF as a light orange powder in 90% yield.

2. Instruments

FTIR spectra were obtained using an IFS 66V/S Fourier trans-form infrared spectrometer. The thermogravimetric analysis (TGA) was performed using a Netzch Sta 449c thermal analyzer system at the heating rate of 10 °C/min in air atmosphere. Scanning electron microscopy (SEM) imaging was performed on JEOS JSM 6700. The PXRD was performed by a Riguku D/MAX2550 diffractometer using CuK α radiation, 40 kV, 200 mA with scanning rate of 0.3° min-1 (20). The¹³C {¹H} CP MAS spectra were recorded on a Bruker AVANCE III 400 WB spectrometer equipped with a 7 mm standard bore CPMAS probehead whose X channel was tuned to 100.62 MHz for ¹³C and the other channel was tuned to 400.18 MHz for broad band ¹H decoupling, using a magnetic field of 9.39T at 297 K. The dried and finely powdered samples were packed in the ZrO₂ rotor closed with Kel-F cap which were spun at 5 kHz rate. The experiments were conducted at a contact time of 2 ms. A total of 5000 scans were recorded with 6 s recycle delay for each sample. All ¹³C CP MAS chemical shifts are referenced to the resonances of adamantane (C₁₀H₁₆) standard (d_{CH2}=38.5). The ¹¹B MAS spectra were recorded on a Bruker AVANCE III 400 WB

spectrometer equipped with a 4 mm standard bore CP MAS probehead whose X channel was tuned to 128.39 MHz for ¹¹B, using a magnetic field of 9.39T at 297 K. All¹¹B MAS chemical shifts are referenced to the resonances of boron nitride (BN), 99.5% (metals basis) standard (d=0.00).

Low-pressure gas adsorption measurements:

The gas adsorption/desorption isotherms were measured on a Quantachrome Autosorb iQ2 analyzer. Ar adsorption/desorption measurements were carried out at 87 K. CH_4 , C_2H_4 , C_2H_6 , C_3H_8 adsorption/desorption isotherms collected at 273 K and 298 K, respectively. Ultra-high-purity grade (99.99%) Ar, CH_4 , C_2H_6 , C_3H_8 and C_2H_4 gases were used for all adsorption measurements. Liquid argon bathe were utilized to control the temperature at 87 K. Ice-water bath and water bathes equipped with a temperature sensor were used to control the temperature at 273 K and 298 K.

3. FT-IR spectra

Figure S1. FT-IR spectra of MCOF-1 (black), 1,2,4,5-tetrahydroxybenzene(THB) (blue) and tetra(4-dihydroxyborylphenyl)methane (TBPM) (red).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Figure S2. The ¹³C CP-MAS NMR spectrum of MCOF-1 indicates that the expected building blocks are present.

Figure S3.¹¹B MAS NMR spectrum of MCOF-1 and TBPM.

Figure S4. SEM image of MCOF-1 revealing a spherical morphology.

Figure S5. Thermogravimetric analysis of MCOF-1 under air condition.

Structural modelling

All the models, including cell parameters and atomic positions were generated using Accelrys' Materials Studio (MS) v. 4.4 software (Accelrys Software Inc., San Diego, CA, USA) employing the Crystal Building module. Interpenetrative diamond structures were generated using the space groups I4₁/a for odd interpenetration, P4₂/n for twice odd and P4/n for twice even interpenetration. Vertex positions were obtained from the Reticular Chemistry Structure Resource (http://rcsr.anu.edu.au) under the symbol dia-c3, dia-c4 and dia-c6 for odd, twice even and twice odd respectively. The structures were obtained after replacing all the C—C bonds (edges) with the 2,6-Diphenyl-benzo(1,2-*d*;4,5-*d*')bis(1,3,2)dioxaborole unit bonding the 4-position of the phenylboronic acid to the tetrahedral carbon. The piecewise structures were minimized with the Forcite module in Materials Studio using the universal force field (UFF). The Simulated PXRD patterns were obtained using the Reflex Powder Diffraction module of Material Studio.

Table S	1:	Fractional	atomic	coordinates	for	dia-c4.
---------	----	------------	--------	-------------	-----	---------

Dia-c4				
Space Group Symmetry		Volume		
P4/n		4603.33 Å ³		
a = b = 19.2868 Å				
c = 12.3752 Å				
$\alpha=\beta=\gamma=90^{o}$				
Atom	x	у	Z	
C1	0.75	0.25	0	
C2	0.70591	0.29477	0.07775	
C3	0.65331	0.26289	0.13982	
C4	0.61530	0.30046	0.21590	
C5	0.63015	0.37048	0.23441	
B1	0.58793	0.41243	0.32015	
01	0.53171	0.38194	0.38417	
C6	0.51253	0.43876	0.44564	
C7	0.45973	0.43984	0.52332	

Dia-c5				
Space Group Symmetry		Volume		
I 4 ₁ /a		7051.12 Å ³		
a = b = 27.4694 Å				
c = 9.4034 Å				
$\alpha = \beta = \gamma = 90^{\circ}$				
Atom	x	у	Z	
C1	0	0.75	0.875	
C2	0.03783	0.74527	0.73554	
C3	0.04823	0.77831	0.60798	
C4	0.08460	0.77720	0.49601	
C5	0.11054	0.74228	0.50231	
B1	0.15374	0.74266	0.39634	
01	0.17025	0.77954	0.29649	
C6	0.21078	0.76691	0.26505	
C7	0.24195	0.79082	0.17769	

Table S2: Fractional atomic coordinates for dia-c5.

Dia-c6				
Space Group Symmetry		Volume		
P42/nnm		3173.05 Å ³		
a = b = 21.200 Å				
c = 7.0600 Å				
$\alpha=\beta=\gamma=90^{\rm o}$				
atom	x	у	Z	
C1	0.75	0.25	0.25	
C2	0.70373	0.28371	0.24448	
C3	0.65607	0.25601	0.35302	
C4	0.61769	0.29345	0.46852	
C5	0.62690	0.35900	0.47588	
B1	0.58406	0.40100	0.60492	
01	0.53320	0.37524	0.72254	
C6	0.51088	0.43009	0.80530	
C7	0.46091	0.43403	0.93462	

Table S3: Fractional atomic coordinates for dia-c6.

Figure S6: Simulation of crystal structure of dia-c4 in AB plane constructed with 1,2,4,5-tetrahydroxybenzene and tetra(4-dihydroxyborylphenyl)methane.

Figure S7: Simulation of crystal structure of dia-c5 in AB plane constructed with 1,2,4,5-tetrahydroxybenzene and tetra(4-dihydroxyborylphenyl)methane.

Figure S8: Simulation of crystal structure of dia-c6 in AB plane constructed with 1,2,4,5-tetrahydroxybenzene and tetra(4-dihydroxyborylphenyl)methane.

Figure S9. PXRD pattern of MCOF-1 after activated, compared to dia-c4, dia-c5 and dic-c6 simulated pattern.

9. Gas adsorption behavior of MCOF-1 at 273 K.

Figure S10. Gas adsorption isotherm for MCOF-1 at 273 K, 1 bar.

10. Isosteric heats of C₂H₄, C₂H₆ and CH₄ for MCOF-1.

Figure. S11. The isosteric heats of adsorption for MCOF-1 in function of the gas uptake.

Figure S12. IAST predicted C₂H₆/C₂H₄ equimolar gas mixture adsorption selectivity for

MCOF-1 at 273K

Figure S13. Nonlinear curve fitting of C_2H_4 for MCOF-1 at different temperatures.

Figure S14. Nonlinear curve fitting of C₂H₆ for MCOF-1 at different temperatures.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S15. The adsorption isotherms of pure component gas (a) CH_4 and C_2H_4 ; (b) CH_4 and C_2H_6 ; (c) CH_4 and C_3H_8 for MCOF-1 at 298 K. Isotherms are fitted using the dual-site Langmuir-Freundlich equation.

Material	C_2H_6/CH_4	C_2H_4/CH_4	References
MCOF-1	88	26	This work
UTSA-33a	16	12	S1
UTSA-34a	17	11	S1
UTSA-34b	22	18	S1
UTSA-35a	15	10	S2
La-PCP	22 ^a	12 ^a	S3
CuBTC	18	-	S4
MOF-505	16.30	-	S4
MgMOF-74	11.61	-	S4
CoMOF-74	7.77	-	S4
PCN-16	10.73	-	S4
mesoPOF-1	26	-	\$5
mesoPOF-2	40	-	S5
mesoPOF-3	27.5	-	\$5
ZJU-48a	8	-	S6

Table S4. Comparison of C_2H_6/CH_4 and C_2H_4/CH_4 selectivity of MCOF with some other

porous materials.

^a. the selectivity is calculated using adsorption isotherm at 273 K.

References:

S1. Y. He, Z. Zhang, S. Xiang, H. Wu, F. R. Fronczek, W. Zhou, R. Krishna, M. O'Keeffe, B. Chen, *Chem.-Eur. J.*, 2012, **18**,1901.

S2. Y. He, Z. Zhang, S. Xiang, F. R. Fronczek, R. Krishna and B. Chen, *Chem. Commun.*, 2012, 48, 6493.

S3. J. Duan, M. Higuchi, S. Horike, M. L. Foo, K. P. Rao, Y. Inubushi, T. Fukushima and S.

Kitagawa, Adv. Funct. Mater. 2013, DOI: 10.1002/adfm.201203288.

S4. Y. He, R. Krishna, B. Chen, Energy Environ. Sci., 2012, 5, 9107.

S5. A. P. Katsoulidis, M. G. Kanatzidis, Chem. Mater., 2012, 24, 471.

S6. H. Xu, B. Chen G. Qian, J. Mater. Chem. A, 2013, DOI: 10.1039/C3TA12086D.