Supplementary Information

Design, synthesis and evaluation of a boronic acid based artificial receptor for L-DOPA in aqueous media

Haruna Ueno, Takayuki Iwata, Nozomi Koshiba, Daisuke Takahashi* and Kazunobu Toshima*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Page	e			Contents
S2	•	•	•	General methods for synthesis.
S2	•	•	•	Synthesis of 4a-c , 5a-c and 6a-c .
S9	•	•	•	¹¹ B NMR chemical shifts of 4a , 5a , 6a and 7 .
S9	•	•	•	General procedure for ¹ H NMR titration.
S13	•	•	•	¹ H NMR titration of 6a with L-DOPA.
S14	•	•	•	¹¹ B NMR of 6a with L-DOPA.
S15	•	•	•	Inhibition assay of L-DOPA decarboxylase.
S15	•	•	•	Cell culture.
S15	•	•	•	MTT assay.
S16	•	•	•	References.
S17	•	•	•	¹ H and ¹³ C NMR spectra.

General methods for synthesis.

Melting points were determined on a micro hot-stage (Yanako MP-S3). ¹H and ¹³C NMR spectra were recorded on a JEOL Lambda (300 MHz for ¹H) or JEOL ECA-500 (500 MHz for ¹H and 125 MHz for ¹³C) spectrometer. ¹H NMR data are reported as follows; chemical shift in parts par million (ppm) downfield or upfield from tetramethylsilane (TMS) (δ 0.00) or D₂O (δ 4.79), integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, d = quartet, quint = quintet, and m = multiplet) and coupling constants (Hz). ¹³C chemical shifts are reported in ppm downfield or upfield from CDCl₃ (δ 77.16) or external standard acetone (δ 30.89). ESI-TOF Mass spectra were measured on a Waters LCT premier XE. Silica gel TLC and column chromatography were performed on Merck TLC 60F-254 (0.25 mm) and Silica Gel 60 N (spherical, neutral, 40-50 µm) (Kanto Chemical Co., Inc.), respectively. Air- and/or moisture-sensitive reactions were carried out under an atmosphere of argon using oven-dried glassware. In general, organic solvents were purified and dried using an appropriate procedure, and evaporation and concentration were carried out under reduced pressure below 30 °C, unless otherwise noted.

Compounds 10a-c

To a solution of 2-anilineboronic acid pinacol ester (8) (263 mg, 1.20 mmol) in MeOH (6.00 mL) were added **9a** (300 mg, 1.71 mmol) and DMT-MM (474 mg, 1.71 mmol). After the mixture was stirred at 40 °C for 5 h, the reaction was quenched by addition of a cooled solution of ethyl acetate (30 ml) and saturated aq. NH₄Cl (15 mL). The resulting mixture was extracted with ethyl acetate (30 mL×2). The extracts were washed with saturated aq. NaHCO₃ (30 mL) and brine (30 mL), dried over sodium sulfate, and concentrated in *vacuo*. Purification of the residue by silica gel column chromatography (CHCl₃/acetone); mp. 164-166 °C; ¹H NMR (CDCl₃, TMS) δ 9.59 (1H, br s), 7.39 (1H, m), 7.78 (1H, m), 7.47 (1H, t, *J* = 7.5 Hz), 7.10 (1H, t, *J* = 7.5 Hz), 5.19 (1H, br s), 4.02 (2H, s), 1.48 (9H, s), 1.38 (12H, s); ¹³C NMR (CDCl₃) δ 167.4, 155.7, 144.0, 136.4, 133.0, 123.4, 119.9, 84.6, 80.2, 45.2, 28.5, 25.0; HRMS (ESI-TOF) *m*/*z* 377.2258 (377.2248 calcd. for C₁₉H₃₀BN₂O₅ [M+H]⁺).

The compound **10b** was obtained as a white solid from **8** (40.6 mg, 0.185 mmol) and **9b** (50.0 mg, 0.264 mmol) according to the above procedure in 83% yield (59.7 mg, 0.153 mmol); R_f 0.19 (9/1 CHCl₃/acetone); mp. 74-76 °C; ¹H NMR (CDCl₃, TMS) δ 9.67 (1H, br s), 8.27 (1H, m), 7.75 (1H,

dd, J = 1.4 and J = 7.5 Hz), 7.43 (1H, dt, J = 1.4 and J = 7.5 Hz), 7.09 (1H, dt, J = 1.4 and J = 7.5 Hz), 5.29 (1H, br s), 3.49 (2H, m), 2.55 (2H, t, J = 5.4 Hz), 1.43 (9H, s), 1.37 (12H, s); ¹³C NMR (CDCl₃) δ 170.1, 156.2, 143.5, 136.1, 132.4, 123.6, 119.0, 84.2, 79.4, 37.4, 36.4, 28.5, 25.1; HRMS (ESI-TOF) *m/z* 391.2416 (391.2426 calcd. for C₃₀H₃₁BN₂O₅ [M+H]⁺).

The compound **10c** was obtained as a white solid from **8** (37.7 mg, 0.172 mmol) and **9c** (50.0 mg, 0.246 mmol) according to the above procedure in 63% yield (43.5 mg, 0.108 mmol); R_f 0.15 (9/1 CHCl₃/acetone); mp. 118-120 °C; ¹H NMR (CDCl₃, TMS) δ 9.97 (1H, br s), 8.12 (1H, m), 7.74 (1H, m), 7.39 (1H, t, J = 7.2 Hz), 7.10 (1H, t, J = 7.2 Hz), 4.82 (1H, br s), 3.19 (2H, m), 2.35 (2H, t, J = 6.9 Hz), 1.88 (2H, quint, J = 6.9 Hz), 1.43 (9H, s), 1.37 (12H, s); ¹³C NMR (CDCl₃) δ 171.1, 156.4, 143.0, 135.7, 131.8, 123.8, 118.7, 83.7, 79.5, 40.0, 34.8, 28.5, 25.9, 25.0; HRMS (ESI-TOF) *m/z* 405.2549 (405.2542 calcd. for C₂₆H₃₃BN₂O₅ [M+H]⁺).

Compounds 4a-c

To a solution of **10a** (182 mg, 0.484 mmol) in CH_2Cl_2 (1.80 mL) was added TFA (1.80 mL). After the mixture was stirred at room temperature for 1 h, the reaction mixture was concentrated in *vacuo*.

To a solution of the above residue was added acetone (1.00 mL) and water (1.00 mL). After the mixture was stirred at room temperature for 15 h, the reaction mixture was concentrated in *vacuo*. The resulting residue was diluted with H₂O (10 mL), extracted with diethyl ether (40 mL×4), and the water layer was concentrated in *vacuo*.

To a solution of the residue in MeCN (3.60 mL) and water (0.194 mL) were added N,N'di-*tert*-buthoxycarbonyl-1H-pyrazole-1-carboxamidine (**12**) (120 mg, 0.387 mmol) and DIEA (0.279 mL, 1.60 mmol). After the mixture was stirred at room temperature for 2 h, the reaction was quenched by addition of a cooled solution of ethyl acetate (20 mL) and saturated aq. NH₄Cl (15 mL). The resulting mixture was extracted with ethyl acetate (20×2 mL). The extracts was washed with saturated aq. NaHCO₃ (20 mL) and brine (20 mL), dried over sodium sulfate, and concentrated in *vacuo*.

To the above residue was added 4 M HCl/1,4–dioxane (1.70 mL). After the reaction mixture was stirred at room temperature for 4 h, the mixture was concentrated in *vacuo*. Purification of the residue by reverse-phase silica gel column chromatography (H₂O/MeOH = 3/7) gave **4a** (57.2 mg, 0.210 mmol) in 43% yield in 4 steps as a colorless syrup; $R_f 0.57$; ¹H NMR (D₂O) δ 7.40 (1H, dd, *J*

= 2.1 and 6.6 Hz), 7.21 (2H, m), 7.00 (1H, m), 4.29 (2H, s); ¹³C NMR (D₂O, acetone) δ 168.2, 158.4, 136.2, 132.3, 129.1, 127.9, 117.2, 43.7; HRMS (ESI-TOF) *m*/*z* 219.1055 (219.1053 calcd. for C₉H₁₂BN₄O₂ [M+H]⁺).

The compound **4b** was obtained as a colorless syrup from **10b** (96.7 mg, 0.337 mmol) according to the above procedure in 27% yield in 4 steps (26.1 mg, 0.091 mmol). R_f 0.02 (1/1/0.3 CHCl₃/MeOH/H₂O); mp. 298-300 °C; ¹H NMR (D₂O) δ 7.38 (1H, dd, J = 1.8 and 6.6 Hz), 7.20 (2H, m), 6.91 (1H, m), 3.51 (2H, t, J = 6.2 Hz), 2.79 (2H, t, J = 6.2 Hz); ¹³C NMR (D₂O, acetone) δ 170.3, 157.4, 136.2, 132.2, 128.9, 127.9, 116.7, 37.4, 34.3; HRMS (ESI-TOF) *m/z* 233.1216 (233.1210 calcd. for C₁₀H₁₄BN₄O₂ [M+H]⁺).

The compound **4c** was obtained as a colorless syrup from **10c** (64.0 mg, 0.213 mmol) according to the above procedure in 47% yield in 4 steps (30.1 mg, 0.100 mmol); R_f 0.63 (1/1/0.3 CHCl₃/MeOH/H₂O); ¹H NMR (D₂O) δ 7.42 (1H, dd, J = 1.8 and 6.6 Hz), 7.23 (2H, m), 6.95 (1H, dd, J = 1.8 and 6.6 Hz), 3.20 (2H, t, J = 6.9 Hz), 2.60 (2H, t, J = 6.9 Hz), 1.96 (2H, quint, J = 6.9 Hz); ¹³C NMR (D₂O, acetone) δ 172.4, 157.4, 136.4, 132.1, 128.9, 127.8, 116.6, 40.8, 32.0, 24.4; HRMS (ESI-TOF) *m/z* 247.1366 (247.1366 calcd. for C₁₁H₁₆BN₄O₂ [M+H]⁺).

Compounds 14a-c

To a solution of 4-anilineboronic acid pinacol ester **13** (175 mg, 0.800 mmol) in MeOH (6.00 mL) were added **9a** (200 mg, 1.14 mmol) and DMT-MM (316 mg, 1.14 mmol). After the mixture was stirred at 40 °C for 3 h, the reaction was quenched by addition of a cooled solution of ethyl acetate (30 mL) and saturated aq. NH₄Cl (15 mL). The resulting mixture was extracted with ethyl acetate (30 mL×2). The extracts were washed with saturated aq. NaHCO₃ (30 mL) and brine (30 mL), dried over sodium sulfate, and concentrated in *vacuo*. Purification of the residue by silica gel column chromatography (CHCl₃/acetone = 5/1) gave **14a** (277 mg, 0.735 mmol) in 92% yield as a white solid; R_f 0.55 (7/1 CHCl₃/acetone); mp. 225-226 °C; ¹H NMR (CDCl₃, TMS) δ 8.24 (1H, br s), 7.77 (2H, d, *J* = 8.4 Hz), 7.52 (2H, d, *J* = 8.4 Hz), 5.25 (1H, br s), 3.92 (2H, d, *J* = 5.7 Hz), 1.40 (9H, s), 1.38 (12H, s); ¹³C NMR (CDCl₃) δ 189.5, 167.4, 140.1, 136.0, 118.8, 83.9, 80.7, 45.9, 28.4, 25.0; HRMS (ESI-TOF) *m/z* 377.2235 (377.2248 calcd. for C₁₉H₃₀BN₂O₅ [M+H]⁺).

The compound **14b** was obtained as a white solid from **13** (344 mg, 1.57 mmol) and **9b** (425 mg, 2.24 mmol) according to the above procedure in 62% yield (408 mg, 0.970 mmol); R_f 0.37 (7/1 CHCl₃/acetone); mp. 217-218 °C; ¹H NMR (CDCl₃, TMS) δ 7.77 (2H, d, J = 7.8 Hz), 7.69 (1H, br s), 7.54 (2H, d, J = 7.8 Hz), 5.16 (1H, br s), 3.50 (2H, m), 2.61 (2H, t, J = 5.9 Hz), 1.43 (9H, s), 1.34 (12H, s); ¹³C NMR (CDCl₃) δ 169.8, 156.4, 140.6, 135.9, 118.7, 83.9, 79.8, 37.9, 36.5, 28.5, 25.0; HRMS (ESI-TOF) m/z 391.2420 (391.2426 calcd. for C₃₀H₃₂BN₂O₅ [M+H]⁺).

The compound **14c** was obtained as a white solid from **13** (302 mg, 1.38 mmol) and **10c** (400 mg, 1.97 mmol) according to the above procedure in 78% yield (449 mg, 1.07 mmol); R_f 0.55 (4/1 CHCl₃/acetone); mp. 190-191 °C; ¹H NMR (CDCl₃, TMS) δ 8.77 (1H, br s), 7.76 (2H, d, J = 8.4 Hz), 7.61 (2H, d, J = 8.4 Hz), 4.82 (1H, br, s), 3.24 (2H, m), 2.39 (2H, t, J = 6.9 Hz), 1.87 (2H, quint, J = 6.9 Hz), 1.46 (9H, s), 1.33 (12H, s); ¹³C NMR (CDCl₃) δ 171.7, 157.4, 141.1, 135.8, 118.7, 83.8, 80.0, 39.4, 34.9, 28.5, 27.3, 25.0; HRMS (ESI-TOF) m/z 405.2566 (405.2582 calcd. for $C_{21}H_{33}BN_2O_3$ [M+H]⁺).

Compounds 5a-c

To a solution of **14a** (277 mg, 0.736 mmol) in CH_2Cl_2 (2.80 mL) was added TFA (2.80 mL). After the mixture was stirred at room temperature for 3 h, the reaction mixture was concentrated in *vacuo*.

To a solution of the above residue was added acetone (2.80 mL) and water (2.80 mL). After the mixture was stirred at room temperature for 14 h, the reaction mixture was concentrated in *vacuo*. The resulting residue was diluted with H₂O (10 mL), extracted with diethyl ether (40 mL×4), and the water layer was concentrated in *vacuo*.

To a solution of the residue in MeCN (5.45 mL) and water (0.296 mL) were added N,N'di-*tert*-buthoxycarbonyl-1H-pyrazole-1-carboxamidine (**12**) (183 mg, 0.589 mmol) and DIEA (0.423 ml, 2.43 mmol). After the mixture was stirred at room temperature for 5 h, the reaction was quenched by addition of a cooled solution of ethyl acetate (20 mL) and saturated aq. NH₄Cl (15 mL). The resulting mixture was extracted with ethyl acetate (20×2 mL). The extracts was washed with saturated aq. NaHCO₃ (20 mL) and brine (20 mL), dried over sodium sulfate, and concentrated in *vacuo*. To the above residue was added 4 M HCl/1,4–dioxane (1.4 mL). After the reaction mixture was stirred at room temperature for 7 h, the mixture was concentrated in *vacuo*. Purification of the residue by reverse-phase silica gel column chromatography (H₂O/MeOH = 3/7) gave **5a** (65.0 mg, 0.239 mmol) in 32% yield in 4 steps as a white solid; R_f 0.53 (1/1/0.3 CHCl₃/MeOH/H₂O); mp. 146-147 °C; ¹H NMR (D₂O) δ 7.66 (2H, d, *J* = 8.4 Hz), 7.38 (2H, d, *J* = 8.4 Hz), 4.05 (2H, s); ¹³C NMR (D₂O, acetone) δ 169.2, 158.3, 139.7 135.4, 121.2, 44.8; HRMS (ESI-TOF) *m/z* 237.1149 (237.1159 calcd. for C₉H₁₄BN₄O₃ [M+H]⁺).

The compound **5b** was obtained as a white solid from **14b** (71.4 mg, 0.183 mmol) according to the above procedure in 48% yield in 4 steps (25.0 mg, 0.088 mmol); R_f 0.58 (1/1/0.3 CHCl₃/MeOH/H₂O); mp. 168-170 °C; ¹H NMR (D₂O) δ 7.63 (2H, d, J = 8.4 Hz), 7.34 (2H, d, J = 8.4 Hz), 3.42 (2H, t, J = 6.3 Hz), 2.59 (2H, t, J = 6.3 Hz); ¹³C NMR (D₂O, acetone) δ 172.7, 157.7, 139.8, 135.4, 121.3, 38.0, 36.2; HRMS (ESI-TOF) *m/z* 251.1309 (251.1315 calcd. for C₁₀H₁₆BN₄O₃ [M+H]⁺).

The compound **5c** was obtained as a white solid from **14c** (74.8 mg, 0.178 mmol) according to the above procedure in 60% yield in 4 steps (32.1 mg, 0.107 mmol); R_f 0.08 (1/1/0.3 CHCl₃/MeOH/H₂O); mp. 173-175 °C; ¹H NMR (D₂O) δ 7.63 (2H, d, J = 8.4 Hz), 7.35 (2H, d, J = 8.4 Hz), 3.13 (2H, t, J = 6.9 Hz), 2.37 (2H, t, J = 6.9 Hz), 1.83 (2H, quint, J = 6.9 Hz); ¹³C NMR (D₂O, acetone) δ 175.1, 157.7, 139.8, 135.3, 121.3, 41.1, 34.0, 24.7; HRMS (ESI-TOF) *m*/*z* 265.1464 (265.1472 calcd. for C₁₁H₁₈BN₄O₃ [M+H]⁺).

Compounds 16a-c

To a solution of 3-anilineboronic acid pinacol ester **15** (262 mg, 1.20 mmol) in MeOH (6.00 mL) were added **9a** (300 mg, 1.71 mmol) and DMT-MM (473 mg, 1.71 mmol). After the mixture was stirred at 40 °C for 1 h, the reaction was quenched by addition of a cooled solution of ethyl acetate (30 mL) and saturated aq. NH₄Cl (15 mL). The resulting mixture was extracted with ethyl acetate (30 mL×2). The extracts were washed with saturated aq. NaHCO₃ (30 mL) and brine (30 mL), dried over sodium sulfate, and concentrated in *vacuo*. Purification of the residue by silica gel column chromatography (CHCl₃/acetone) = 5/1) gave **16a** (312 mg, 0.829 mmol) in 69% yield as a white solid; $R_f 0.52$ (7/1 CHCl₃/acetone); mp. 160-161 °C; ¹H NMR (CDCl₃, TMS) δ 7.97 (1H, br s), 7.88

(1H, br d, J = 7.8 Hz), 7.65 (1H, d, J = 1.8 Hz), 7.56 (1H, d, J = 7.8 Hz), 7.35 (1H, t, J = 7.8 Hz), 5.17 (1H, br s), 3.93 (2H, d, J = 5.7 Hz), 1.49 (9H, s), 1.38 (12H, s); ¹³C NMR (CDCl₃) δ 167.8, 156.4, 137.0, 131.0, 128.8, 126.0, 123.3, 84.1, 80.9, 45.6, 28.5, 25.0; HRMS (ESI-TOF) *m/z* 377.2246 (377.2248 calcd. for C₁₉H₃₀BN₂O₅ [M+H]⁺).

The compound **16b** was obtained as a white solid from **15** (139 mg, 0.634 mmol) and **9b** (172 mg, 0.909 mmol) according to the above procedure in 65% yield (161 mg, 0.412 mmol); R_f 0.38 (7/1 CHCl₃/acetone); mp. 164-166 °C; ¹H NMR (CDCl₃) δ 7.78 (2H, m), 7.55 (1H, d, J = 7.2 Hz), 7.48 (1H, br s), 5.18 (1H, br s), 3.49 (2H, m), 2.59 (2H, t, J = 5.9 Hz), 1.44 (9H, s), 1.34 (12H, s); ¹³C NMR (CDCl₃) δ 169.8, 156.4, 137.3, 130.8, 128.6, 126.0, 123.1, 84.0, 79.6, 37.5, 36.5, 28.5, 25.0; HRMS (ESI-TOF) *m/z* 391.2402 (391.2404 calcd. for C₃₀H₃₂BN₂O₅ [M+H]⁺).

The compound **16c** was obtained as a white solid from **15** (93.5 mg, 0.427 mmol) and **9c** (124 mg, 0.610 mmol) according to the above procedure in 82% yield (147 mg, 0.350 mmol); R_f 0.27 (7/1 CHCl₃/acetone); mp. 166-168 °C; ¹H NMR (CDCl₃) δ 8.36 (1H, br, s), 7.86 (2H, m), 7.54 (1H, m), 7.35 (1H, m), 4.80 (1H, br s), 3.24 (2H, m), 2.37 (2H, t, *J* = 6.9 Hz), 2.00 (2H, m), 1.46 (9H, s), 1.33 (12H, s); ¹³C NMR (CDCl₃) δ 171.2, 157.0, 137.9, 130.5, 128.6, 126.0, 123.1, 84.0, 79.8, 39.6, 34.8, 28.5, 27.0, 25.0; HRMS (ESI-TOF) *m/z* 405.2553 (405.2542 calcd. for C₂₆H₃₃BN₂O₃ [M+H]⁺).

Compounds 6a-c

To a solution of **16a** (311 mg, 0.827 mmol) in CH_2Cl_2 (3.00 mL) was added TFA (3.00 mL). After the mixture was stirred at room temperature for 4 h, the reaction mixture was concentrated in *vacuo*.

To a solution of the above residue was added acetone (1.62 mL) and water (1.62 mL). After the mixture was stirred at room temperature for 17 h, the reaction mixture was concentrated in *vacuo*. The resulting residue was diluted with H₂O (10 mL), extracted with diethyl ether (40 mL×4), and the water layer was concentrated in *vacuo*.

To a solution of the residue in MeCN (6.14 mL) and water (0.330 mL) were added N,N'di-*tert*-buthoxycarbonyl-1H-pyrazole-1-carboxamidine (**12**) (165 mg, 0.531 mmol) and DIEA (0.381 ml, 2.19 mmol). After the mixture was stirred at room temperature for 2 h, the reaction was quenched by addition of a cooled solution of ethyl acetate (20 mL) and saturated aq. NH₄Cl (15 mL). The resulting mixture was extracted with ethyl acetate (20×2 mL). The extracts was washed with saturated aq. NaHCO₃ (20 mL) and brine (20 mL), dried over sodium sulfate, and concentrated in *vacuo*.

To the above residue was added 4 M HCl/1,4–dioxane (2.00 mL). After the reaction mixture was stirred at room temperature for 4 h, the mixture was concentrated in *vacuo*. Purification of the residue by reverse-phase silica gel column chromatography (H₂O/MeOH = 3/7) gave **6a** (100 mg, 0.367 mmol) in 44% yield in 4 steps as a white solid; R_f 0.53 (1/1/0.3 CHCl₃/MeOH/H₂O); mp. 198-200 °C; ¹H NMR (D₂O) δ 7.61 (1H, s), 7.46 (2H, m), 7.34 (1H, t, *J* = 7.8 Hz), 4.09 (2H, s); ¹³C NMR (D₂O, acetone) δ 169.2, 158.3, 136.6 131.6, 129.6, 127.5, 125.1, 44.8; HRMS (ESI-TOF) *m/z* 237.1154 (237.1159 calcd. for C₉H₁₄BN₄O₃ [M+H]⁺).

The compound **6b** was obtained as a white solid from **16b** (100 mg, 0.256 mmol) according to the above procedure in 47% yield in 4 steps (34.6 mg, 0.121 mmol); R_f 0.71 (1/1/0.3 CHCl₃/MeOH/H₂O); mp. 174-175 °C; ¹H NMR (D₂O) δ 7.61 (1H, s), 7.46 (2H, m), 7.35 (1H, t, J = 7.5 Hz), 3.45 (2H, t, J = 6.3 Hz), 2.62 (2H, t, J = 6.3 Hz); ¹³C NMR (D₂O, acetone) δ 172.7, 157.5, 136.9, 131.4, 129.5, 127.4, 125.0, 38.1, 36.1; HRMS (ESI-TOF) *m/z* 251.1311 (251.1315 calcd. for C₁₀H₁₆BN₄O₃ [M+H]⁺).

The compound **6c** was obtained as a colorless syrup from **16c** (69.2 mg, 0.165 mmol) according to the above procedure in 34% yield in 4 steps (16.9 mg, 0.0562 mmol); R_f 0.80 (1/1/0.3 CHCl₃/MeOH/H₂O); ¹H NMR (D₂O) δ 7.56 (1H, s), 7.42 (2H, m), 7.30 (1H, t, *J* = 7.5 Hz), 3.12 (2H, t, *J* = 6.9 Hz), 2.35 (2H, t, *J* = 6.9 Hz), 1.82 (2H, quint, *J* = 6.9 Hz); ¹³C NMR (D₂O, acetone) δ 174.8, 157.4, 137.1, 131.2, 129.4, 127.2, 124.8, 41.1, 33.9, 24.8; HRMS (ESI-TOF) *m*/*z* 265.1479 (265.1472 calcd. for C₁₁H₁₈BN₄O₃ [M+H]⁺).

¹¹<u>B NMR chemical shifts of 4a, 5a, 6a and 7.</u>

¹¹B NMR spectra were recorded on a JEOL ECA-500 (160 MHz for ¹¹B) spectrometer. To avoid the broad signal from the boron incorporated in glasses, measurements were carried out in a 5 mm tube made of poly(tetrafluoroethylene). The ¹¹B NMR spectrum of each compound (1.0 mM) was measured in 0.1 M phosphate buffer (D₂O, pH 7.4) at 298 K. For these compounds, a resonance at ca. 5-10 ppm on the B(OH)₃ scale is indicative of a sp² hybridized neutral boron atom, while one in the –10 to –15 ppm range is indicative of a sp³ hybridized anionic borate center.^[1]

Compound	Chemical Shift _{(pp} m) ^a
$\begin{array}{c} HO_{B},OH \\ H \\$	8.04 -12.41 ₍ ma _j or _p eak ₎
$HO^{B} \xrightarrow{0} H \xrightarrow{0} H \xrightarrow{0} H^{NH_{2}}$	8.19
$ \begin{array}{c} $	7.51
HO _B ,OH	8.79

Table S1 ¹¹B NMR chemical shifts of **4a**, **5a**, **6a**, and **7**.

^aChemical shifts in ppm downfield (positive) or upfield (negative) of external standard B_fOH_{13}

General procedure for ¹H NMR titration.^[2]

A 5.0 mM receptor stock solution (solution A) and 10 mM stock solution of each guest molecule (solution B) were prepared in phosphate buffered D_2O (100 mM, pH 7.4). And then, solution B was titrated into solution A in order to make mixtures with a constant concentration of the receptor (1.0 mM) and a range of concentration of each guest. In general, three different concentrations (1.0, 1.5 and 2.0 mM) were made.

The slow dissociation of the complex compared to the NMR timescale led to two different sets of signals for the free receptor and the complexed receptor. The concentrations of the free and the complexed receptor were determined by the integral ratio of these peaks considering the known total concentration. In general, the signal set of the aromatic protons of the receptor were used for determination of the binding constants (K_a).

The equilibrium constant for the complexation of the receptor with the guest is defined as

$$K_{a} = [\text{complexed receptor}]_{\text{area}} / ([S][\text{free receptor}]_{\text{area}})$$
(1)
$$[S] = [S_{0}] - [\text{complexed receptor}], [S_{0}] \text{ denotes the total guest.}$$
(2)

Table S2

					L-DOF	PA		
	HO OH	NH ₂		Aa (mmol)		integral of		
	, N			4a (111101)		free 4a	complexed 4a	
		$H \ominus \oplus$		1	1	1	ND	
	V U	ĊI		1	1.5	1	ND	
	4a			1	2	1	ND	
						Ka	<10 M ⁻¹	
	Dopami	ine		Catechol				
Ac (mmol)	Denomine (mmel)	integral of		A = (mm = 1)	Catashal (mmal)	integral of		
4a (mmor)	Dopamine (mmor)	free 4a	complexed 4a	4a (mmoi)	Calechol (mmol)	free 4a	complexed 4a	
1	1	1	ND	1	1	1	ND	
1	1.5	1	ND	1	1.5	1	ND	
1	2	1	ND	1	2	1	ND	
		Ka	<10 M ⁻¹			Ka	<10 M ⁻¹	

ND = not detected.

Table S3

					L-DOF	ΡA		
	HO、B、OH	CI		Ab (mmol)		integral of		
		H ⊝⊕		4 (minor)		free 4b	complexed 4b	
				1	1	1	ND	
	U Ö	ŃH ₂		1	1.5	1	ND	
	4b		1	2	1	ND		
						Ka	<10 M⁻¹	
	Dopami	ine		Catechol				
(h (mmol)	Denomine (mmel)	integral of		4 h (mmol)	Cotochol (mmol)	integral of		
4b (mmor)	Dopamine (mmoi)	free 4b	complexed 4b	4b (mmor)	Calechol (mmol)	free 4b	complexed 4b	
1	1	1	ND	1	1	1	ND	
1	1.5	1	ND	1	1.5	1	ND	
1	2	1	ND	1	2	1	ND	
		Ka	<10 M ⁻¹			Ka	<10 M ⁻¹	

ND = not detected.

Table S4

					L-DOF	ΡA		
	HO B U	NH_2		Ac (mmol)		integral of		
	\downarrow \ddot{N} \frown			40 (1111101)		free 4c	complexed 4c	
	ÍÌĬĬ		7 ₂	1	1	1	ND	
	0	ČĬ		1	1.5	1	ND	
	4C			1	2	1	ND	
						Ka	<10 M ⁻¹	
	Dopam	ine		Catechol				
As (mmal)	Denomine (mmel)	integral of		Ac (mmol)	Cotoobol (mmol)	integral of		
4c (mmor)	Dopamine (mmor)	free 4c	complexed 4c	4C (mmor)	Catechol (mmol)	free 4c	complexed 4c	
1	1	1	ND	1	1	1	ND	
1	1.5	1	ND	1	1.5	1	ND	
1	2	1	ND	1	2	1	ND	
		Ka	<10 M ⁻¹			Ka	<10 M ⁻¹	

ND = not detected.

Table S5

				1				
	011				L-DOP	A		
	OH k			5a (mmol)		in	integral of	
	HO' HO' O	H ⊕⊝		Sa (mmor)		free 5a	complexed 5a	
	Ľ, ∧, ↓	_ ^N _ ^{ŇŬ}	2	1	1	1	0.63	
	Ĥ	NH ₂		1	1.5	1	1.22	
	5a	2		1	2	1	1.65	
						Ka	1228 M ⁻¹	
	Dopam	ine		Catechol				
Fa (mmal)	Denomine (mmel)	integral of		Fo (mmol)	Cotoobol (mmol)	integral of		
Sa (mmor)		free 5a	complexed 5a	Sa (minor)	Calechol (mmol)	free 5a	complexed 5a	
1	1	1	0.75	1	1	1	0.48	
1	1.5	1	1.08	1	1.5	1	0.82	
1	2	1	1.58	1	2	1	1.14	
		Ka	1115 M ⁻¹			Ka	783 M ⁻¹	

Table S6

	011			L-DOPA					
	ОН			5h (mmol)		integral of			
	HO' HO' O	NH ₂		SD (mmor)		free 5b	complexed 5b		
	Ľ, ∧, ↓	<u>~_n</u> ~	IH _a	1	1	1	0.62		
	Ĥ	H ⊕	8	1	1.5	1	0.98		
	5b		CI	1	2	1	1.54		
						Ka	1115 M ⁻¹		
	Dopam	ine		Catechol					
Eb (mmol)	Denomine (mmel)	integral of		Eb (mmol)	Catachal (mmal)	integral of			
(iomin) dc	Dopamine (mmoi)	free 5b	complexed 5b	(iomm) dc	Catechol (mmol)	free 5b	complexed 5b		
1	1	1	0.68	1	1	1	0.52		
1	1.5	1	1.15	1	1.5	1	0.76		
1	2	1	1.59	1	2	1	1.2		
		Ka	1157 M ⁻¹			Ka	799 M ⁻¹		

Table S7

					L-DOP	Α		
	OH			Fe (mmol)		integral of		
	HO'B		CI	SC (mmor)		free 5c	complexed 5c	
		N,		1	1	1	0.62	
	V N H	~ ~	ХЦ NILI	1	1.5	1	1	
		50		1	2	1	1.5	
		00				Ka	1060 M ⁻¹	
	Dopam	ine		Catechol				
Fo (mmol)	Denomine (mmel)	integral of		Fo (mmol)	Catachal (mmal)	integral of		
SC (mmor)	Dopamine (mmor)	free 5c	complexed 5c	SC (mmor)	Catechol (mmol)	free 5c	complexed 5c	
1	1	1	0.67	1	1	1	0.5	
1	1.5	1	1.06	1	1.5	1	0.82	
1	2	1	1.61	1	2	1	1.16	
		Ka	1147 M⁻¹			Ka	793 M⁻¹	

Table S8

					L-DOF	20		
	HO_B_OH			fo (mmol)		integral of		
		CI		oa (mmor)		free 6a	complexed 6a	
		H ⊕⊝ N .NH₂		1	1	1	1.09	
	N/ N/			1	1.5	1	1.77	
	 6a		1	2	1	3.16		
	<u>u</u>					Ka	2467 M ⁻¹	
	Dopam	ine		Catechol				
60 (mmol)	Denomine (mmel)	in	integral of		Catashal (mmal)	integral of		
ba (mmor)	Dopamine (mmor)	free 6a	complexed 6a	oa (mmor)	Calechol (mmol)	free 6a	complexed 6a	
1	1	1	0.99	1	1	1	0.83	
1	1.5	1	1.81	1	1.5	1	1.53	
1	2	1	2.48	1	2	1	2.19	
		Ka	1963 M ⁻¹			Ka	1686 M ⁻¹	

Table S9

	HO、DOH			L-DOPA				
	B			6h (mmol)		integral of		
	O U	NH ₂				free 6b	complexed 6b	
				1	1	1	0.97	
	Ĥ		1	1.5	1	1.81		
	6b		1	2	1	2.63		
						Ka	2085 M ⁻¹	
	Dopami	ine		Catechol				
6h (mmol)	Denomine (mmel)	integral of		6h (mmol)	Catachal (mmal)	integral of		
	Dopannine (minor)	free 6b	complexed 6b		Calechol (minol)	free 6b	complexed 6b	
1	1	1	0.99	1	1	1	0.75	
1	1.5	1	1.96	1	1.5	1	1.35	
1	2	1	2.82	1	2	1	2.15	
		Ka	1826 M ⁻¹			Ka	1620 M ⁻¹	

Table S10

	но он				L-DOF	PΑ	
	B_B_			6c (mmol)		integral of	
	∕⇒ o	CI				free 6c	complexed 6c
		N NH₂		1	1	1	0.96
	H			1	1.5	1	1.65
	60		1	2	1	2.84	
	00					Ka	2209 M ⁻¹
	Dopam	ine		Catechol			
6a (mmal)	Demonstrate (marcel)	integral of		60 (mmol)	Cotochol (mmol)	integral of	
		free 6c	complexed 6c		Catechol (mmol)	free 6c	complexed 6c
1	1	1	0.98	1	1	1	0.80
1	1.5	1	1.77	1	1.5	1	1.40
1	2	1	2.85	1	2	1	1.99
		Ka	2252 M ⁻¹			Ka	1504 M ⁻¹

Table S11

					L-DOF	PA		
	HO _R OI	Н		7 (mmol)		integral of		
				7 (111101)		free 7	complexed 7	
				1	1	1	0.49	
				1	1.5	1	0.83	
	7		1	2	1	1.12		
						Ka	771 M⁻¹	
	Dopami	ine		Catechol				
7 (mmol)	Denomine (mmel)	integral of		7 (mmol)	Cotochol (mmol)	integral of		
7 (111101)	Dopannine (minor)	free 7	complexed 7	7 (111101)	Catechol (mmol)	free 7	complexed 7	
1	1	1	0.49	1	1	1	0.41	
1	1.5	1	0.79	1	1.5	1	0.64	
1	2	1	1.19	1	2	1	0.89	
		Ka	803 M ⁻¹			Ka	579 M ⁻¹	

¹<u>H NMR titration of receptor 6a with L-DOPA</u>

Figure S1a ¹H NMR titration of receptor **6a** (1.0 mM) with increasing concentrations (bottom to top) of L-DOPA in phosphate buffered D_2O (100 mM, pH 7.4). L-DOPA concentration is a) 2.0 mM, b) 1.5 mM, c) 1.0 mM, and d) 0 mM. The aromatic regions of the spectra are shown.

Figure S1b ¹H NMR titration of receptor **6a** (1.0 mM) with increasing concentrations (bottom to top) of L-DOPA in phosphate buffered D_2O (100 mM, pH 7.4) (aromatic region). L-DOPA concentration is a) 2.0 mM, b) 1.5 mM, c) 1.0 mM, and d) 0 mM. The aliphatic regions of the spectra are shown.

¹¹<u>B NMR of receptor 6a with L-DOPA</u>

Figure S2 ¹¹B NMR of receptor 6a (1.0 mM) a) with L-DOPA (2.0 mM), b) without L-DOPA in

phosphate buffered D₂O (100 mM, pH 7.4).

Inhibition assay of L-DOPA decarboxylase.^[3]

The 5.0 mM stock solutions of L-DOPA, pyridoxal-5'-phosphate (PLP), and **4a** or **6a** in 50 mM HEPES buffer (containing 100 mM NaCl, pH 7.2) were prepared. In addition, the stock solution of DDC (Sino Biological Inc.) (20 μ g/mL) in 50 mM HEPES buffer (pH 7.2) was prepared. The DDC enzymatic reaction was started by combining of the above stock solutions in 50 mM HEPES buffer (pH 7.2) at 37 °C. The final concentrations in the incubation mixture were DDC 3.5 μ g/mL, L-DOPA 1.0 mM, PLP 0.10 mM, and **4a** or **6a** 1.0 mM. The resulting mixture was incubated at the same temperature for 30 or 60 min. The enzymatic reaction was stopped by heating to 100 °C for 2 min, and then cooled on ice for 2 min. To the reaction mixture was added TNBS (5% in H₂O), and the mixture was incubated for 20 min at 37 °C. And then, TNP-dopamine, which was formed by the reaction between dopamine and TNBS, was extracted by benzene. The progress of the DDC enzymatic reaction was monitored by UV analysis (340 nm) of the extracted TNP-dopamine.

Cell culture.

Human human lung fibroblast WI-38 cells were grown at 37 °C in 5% CO_2 in air in DMEM medium supplemented with phenol red, L-glutamine (2 mM), penicillin (100 Units/mL), kanamycin (100 μ g/mL) and 10% fetal bovine serum.

MTT assay.

Cells were seeded at 8.0×10^3 cells per well in 96-well in 10% FBS DMEM. After 24 h, samples were incubated with the indicated concentration of **6a** or cisplatin. Cells were then kept for 24 h at 37 °C and in 5% CO₂ in air, and then MTT reagent was added to each well and cells were incubated for up to 3 additional hours at 37 °C. The absorbance at a single wavelength of 540 nm was read on a plate reader SAFIRE (TECAN Inc.).

Figure S3 Effect of compound 6a and cisplatin on WI-38 cell viability.

References.

- (a) P. M. Groziak, A. D. Ganguly and P. D. Robinson, *J. Am. Chem. Soc.*, 1994, **116**, 7597; (b) K. Djanashvili, L. Frullano and J. A. Peters, *Chem. Eur. J.* 2005, **11**, 4010.
- 2. M. Maue and T. Schrader, Angew. Chem. Int. Ed., 2005, 44, 2265.
- 3. A. Charteris and R. John, Anal. Biochem., 1975, 66, 365.

¹H and ¹³C NMR spectra

Figure S3 ¹³C NMR spectrum of 10a

Figure S5 ¹³C NMR spectrum of 10b

Figure S7¹³C NMR spectrum of 10c

Figure S13 ¹³C NMR spectrum of 4c

S24

Figure S19¹³C NMR spectrum of 14c

Figure S21 ¹³C NMR spectrum of 5a

Figure S23 ¹³C NMR spectrum of 5b

Figure S25¹³C NMR spectrum of 5c

Figure S27 ¹³C NMR spectrum of 16a

Figure S28 ¹H NMR spectrum of 16b

Figure S29¹³C NMR spectrum of 16b

Figure S31 ¹³C NMR spectrum of 16c

Figure S37 ¹³C NMR spectrum of 6c