Electrophile Induced Branching Cascade: A Powerful Approach to Access Various Molecular Scaffolds and Their Exploration as Novel Anti-mycobacterial Agent

Nitin T. Patil,^{*} Ashok Konala, Sudha Sravanti, Ashita Singh, Ramesh Ummanni and Balasubramanian Sridhar

Contents

 Synthesis of Scaffold Building Agents (SBAs) Polyheterocyclic Scaffolds Accessed Through EIBC– Literature Known Synthesis and Applications 	• 1
3. Polyheterocyclic Scaffolds Accessed Through EIBC– Literature Known Synthesis and	2
Appreations	4
4. General Procedures and Characterization Data of Compounds	6
5. Diversification of Products	23
6. Undesired Products Obtained During Optimization Studies and Characterization Data:	27
7. Enantioselective Experiment and HPLC Chromatograms	29
8. Anti mycobacterial activity	32
9. X- ray Crystallography Data:	35
10. ¹ H NMR and ¹³ C NMR Spectra of Compounds	38

1. General Introduction

All cross coupling reactions were carried out in oven or flame dried vials with magnetic stirring under nitrogen atmosphere. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccators. All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated silica gel plates. After elution, plate was visualized under UV illumination at 254 nm for UV active materials. Further visualization was achieved by staining KMnO₄ and charring on a hot plate. Solvents were removed in vacuo and heated with a water bath at 35 °C. Silica gel finer than 200 mesh was used for flash column chromatography. Columns were packed as slurry of silica gel in hexane and equilibrated with the appropriate solvent mixture prior to use. The compounds were loaded neat or as a concentrated solution using the appropriate solvent system. The elution was assisted by applying pressure with an air pump.

Melting points are uncorrected. IR spectra were recorded as neat liquids or KBr pellets and absorptions are reported in cm⁻¹. ¹H NMR spectra were recorded on 300 and 500, 600 MHz spectrometers in appropriate solvents using TMS as internal standard or the solvent signals as secondary standards and the chemical shifts are shown in δ scales. Multiplicities of ¹H NMR signals are designated as s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), m (multiplet)... etc. ¹³C NMR spectra were recorded on 75, 125, 150 MHz spectrometers. High-resolution mass spectra were obtained by using ESI-QTOF mass spectrometry.

2. Synthesis of Scaffold Building Agents (SBAs)

The scaffold building agents 1, 3, 4 and 9 were commercially available while others prepared by literature known procedures. The details are given below in tabular form.

SBA No	Structures	References
1	NH ₂ NH ₂ O	Commercially available
1(I)	Br NH ₂ O	Org. Biomol. Chem., 2003 , 11, 383-392
1 (II)	CH ₃ NH ₂ NH ₂ O	J. Org. Chem., 2010 , 75, 1277-1280
1(III)	NH ₂ NHNHPh O	J. Indian Chem. Soc., 1980 , 57, 887-889
1(VI)	H ₃ C NH ₂ NHNHPh O	J. Indian Chem. Soc., 1980 , 57, 887-889
2	NH ₂ NHTs	Angew. Chem. Int. Ed., 2007, 46, 7247-7250
2 (I)	F NH ₂ NHTs	Angew. Chem. Int. Ed., 2007 , 46, 7247-7250
3	\mathbb{A}_{N}^{H}	Commercially available
4		Commercially available
5	$\begin{bmatrix} H_2N\\N\\N \end{bmatrix}$	Eur. J. Med. Chem., 1998 , 33, 181-188
6	NH NH ₂	J. Med. Chem., 1967 , 10, 334-336

7	NH ₂	J. Org. Chem., 2004 , 69, 5578-5587
7 (I)	H ₃ C NH ₂	J. Med. Chem., 1999 , 42, 4362-4379
7(II)	CI NH ₂	J. Med. Chem., 2004 , 47, 1997-2009
8	CH ₃ N H _{H2} N	Tetrahedron, 1973 , 29, 1429-1432
9	N NH ₂	J. Am. Chem. Soc., 2002 , 124, 11684-11688
10	NH ₂ OH	Commercially available
10(I)	H ₃ C NH ₂ OH	J. Org. Chem., 2008, 73, 4252-4255
11		Chem. Comm., 2010 , 46, 448-450

3. Polyheterocyclic Scaffolds Accessed Through EIBC– Literature Known Synthesis and Applications

Sl. No.	Scaffold	Sub-structures	Synthesis/Applications	References
1	Ph N		Synthesis/TNF-α inhibition	Chem. Commun., 2011 , 47, 10263- 10265
	HN HN		Synthesis/Inhibition of FcɛRI-mediated activation of mast Cells	J. Med. Chem., 1998 , 41, 1050-1059
2		R R	Synthesis/DNA binding agent with cytotoxic properties	J. Med. Chem., 2005 , 48, 4504-4506 ChemBioChem., 2006 , 7, 1757-1763
	15 -		Synthesis/Hypoglycemic agent	US4097598 A1, 1978
3		NH N N	Synthesis/Lipid peroxidation inhibitory activity	Eur. J. Med. Chem., 1998 , 33, 181-187
	ζ_N N	NH N N	Synthesis	Ind. J. Chem., 1970 , 8, 126-129
			Used in an organic electronic device including OLED	WO200769847 A1, 2007
4		$ \begin{array}{c} $	Synthesis/Positive allosteric modulators of AMPA receptors	J. Med. Chem., 2007 , 50, 3153-3157
4			Synthesis/Orally active potent cognitive enhancer	J. Med. Chem., 2010 , 53,1700-1711

		HN	Synthesis/Antihypertensive agent	J. Med. Chem., 1963 , 6,122-127
5	$ \begin{array}{c} I \\ N \\ N$	HN N N	Synthesis/Lipid peroxidation inhibitory activity	<i>Eur. J. Med. Chem.</i> , 1998 , <i>33</i> , 181-188
6			Synthesis	<i>Tetrahedron Lett.</i> , 2012 , <i>53</i> , 2643-2646
			Inhibitor of cell multiplication	J. Med. Chem., 1967 , 10, 334-336
7	R_1 R_1 R_2		Arginine vasopressin antagonists	<i>Bioorg. Med. Chem.</i> <i>Lett.</i> , 2003 , <i>13</i> , 2195- 2198
	R ₃		Hypotensive activity	Pharmaceutical Chemistry Journal, 1987 , 21, 619-624
		NH NH	Synthesis	<i>Tetrahedron Lett.</i> , 2002 , <i>43</i> , 3347-3350
8			Synthesis/Cataleptogenic activity	J. Org. Chem., 1994 , 59, 6777-6782 Ger. Offen., 1971 , 961, 2051
	`CH₃		Synthesis/Melatonin receptor ligands	Org. Biomol. Chem., 2007 , 5, 2129-2137

0			Synthesis/Antifungal activity	<i>Eur. J. Med. Chem.,</i> 2011 , 1919-1925
9		H N N	Synthesis/5-HT ₂ serotonin receptors	Bioorg. Med. Chem. Lett., 2002 , 12, 155- 158
	I R ₁			Farmaco, 1995 , 50, 137-142
10			Synthesis	<i>Steroids</i> , 1986 , <i>47</i> , 307-320
		~	S y numbers	<i>Synthesis</i> , 2012 , <i>44</i> , 2519-2526
				<i>Eur. J. Org. Chem.,</i> 2010 , 1999-2007
11			Synthesis/Bronchodilator agents	US3835138, 1974

4. General Procedures and Characterization Data of Compounds

Condition 1:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent (N_1 , N_2 , N_4 , N_6) (0.2205 mmoles) and 2-alkynylbenzaldehyde (0.2205 mmoles) in DCE (0.09 M) followed by the addition of iodine (3 eq). The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at rt for 3 hrs. The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water and extracted with DCM (10 mL x 3). Work up and purification by column chromatography using EtOAc/hexane or MeOH/DCM as an eluent afforded analytically pure compounds.

Condition 2:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent (N₉) (0.1442 mmoles) and 2-alkynylbenzaldehyde (0.1442 mmoles) in CH₃CN (2.5 mL) followed by the addition of iodine (3 eq). The reaction vial was fitted with a cap and stirred at rt for 8 hrs. The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water

and extracted with EtOAc (10 mL x 3). Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compound.

Condition 3:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent (N_{10}) (0.2439 mmoles) and 2-alkynylbenzaldehyde (0.2439 mmoles) in CH₃CN (2.5 ml) followed by the addition of K₂CO₃ (2 eq), iodine (1.8 eq). The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at rt for 5 hrs. The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water, and extracted with EtOAc (10 mL x 3). Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compound.

Condition 4:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent (N₈) (0.1351 mmoles) and 2-alkynylbenzaldehyde (0.1351 mmoles) in DCE (2.5 mL) followed by the addition of K_2CO_3 (2 eq), iodine (1.8 eq). The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at 75° C for 5 hrs. The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water, and extracted with EtOAc (10 mL x 3). Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compounds.

Condition 5:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent (N₇) (0.1910 mmoles) and 2-alkynylbenzaldehyde (0.1910 mmoles) in DCE (2.5 mL) followed by the addition of 5 mol % *p*-TSA. The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at rt for 3 hrs. After specified time, K_2CO_3 (1.2 eq) and iodine (1.1eq) were added in a sequential manner and the reaction mixture was allowed to stir for 2 hrs. The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water, and extracted with EtOAc (10 mL x 3). Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compounds.

Condition 6:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent (N_3 , N_5 , N_{11}) (0.1442 mmoles) and 2-alkynylbenzaldehyde (0.1442 mmoles) in DCM (0.06 M) followed by the

addition of 5 mol % *p*-TSA. The reaction vial was fitted with a cap, evacuated and filled with nitrogen and allowed to stirr at rt for 6 hrs. The reaction mixture was cooled to 0 $^{\circ}$ C and then ICl (1.1 eq) was added. The reaction mixture was stirred for 2 hrs and then subsquently quenched by the addition of aq. sodium bicarbonate solution followed by adition of water and EtOAc. Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compounds.

13-Iodo-12-phenyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1a): 92% yield; yellow solid (M.P. = 106-108 °C); R_f 0.30 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.04 (s, 1H), 7.64 (d, J = 7.7 Hz, 2H), 7.48-7.33 (m, 9H), 7.09 (dd, J = 2.3 Hz, J = 8.7, 1H), 6.23 (t, J = 8.7 Hz, 1H), 6.11 (s, 1H); ¹³C NMR (150 MHz, DMSO d₆): δ 165.7, 153.1, 143.9, 138.5, 136.7, 134.8, 132.9, 132.0, 130.7, 129.1, 128.4, 127.5, 127.2, 126.7, 125.6, 122.5, 117.6, 111.2, 103.1, 70.4, 67.1; IR (KBr): v_{max} 3420, 3057, 2923, 1671, 1626, 1552, 1511, 1471, 1336, 1160, 1129, 1072, 1025, 816, 759, 696, 642, 543cm⁻¹; MS (ESI) *m/z* 451 (M⁺ + H); HRMS calcd. for C₂₂H₁₆IN₂O (M⁺ + H) 451.0307, found 451.0315.

8-Bromo-13-iodo-12-phenyl-4bH-isoquinolino[**2**,**1-a**]**quinazolin-6(5H)-one** (**1b**): 89% yield; yellow solid (M.P. = 136-138 °C); R_f 0.32 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.06 (s, 1H), 7.46 (d, J = 8.3 Hz, 2H), 7.46 (t, J = 7.5 Hz, 3H), 7.38-7.33 (m, 5H), 7.10 (d, J = 9.1 Hz, 1H), 6.24 (d, J = 9.1 Hz, 1H), 6.13 (s, 1H); ¹³C NMR (125 MHz, DMSO d₆+CDCl₃): δ 164.4, 159.9, 152.5, 141.6, 140.3, 136.8, 135.9, 134.9, 133.8, 133.0, 132.5, 131.9, 128.0, 127.8, 125.8, 124.5, 122.8, 118.8, 116.7, 110.5, 66.3, 65.3; IR (KBr): v_{max} 3429, 3232, 2924, 1674, 1590, 1472, 1392, 1342, 1315, 1284, 1198, 1169, 1127, 1079, 1027, 905, 805, 762, 726, 698, 551, 468 cm⁻¹; MS (ESI) m/z 529 (M⁺ + H); HRMS calcd. for C₂₂H₁₅BrIN₂O (M⁺ + H) 528.9412, found 528.9418.

8-Chloro-13-iodo-10-methyl-12-phenyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1c): 84% yield; brown solid (M.P. = 108-110 °C); R_f 0.34 (hexane/EtOAc= 70/30); ¹H NMR (500 MHz, CDCl₃): δ 7.87 (t, J = 2.4 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.51 (tt, J = 7.6, 1.4 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.34 (dt, J = 6.6, 0.9 Hz, 1H), 7.30 (dt, J = 6.6, 0.9 Hz, 1H), 7.22 (tt, J = 7.5, 1.2 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.04 (t, J = 6.9 Hz, 1H), 6.99 (d, J = 2.3 Hz, 1H), 6.43 (d, J = 7.8 Hz, 1H), 6.05 (d, J = 1.8 Hz, 1H), 1.90 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 162.7, 153.5, 144.7, 141.6, 138.3, 135.3, 134.2, 133.7, 132.3, 130.9, 130.5, 129.1, 128.7, 127.8, 127.1, 126.3, 125.5, 124.6, 68.2, 60.3, 17.9; IR (KBr): v_{max} 3381, 3056, 2922, 1725, 1666, 1613, 1584, 1451, 1375, 1264, 1214, 1186, 1136, 1035, 927, 879, 847, 961, 700, 634, 598, 565, 535, 477, 422cm⁻¹; MS (ESI) *m*/*z* 499 (M⁺ + H); HRMS calcd. for C₂₃H₁₇CIIN₂O (M⁺ + H) 499.0074, found 499.0068.

13-Iodo-12-phenyl-5-(phenylamino)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (**1d**): 84% yield; solid (M.P. = 176-178 °C); R_f 0.30 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.05 (d, J = 7.5 Hz, 2H), 7.91 (d, J = 7.5 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.49 (d, J = 7.4 Hz, 3H), 7.40-7.32 (m, 3H), 7.22-7.14 (m, 3H), 7.07-7.00 (m, 2H), 6.80 (t, J = 7.5 Hz, 1H), 6.68 (d, J = 8.3 Hz, 1H), 6.46 (d, J = 7.7 Hz, 1H), 6.41 (d, J = 8.3 Hz, 1H), 6.05 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 162.3, 145.9, 143.7, 143.1, 136.6, 135.8, 133.7, 131.8, 131.1, 130.2, 129.8, 129.5, 129.2, 128.7, 128.5, 128.4, 125.7, 125.2, 122.3, 121.9, 120.7, 116.5, 113.8, 69.4, 75.0; IR (KBr): v_{max} 3255, 3025, 2922, 1663, 1597, 1491, 1467, 1403, 1300, 1272, 1154, 1109, 1029, 966, 876, 847, 817, 753, 694, 577, 546, 499 cm⁻¹; MS (ESI) *m*/*z* 542 (M⁺ + H); HRMS calcd. for C₂₈H₂₁IN₃O (M⁺ + H) 542.0729, found 542.0723.

13-Iodo-12-phenyl-8-methyl-5-(phenylamino)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one

(1e): 83% yield; solid (M.P. = 164-166 °C); R_f 0.31 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.04 (d, J = 2.3 Hz, 1H), 8.01 (d, J = 1.5 Hz, 1H), 7.84 (d, J = 2.3 Hz, 1H), 7.61 (dd, J = 1.5 Hz, J = 6.0, 1H), 7.33-7.28 (m, 2H), 7.20-7.16 (m, 5H), 7.02-6.96 (m, 2H), 6.84 (dt, J = 2.3 Hz, J = 6.0, 2H), 6.70-6.65 (m, 1H), 6.34 (d, J = 8.3 Hz, 1H), 6.30 (d, J = 9.0 Hz, 1H), 6.01 (s, 1H), 2.13 (s, 3H); ¹³C NMR (150 MHz, DMSOd₆): δ 164.2, 160.8, 148.7, 147.1, 143.4, 140.4, 136.6, 135.7, 134.3, 132.5, 131.0, 130.7, 129.9, 129.8, 129.3, 128.4, 128.1, 127.7, 125.0, 122.7, 119.8, 116.1, 112.3, 75.8, 74.8, 19.7; IR (KBr): v_{max} 3258, 3056, 3024, 2922, 2855, 1662, 1603, 1490, 1441, 1405, 1344, 1273, 1136, 1027, 966, 906, 822, 751, 727, 693, 534, 502 cm⁻¹; MS (ESI) *m/z* 556 (M⁺ + H); HRMS calcd. for C₂₉H₂₃N₃OI (M⁺ + H) 556.0886, found 556.0880.

13-Iodo-12-cyclohexenyl-5-(phenylamino)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (**1f**): 81% yield; solid (M.P. = 170-172 °C); R_f 0.32 (hexane/EtOAc= 70/30); ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, *J* = 7.8 Hz, 1H), 7.30-7.27 (m, 4H), 7.23-7.20 (m, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 7.3 Hz, 1H), 6.82 (t, *J* = 7.8 Hz, 1H), 6.46 (d, *J* = 8.2 Hz, 1H), 5.73 (s, 1H), 1.88-1.69 (m, 8H); ¹³C NMR (125 MHz, DMSO): δ 165.1, 161.2, 147.4, 145.0, 143.3, 133.5, 132.5, 130.9, 130.6, 129.2, 128.4, 127.3, 126.2, 123.5, 119.9, 117.4, 116.3, 115.3, 112.3, 75.6, 75.0, 25.6, 24.2, 22.1, 21.7; IR (KBr): *v_{max}* 3251, 3052, 3029, 2921, 2850, 1668, 1607, 1491, 1446, 1408, 1341, 1275, 1132, 1022, 962, 904, 820, 759, 725, 698, 531 cm⁻¹; MS (ESI) *m/z* 546 (M⁺ + H); HRMS calcd. for C₂₈H₂₅IN₃O (M⁺ + H) 546.1042, found546 .1048.

5-Iodo-6-phenyl-12-tosyl-12,12a-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2a): 72% yield; thick liquid; R_f 0.52 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.72-7.68 (m, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.54-7.52 (m, 3H), 7.39-7.36 (m, 3H), 7.31-7.26 (m, 4H), 7.02 (d, J = 7.5 Hz, 2H), 6.75 (t, J = 7.5 Hz, 1H), 6.63 (t, J = 8.3 Hz, 1H), 6.55 (s, 1H), 5.31 (d, J = 6.8 Hz, 1H), 2.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 144.4, 142.6, 139.7, 138.8, 133.7, 133.1, 131.1, 130.4, 129.9, 129.6, 128.7, 128.1, 127.6, 127.1, 126.4, 126.0, 123.9, 117.3, 114.7, 110.8, 82.7, 78.3, 21.3; IR : v_{max} 3446, 2924, 2856, 1728, 1630, 1593, 1539, 1454, 1378, 1236, 1152, 1110, 1001, 912, 811, 741, 678, 562 cm⁻¹; MS (ESI) *m/z* 577 (M⁺ + H); HRMS calcd. for C₂₈H₂₂IN₂O₂S(M⁺ + H) 577.0447, found 577.0452.

5-Iodo-6-cyclohexenyl-12-tosyl-12,12a-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2b): 68% yield; yellow solid (M.P. = 78-80 °C); R_f 0.54 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.63-7.59 (m, 2H), 7.47-7.41 (m, 3H), 7.32-7.29 (m, 2H), 7.19 (d, J = 8.3 Hz, 2H), 6.89 (t, J = 6.0 Hz, 1H), 6.81 (t, J = 7.5 Hz, 1H), 6.47 (d, J = 6.8 Hz, 1H), 6.00-5.98 (m, 1H), 2.38 (s, 3H), 1.61-1.57 (m, 8H); ¹³C NMR (75 MHz, CDCl₃): δ 139.5, 136.7, 134.8, 132.6, 131.8, 129.6, 128.9, 128.6, 127.5, 127.1, 126.1, 125.5, 123.3, 122.8, 120.4, 119.1, 114.6, 110.3, 86.7, 78.2, 27.3, 25.3, 22.2, 21.5, 21.3; IR (KBr): v_{max} 3448, 2920, 2852, 1726, 1635, 1591, 1530, 1458, 1371, 1239, 1158, 1008, 914, 816, 742, 676, 560 cm⁻¹; MS (ESI) *m*/*z* 581 (M⁺ + H); HRMS calcd. for C₂₈H₂₆IN₂O₂S (M⁺ + H)581.0760, found 581.0765.

10-Fluoro-5-iodo-6-phenyl-12-tosyl-12,12a-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2c): 60% yield; thick liquid; R_f 0.50 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.69-7.67 (m, 1H), 7.56-7.52 (m, 4H), 7.42-7.39 (m, 2H), 7.38-7.35 (m, 2H), 7.32-7.28 (m, 3H), 6.97 (d, J =7.5 Hz, 2H), 6.57 (s, 1H), 6.43 (dt, J = 3.0, J = 6.0 Hz, 1H), 5.01 (dd, J = 2.3, J = 6.8 Hz, 1H), 2.54 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 162.5, 160.6 ($J_{13C-19F} = 243.4$ Hz), 144.8, 140.3, 140.2, 138.4, 135.3, 133.6, 132.7, 130.8, 130.5, 130.0, 129.8, 129.1, 129.0, 128.3, 127.7, 126.9, 123.5, 120.1, 120.0 ($J_{13C-19F} = 9.9$ Hz), 106.6, 106.4 ($J_{13C-19F} = 23.6$ Hz), 99.4, 99.2 ($J_{13C-19F} = 29.9$ Hz), 83.8, 79.1, 21.6; IR : v_{max} 3441, 2929, 2853, 1722, 1637, 1537, 1455, 1372, 1239, 1150, 1114, 910, 817, 743, 675, 568 cm⁻¹; MS (ESI) *m/z* 595 (M⁺ + H); HRMS calcd. for C₂₈H₂₁FIN₂O₂S (M⁺ + H) 595.0352, found 595.0356.

10-Iodo-9-phenyl-14bH-benzimidazo[**1,2-c**]isoquinolino[**2,1-a**]quinazoline (**3**a): 75% yield; yellow solid (M.P. = 198-200 °C); R_f 0.40 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.13 (dd, J = 1.5 Hz, J = 6.0, 1H), 7.97-7.94 (m, 3H), 7.72 (t, J = 7.5 Hz, 1H), 7.44-7.42 (m, 4H), 7.35 (t, J = 3.7 Hz, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.93 (dt, J = 1.5 Hz, J = 6.0, 2H), 6.88 (d, J = 6.8 Hz, 1H), 6.38 (d, J = 7.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 144.3, 141.9, 138.8, 137.2, 134.9, 133.8, 132.4, 130.8, 130.5, 130.3, 129.4, 128.8, 128.3, 127.9, 127.7, 127.6, 126.6, 124.6, 122.4, 121.2, 119.6, 116.9, 70.4, 59.4; IR (KBr): v_{max} 3062, 2954, 2924, 2860, 1728, 1614, 1582, 1530, 1471, 1378, 1306, 1242, 1156, 1120, 1072, 836, 751, 614 cm⁻¹; MS (ESI) m/z 524 (M⁺ + H); HRMS calcd. for C₂₈H₁₉IN₃ (M⁺ + H) 524.0624, found 524.0632.

10-Iodo-9-ⁿ**butyl-14bH-benzimidazo[1,2-c]isoquinolino[2,1-a]quinazoline (3b**): 71% yield; thick liquid; R_f 0.42 (hexane/EtOAc= 70/30); ¹H NMR (500 MHz, CDCl₃): δ 8.15 (dd, J = 1.5 Hz, J = 6.2, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 7.2 Hz, 1H), 7.38 (d, J = 6.6 Hz, 1H), 7.34-7.29 (m,

3H), 7.22 (d, J = 5.9 Hz, 1H), 7.05 (t, J = 6.6 Hz, 1H), 6.99 (t, J = 6.7 Hz, 1H), 6.61 (d, J = 8.1 Hz, 1H), 6.59 (s, 1H), 6.32 (d, J = 7.6 Hz, 1H), 3.09-3.03 (m, 1H), 2.63-2.57 (m, 1H), 1.89-1.82 (m, 1H), 1.73-1.64 (m, 1H), 1.49-1.43 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 147.7, 145.3, 141.1, 134.9, 133.8, 131.3, 129.6, 129.0, 128.4, 16.2, 125.4, 123.3, 122.9, 122.1, 121.6, 120.9, 119.9, 116.3, 111.1, 109.0, 73.7, 69.5, 36.7, 28.5, 22.1, 13.2; IR: v_{max} 3062, 2958, 2928, 2864, 1729, 1616, 1585, 1534, 1473, 1377, 1303, 1240, 1158, 1122, 1072, 919, 838, 751, 618 cm⁻¹; MS (ESI) *m/z* 504 (M⁺ + H); HRMS calcd. for C₂₆H₂₃IN₃ (M⁺ + H) 504.0937, found 504.0931.

10-Iodo-9-cyclohexenyl-14bH-benzimidazo[**1,2-c**]**isoquinolino**[**2,1-a**]**quinazoline** (**3c**): 62% yield; yellow solid (M.P. = 188-190 °C); R_f 0.41 (hexane/EtOAc= 70/30); ¹H NMR (500 MHz, CDCl₃): δ 7.62 (d, J = 7.7 Hz, 1H), 7.41(t, J = 8.1 Hz, 1H), 7.32 (d, J = 7.4 Hz, 3H), 7.19 (t, J = 7.5 Hz, 2H), 7.06 (d, J = 7.4 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 6.68-6.63 (m, 2H), 6.30 (d, J = 7.5 Hz, 1H), 7.42-7.35 (m, 4H), 7.28 (dd, J = 1.5 Hz, J = 6.0, 2H), 7.20-7.12 (m, 2H), 6.94 (d, J = 7.5 Hz, 1H), 5.86 (s, 1H), 1.75-1.42 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 146.9, 145.8, 139.3, 138.0, 136.6, 135.6, 134.6, 133.7, 131.8, 131.1, 128.9, 127.7, 127.2, 125.9, 123.7, 121.5, 119.4, 116.9, 111.6, 109.3, 69.4, 60.3, 28.9, 25.7, 22.8, 21.7; IR (KBr): v_{max} 3064, 2956, 2925, 2860, 1728, 1614, 1582, 1530, 1471, 1378, 1306, 1242, 1156, 1120, 1072, 836, 751, 614 cm⁻¹; MS (ESI) m/z 528 (M⁺ + H); HRMS calcd. for C₂₈H₂₃IN₃ (M⁺ + H) 528.0937, found 528.0931.

13-Iodo-12-phenyl-4b*H***-benzo**[**5,6**][**1,2,4**]**thiadiazino**[**3,4**-*a*]**isoquinoline-6,6-dione** (**4a**): 80% yield; yellow solid (M.P. = 124-126 °C); R_f 0.35 (hexane/EtOAc= 70/30); ¹H NMR (500 MHz, DMSO d_6): δ 9.19 (d, *J* = 11.1 Hz, 1H), 7.61 (t, *J* = 8.7 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 2H), 7.41-7.37 (m, 3H), 7.34-7.27 (m, 3H), 7.06 (t, *J* = 7.9 Hz, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.48 (d, *J* = 7.7 Hz, 1H), 6.19 (d, *J* = 10.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 142.3, 139.7, 139.0, 137.6, 135.7,

130.9, 129.6, 129.2, 128.9, 128.7, 128.6, 128.5, 128.1, 127.7, 127.5, 125.2, 124.0, 70.5, 60.4; IR (KBr): v_{max} 3381, 3055, 1654, 1617, 1589, 1479, 1444, 1380, 1338, 1205, 1167, 1080, 1022, 916, 758, 700, 596, 544 cm⁻¹; MS (ESI) *m/z* 486 (M⁺ + H); HRMS calcd. for C₂₁H₁₆IN₂O₂S (M⁺ + H) 486.9977, found 486.9972.

13-Iodo-12-(4-cyanophenyl)-4bH-benzo[5,6][1,2,4]thiadiazino[3,4-a]isoquinoline-6,6dione

(**4b**): 87% yield; yellow solid (M.P. = 150-152 °C); R_f 0.36 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 7.75 (d, J = 7.5 Hz, 1H), 7.68-7.65 (m, 1H), 7.62-7.59 (m, 1H), 7.46-7.44 (m, 2H), 7.40-7.37 (m, 3H), 7.30-7.28 (m, 3H), 6.91 (t, J = 6.8 Hz, 1H), 6.73 (d, J = 8.3 Hz, 1H), 6.47 (d, J = 12.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 140.2, 138.5, 137.8, 132.8, 132.5, 131.9, 131.6, 131.2, 129.7, 129.4, 127.9, 125.8, 124.2, 122.7, 118.4, 118.2, 112.5, 111.9, 70.8, 60.4; IR (KBr): v_{max} 3388, 3050, 2252, 1650, 1612, 1582, 1478, 1442, 1382, 1335, 1202, 1168, 1084, 1028, 914, 752, 590, 541 cm⁻¹; MS (ESI) *m*/*z* 289 (M⁺ + H); HRMS calcd. for C₂₃H₁₅IN₃O₂S (M⁺ + H) 511.9930, found 511.9938.

13-Iodo-12-cyclohexenyl-4b*H***-benzo**[**5,6**][**1,2,4**]**thiadiazino**[**3,4**-*a*]**isoquinoline-6,6-dione** (4c): 78% yield; yellow solid (M.P. = 140-142 °C); R_f 0.38 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 7.84 (d, *J* = 7.9 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.0 Hz, 1H), 7.30 (t, *J* = 6.6 Hz, 1H), 7.24-7.22 (m, 2H), 7.08 (d, *J* = 8.1 Hz, 1H), 6.18 (d, *J* = 12.3 Hz, 1H), 6.03 (s, 1H), 5.41 (d, *J* = 8.5 Hz, 1H), 1.68-1.41 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 156.4, 144.3, 142.2, 139.3, 136.6, 135.7, 134.5, 131.7, 130.7, 129.2, 129.8, 128.5, 128.0, 126.9, 124.5, 123.6, 70.0, 53.4, 29.6, 25.1, 22.1, 21.4; IR (KBr): *v_{max}* 3421, 3017, 1620, 1588, 1480, 1447, 1378, 1336, 1270, 1169, 1079, 906, 750, 689, 646, 593, 554, 494 cm⁻¹; MS (ESI) *m/z* 491 (M⁺ + H); HRMS calcd. for C₂₁H₂₀IN₂O₂S (M⁺ + H) 491.0290, found 491.0294.

10-Iodo-9-phenyl-14bH-imidazo[1,2-c]isoquinolino[2,1-a]quinazoline (5a): 84% yield; solid (M.P. = 208-210 °C); R_f 0.33 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.41 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.69 (t, J = 6.8 Hz, 2H), 7.57 (d, J = 6.8 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.44-7.38 (m, 4H), 7.42-7.35 (m, 4H), 7.30 (s, 1H), 7.11-7.04 (m, 2H), 7.01 (s, 1H), 6.62 (d, J = 8.3 Hz, 1H), 6.13 (d, J = 6.8 Hz, J, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 145.8, 143.7, 136.5, 135.2, 132.7, 131.5, 131.1, 130.9, 130.8, 128.4, 128.2, 127.9, 127.8, 127.6, 127.2, 127.0, 126.4, 124.8, 123.6, 115.3, 73.3, 70.3; IR (KBr): v_{max} 3425, 3048, 2925, 2858, 1654, 1572, 1558, 1520, 1472, 1441, 1380, 1352, 1293, 1241, 1214, 1132, 1091, 1060, 978, 875, 804, 732, 693, 576, 462 cm⁻¹; MS (ESI) *m/z* 474 (M⁺ + H); HRMS calcd. for C₂₄H₁₇IN₃ (M⁺ + H) 474.0467, found 474 .0462.

10-Iodo-9-ⁿ**butyl-14bH-imidazo[1,2-c]isoquinolino[2,1-a]quinazoline (5b**): 62% yield; thick liquid; R_f 0.32 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.81 (d, J = 6.0 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.82 (t, J = 7.5 Hz, 2H), 7.65-7.63 (m, 2H), 7.46 (t, J = 8.3 Hz, 1H), 7.12 (t, J = 7.5 Hz, 2H), 6.72 (t, J = 7.5 Hz, 1H), 6.43 (d, J = 8.3 Hz, 1H), 1.79-1.66 (m, 2H), 0.84-0.74 (m, 2H), 0.69-0.56 (m, 2H), 0.41 (t, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 147.8, 145.5, 139.1, 134.2, 131.0, 130.1, 128.4, 128.2, 127.6, 126.5, 126.1, 124.3, 123.7, 125.6, 115.9, 115.6, 73.4, 71.3, 36.8, 28.5, 22.1, 13.2; IR : v_{max} 3063, 2957, 2927, 2862, 2229, 1717, 1617, 1529, 1473, 1378, 1309, 1158, 1104, 940, 871, 760, 664 cm⁻¹; MS (ESI) m/z 454 (M⁺ + H); HRMS calcd. for $C_{22}H_{21}IN_3$ (M⁺ + H) 454.0780, found 454.0774.

10-Iodo-9-cyclohexenyl-14bH-imidazo[1,2-c]isoquinolino[2,1-a]quinazoline (5c): 75% yield; solid (M.P. = 168-170 °C); R_f 0.31 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.02 (d, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 6.8 Hz, 1H), 7.39-7.28 (m, 4H), 7.19-7.17 (m, 1H), 7.05-7.04 (m, 1H), 6.48-6.46 (m, 1H), 6.39-6.36 (m, 1H), 5.81 (s, 1H), 2.12-1.45 (m, 8H); ¹³C NMR (75 MHz, CDCl₃): δ 147.5, 142.5, 138.9, 137.1, 133.9, 133.0, 131.9, 130.8, 130.5 128.8, 127.9, 127.7, 127.3, 127.2, 126.6, 124.7, 123.8, 123.3, 121.2, 116.5, 70.4, 69.9, 25.9, 24.9, 21.8, 21.3; IR (KBr): v_{max} 3423, 3045, 2924, 2854, 1702, 1659, 1579, 1551, 1526, 1478, 1448, 1387, 1356, 1290, 1244, 1217, 1138, 1095, 1069, 1037, 976, 920, 872, 809, 758, 735, 695, 579, 532, 465 cm⁻¹; MS (ESI) m/z 478 (M⁺ + H); HRMS calcd. for C₂₄H₂₁IN₃ (M⁺ + H) 478.0780, found 478.0774.

16-Iodo-17-phenyl-isoquinolino[**2**,**1-a**]**quinazolino**[**1**,**2-c**]**quinazolin-6**(**11aH**)-one (**6a**): 49% yield; thick liquid; R_f 0.40 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 9.01 (d, *J* = 8.1 Hz, 1H), 8.36 (dd, *J* = 1.3 Hz, *J* = 6.4, 1H), 7.78 (d, *J* = 6.6 Hz, 1H), 7.67-7.64 (m, 3H), 7.41-7.37 (m, 8H), 7.22-7.19 (m, 2H), 7.11 (s, 1H), 7.00 (d, *J* = 8.5 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 160.7, 151.5, 146.7, 142.1, 138.3, 133.1, 132.2, 131.5, 131.2, 130.5, 130.1, 129.3, 128.9, 128.7, 128.2, 128.0, 127.8, 127.2, 126.5, 125.3, 123.7, 121.4, 120.7, 116.7, 67.9, 66.7, 46.4 ; IR : v_{max} 2925, 1670, 1628, 1550, 1510, 1476, 1338, 1156, 1122, 1078, 1024, 806, 548 cm⁻¹; MS (ESI) *m*/*z* 552 (M⁺ + H); HRMS calcd. for C₂₉H₁₉IN₃O (M⁺ + H) 552.0573, found 552.0578.

16-Iodo-17-cyclohexenyl-isoquinolino[2,1-a]quinazolino[1,2-c]quinazolin-6(11aH)-one (6b): 53% yield; thick liquid; R_f 0.42 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 7.84 (d, J = 8.3 Hz, 1H), 7.44 (d, J = 4.5 Hz, 1H), 7.38-7.20 (m, 3H), 7.16 (s, 1H), 7.14-7.10 (m, 2H), 6.80 (t, J = 7.5 Hz, 1H), 6.54 (s, 1H), 6.47-6.43 (m, 2H), 5.64 (d, J = 4.5 Hz, 1H), 1.83-1.64 (m, 8H). ¹³C NMR

(125 MHz, CDCl₃): δ 160.6, 147.1, 145.1, 144.2, 138.4, 134.7, 133.2, 132.4, 130.1, 129.7, 128.2, 127.7, 127.2, 125.5, 123.5, 122.9, 120.6, 119.8, 116.8, 115.8, 115.3, 67.7, 60.3, 25.8, 24.9, 22.5, 22.1; IR : v_{max} 2921, 1674, 1618, 1518, 1466, 1328, 1154, 1112, 1072, 1026, 807, 545 cm⁻¹; MS (ESI) m/z 556 (M⁺ + H); HRMS calcd. for C₂₉H₂₃IN₃O (M⁺ + H) 556.0886, found 556.0892.

11-Iodo-10-phenyl-15bH-isoquinolino[2,1-a]pyrrolo[2,1-c]quinoxaline (7a): 55% yield; thick liquid; R_f 0.80 (hexane/EtOAc= 95/05); ¹H NMR (300 MHz, CDCl₃): δ 7.82-7.79 (m, 2H), 7.42-7.35 (m, 4H), 7.28 (dd, J = 1.5 Hz, J = 6.0, 2H), 7.20-7.12 (m, 2H), 6.94 (d, J = 7.5 Hz, 1H), 6.73 (dt, J = 1.5 Hz, J = 6.0, 1H), 6.64 (dt, J = 1.5 Hz, J = 6.0, 1H), 6.52 (t, J = 3.0 Hz, 1H), 6.35-6.30 (m, 2H), 5.65 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 143.4, 135.7, 133.6, 129.8, 128.9, 128.8, 127.9, 127.6, 126.2, 124.9, 124.6, 124.3, 123.4, 119.9, 118.9, 116.8, 114.6, 114.5, 110.4, 107.9, 68.2, 56.9; IR : v_{max} 3058, 2924, 2853, 1695, 1607, 1560, 1473, 1453, 1343, 1282, 1240, 1200, 1106, 1049, 1024, 919, 889, 849, 760, 720, 696, 671, 608, 566, 534, 448 cm⁻¹; MS (ESI) *m/z* 473 (M⁺ + H); HRMS calcd. for C₂₅H₁₈IN₂ (M⁺ + H) 473.0515, found 473.0518.

11-Iodo-6,7-dimethyl-10-phenyl-15bH-1soquinolino[**2,1-c**]**quinoxaline** (7b): 59% yield; thick liquid; R_f 0.81 (hexane/EtOAc= 95/05); ¹H NMR (300 MHz, CDCl₃): δ 7.80 (d, J = 6.8 Hz, 2H), 7.28-7.39 (m, 4H), 7.21 (dt, J = 1.5 Hz, J = 6.0, 1H), 7.13 (dt, J = 1.5 Hz, J = 6.0, 2H), 7.05 (s, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.48 (d, J = 3.0 Hz, 1H), 6.30 (d, J = 3.0 Hz, 1H), 6.08 (s, 1H), 5.59 (s, 1H), 2.08 (s, 3H), 1.84 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 143.6, 141.7, 136.2, 135.1, 132.8, 129.7, 128.9, 128.4, 128.7, 127.7, 127.4, 126.2, 125.9, 124.6, 120.2, 116.4, 115.8, 114.3, 109.9, 107.6, 68.2, 57.0, 19.5, 19.0; IR : v_{max} 2924, 2855, 1728, 1660, 1598, 1518, 1446, 1342, 1249, 1157, 1081, 1029, 858, 757, 667, 613 cm⁻¹; MS (ESI) *m*/*z* 501 (M⁺ + H); HRMS calcd. for C₂₇H₂₂IN₂ (M⁺ + H) 501.0828, found 501.0824.

6-Chloro-11-iodo-10-phenyl-15bH-isoquinolino[2,1-a]pyrrolo[2,1-c]quinoxaline (7c): 50% yield; thick liquid; R_f 0.82 (hexane/EtOAc= 95/05); ¹H NMR (300 MHz, CDCl₃): δ 7.78 (d, J = 8.1 Hz, 2H), 7.42-7.35 (m, 4H), 7.30-7.27 (m, 2H), 7.19-7.16 (m, 2H), 6.93 (d, J = 7.4 Hz, 1H), 6.68 (dd, J = 2.1 Hz, J = 6.2 Hz, 1H), 6.52 (t, J = 3.2 Hz, 1H), 6.35 (d, J = 2.3 Hz, 1H), 6.28 (d, J = 2.1 Hz, 1H), 5.63 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 142.8, 134.9, 133.5, 132.5, 130.9, 129.1, 128.8, 128.3, 128.0, 127.8, 126.1, 124.5, 125.1, 119.9, 118.7, 117.3, 115.4, 114.6, 110.8, 108.2, 108.5, 57.2, 56.9; IR : v_{max} 3054, 2922, 2855, 1698, 1600, 1568, 1475, 1459, 1341, 1280, 1244, 1104, 1047, 1022, 914, 885, 843, 762, 724, 692, 675 cm⁻¹; MS (ESI) *m*/*z* 507 (M⁺ + H); HRMS calcd. for C₂₅H₁₇ClIN₂ (M⁺ + H) 507.0125, found 507.0129.

1-Iodo-8-methyl-2-phenyl-13aH-indolo[1,2-c]isoquinolino[2,1-a]quinazoline (**8a**): 64% yield; solid (M.P. = 96-98 °C); R_f 0.76 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.81 (d, J= 9.0 Hz, 1H), 7.75 (d, J = 8.3 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.46-7.44 (m, 4H), 7.33 (t, J = 8.3 Hz, 1H), 7.16 (t, J = 7.5 Hz, 2H), 7.01 (t, J = 6.8 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.88-6.78 (m, 2H), 6.61-6.56 (m, 2H), 6.10(d, J = 8.3 Hz, 1H), 5.6 (d, J = 1.5 Hz, J = 8.3 Hz, 1H), 2.66 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 144.9, 136.9, 135.9, 135.0, 133.4, 131.5, 130.8, 129.5, 129.0, 128.1, 127.4, 126.2, 125.1, 122.6, 122.2, 121.1, 120.0, 118.9, 117.9, 116.6, 69.0, 70.9, 10.7; IR (KBr): v_{max} 3422, 3056, 2924, 2854, 1647, 1603, 1577, 1462, 1382, 1335, 1260, 1218, 1143, 1073, 1030, 939, 892, 756, 698, 665, 628 cm⁻¹; MS (ESI) *m/z* 537 (M⁺ + H); HRMS calcd. for C₃₀H₂₂IN₂ (M⁺ + H) 537.0828, found 537.0822.

1-Iodo-8-methyl-2-ⁿ**butyl-13aH-indolo**[**1,2-c**]**isoquinolino**[**2,1-a**]**quinazoline** (**8b**): 48% yield; thick liquid; R_f 0.78 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.76-7.73 (m, 2H), 7.71-7.70 (m, 1H), 7.56 (d, J = 7.5 Hz,1H), 7.22-7.20 (m, 2H), 7.07-7.00 (m, 2H), 6.92-6.98 (m, 2H), 6.59 (d, J = 6.8 Hz, 1H), 6.47 (s, 1H), 6.30 (d, J = 7.5 Hz, 1H), 3.09-2.99 (m, 1H), 2.70 (s, 3H), 2.59-2.50 (m, 1H), 1.90-1.75 (m, 1H), 1.69-1.58 (m, 1H), 1.46-1.35 (m, 2H), 0.92 (t, J = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 146.1, 140.2, 134.1, 132.5, 130.8, 129.4, 128.8, 128.6, 127.7, 126.4, 125.4, 122.7, 121.2, 119.9, 119.0, 118.8, 116.6, 110.8, 108.6, 72.3, 71.1, 37.5, 29.7, 23.0, 13.9, 10.7; IR : v_{max} 3371, 3054, 2955, 2924, 2856, 1692, 1601, 1462, 1380, 1358, 1334, 1260, 1214, 1160, 1129, 1076, 1016, 980, 899, 867, 814, 740, 631, 587, 542, 460 cm⁻¹; MS (ESI) *m/z* 517 (M⁺ + H); HRMS calcd. for C₂₈H₂₆IN₂ (M⁺ + H) 517.1141, found 517.1135.

2-Cyclohexenyl-1-iodo-8-methyl-13aH-indolo[1,2-c]isoquinolino[2,1-a]quinazoline (8c): 62% yield; thick liquid; R_f 0.75 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.75 (d, J = 7.7 Hz, 1H), 7.63-7.53 (m, 1H), 7.41-7.36 (m, 1H), 7.28-7.18 (m, 4H), 7.00 (t, J = 7.7 Hz, 2H), 6.92 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.62-6.60 (m, 1H), 6.47 (s, 1H), 6.27 (d, J = 7.5 Hz, 1H), 5.29 (s, 1H), 2.69 (s, 3H), 1.66-1.56 (m, 8H); ¹³C NMR (75 MHz, CDCl₃): δ 147.2, 137.1, 135.9, 134.9, 133.5, 130.6, 129.7, 128.5, 128.2, 127.4, 126.9, 125.0, 123.2, 122.4, 121.9, 120.8, 119.8, 118.8, 117.1, 108.6, 70.5, 68.6, 29.0, 25.9, 22.8, 21.8, 10.7; IR : v_{max} 3428, 3052, 2928, 2850, 1646, 1605, 1572, 1468, 1380, 1332, 1261, 1219, 1142, 1076, 1039, 932, 898, 759, 695, 622 cm⁻¹; MS (ESI) m/z 541 (M⁺ + H); HRMS calcd. for C₃₀H₂₆IN₂ (M⁺ + H) 541.1141, found 541.1145.

7-Iodo-6-phenyl-11bH-indolo[2,1-c]isoquinolino[2,1-a]quinoxaline (9a): 58% yield; thick liquid; $R_f 0.81$ (hexane/EtOAc= 95/05); ¹H NMR (300 MHz, CDCl₃): δ 8.10 (d, J = 8.3 Hz, 1H), 7.85 (t, J= 8.3 Hz, 3H), 7.77 (d, J = 7.5 Hz, 1H), 7.42-7.27 (m, 8H), 7.14 (t, J = 6.0 Hz, 1H), 7.03 (d, J = 7.5 Hz, 1H), 6.86 (t, J = 6.0 Hz, 1H), 6.74-6.71 (m, 1H), 6.44 (d, J = 8.3 Hz, 1H), 5.80 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 143.6, 133.5, 132.7, 132.5, 132.0, 131.1, 129.0, 128.5, 127.9, 127.8, 127.6, 127.1, 125.1, 124.7, 123.9, 122.7, 121.1, 121.3, 120.5, 119.2, 116.8, 116.4, 112.3, 110.8, 102.4, 60.4, 57.9; IR : v_{max} 3382, 3057, 2924, 2854, 1668, 1596, 1498, 1454, 1395, 1361, 1279, 1220, 1111, 1061, 1024, 886, 848, 749, 694, 667, 614, 573, 527, 440 cm⁻¹; MS (ESI) m/z 523 (M⁺ + H); HRMS calcd. for C₂₉H₂₀IN₂ (M⁺ + H) 523.0671, found 523.0675.

7-Iodo-6-ⁿ**butyl-11bH-indolo[2,1-c]isoquinolino[2,1-a]quinoxaline (9b**): 52% yield; thick liquid; $R_f 0.82$ (hexane/EtOAc= 95/05); ¹H NMR (300 MHz, CDCl₃): δ 7.93 (t, J = 7.5 Hz, 2H), 7.51 (d, J= 7.5 Hz, 1H), 7.45-7.37 (m, 2H), 7.28-7.22 (m, 3H), 7.19-7.13 (m, 5H), 7.0 (d, J = 7.5 Hz, 2H), 5.92 (s, 1H), 5.56 (s, 1H), 2.01 (d, J = 6.8 Hz, 2H), 0.97-0.87 (m, 4H), 0.51 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 144.5, 139.4, 133.9, 133.3, 128.6, 126.7, 127.2, 124.7, 123.3, 122.4, 121.2, 120.9, 123.5, 117.7, 116.4, 114.7, 112.2, 110.6, 100.8, 99.5, 57.4, 58.1, 32.0, 29.1, 21.7, 13.5; IR : v_{max} 3061, 2956, 2927, 2865, 1714, 1597, 1496, 1455, 1380, 1223, 1049, 936, 784, 610, 426 cm⁻¹; MS (ESI) m/z 503 (M⁺ + H); HRMS calcd. for C₂₇H₂₄IN₂ (M⁺ + H) 503.0984, found 503.0990.

13-Iodo-12-phenyl-4b*H*,6*H*-benzo[4,5][1,3]oxazino[2,3-*a*]isoquinoline (10a): 74% yield; thick liquid; R_f 0.52 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.65 (d, J = 7.9 Hz, 1H), 7.44 (t, J = 7.9 Hz, 1H), 7.31 (t, J = 7.9 Hz, 2H), 7.28-7.26 (m, 3H), 7.12-7.18 (m, 2H), 6.97 (d, J = 6.9 Hz, 1H), 6.91 (t, J = 7.9 Hz, 1H), 6.73 (t, J = 6.9 Hz, 1H), 6.28 (d, J = 8.9 Hz, 1H), 5.98 (s, 1H), 5.85 (d, J = 14.9 Hz, 1H), 5.24 (d, J = 14.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 144.2, 140.6, 139.8, 133.3, 131.4, 130.5, 129.9, 129.6, 128.4, 128.2, 127.8, 126.9, 126.8, 126.1, 125.5, 125.0, 124.4, 123.8, 84.3, 74.4, 67.8; IR : v_{max} 3379, 3060, 2931, 1695, 1652, 1619, 1598, 1498, 1450, 1377, 1337, 1268, 1216, 1156, 1028, 835, 756, 697, 664, 640 cm⁻¹; MS (ESI) *m/z* 438 (M⁺ + H); HRMS calcd. for C₂₂H₁₇INO (M⁺ + H) 438.0355, found 438.0349.

13-Iodo-12-ⁿ**butyl-4b***H*,6*H*-benzo[4,5][1,3]oxazino[2,3-*a*]isoquinoline (10b): 63% yield; thick liquid; R_f 0.51 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.3 Hz, 1H), 7.10 (t, J = 8.8 Hz, 1H), 7.01 (d, J = 6.4 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.20 (s, 1H), 5.59 (s, 1H), 5.45 (d, J = 14.6 Hz, 1H), 4.97 (d, J = 14.6 Hz, 1H), 2.16 (t, J = 6.4 Hz, 1H), 2.10 (t, J = 7.0 Hz, 1H), 1.13-1.01 (m, 2H), 0.8-0.9 (m, 2H), 0.56 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 144.5, 141.2, 133.5, 130.9, 129.5, 129.3, 126.8, 126.1, 125.2, 125.7, 84.2, 74.2, 67.5, 36.5, 29.7, 22.1, 13.6; IR : v_{max} 3444, 2955, 2925, 2856, 1711, 1656, 1584, 1553, 1486, 1458, 1378, 1293, 1242, 1202, 1130, 1019, 916, 758 cm⁻¹; MS (ESI) *m/z* 418 (M⁺ + H); HRMS calcd. for C₂₀H₂₁INO (M⁺ + H) 418.0668, found418.0662.

13-Iodo-8-methyl-12-phenyl-4b*H*,6*H*-benzo[4,5][1,3]oxazino[2,3-*a*]isoquinoline (10c): 66% yield; yellow solid (M.P. = 136-138°C) thick liquid; R_f 0.50 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 7.64 (d, *J* = 7.7 Hz, 1H), 7.38-7.46 (m, 2H), 7.29-7.26 (m, 4H), 7.19-7.13 (m, 2H), 6.77 (s, 1H), 6.53 (d, *J* = 8.1 Hz, 1H), 6.17 (d, *J* = 8.3 Hz, 1H), 5.93 (s, 1H), 5.21 (d, *J* = 15.1 Hz, 1Hz, 1Hz, 1Hz) (d, *J* = 8.3 Hz, 1Hz), 5.93 (s, 1Hz), 5.21 (d, *J* = 15.1 Hz), 6.77 (s, 1Hz), 6.53 (s, 1Hz), 6.17 (s, 1Hz), 6.17 (s, 1Hz), 5.93 (s, 1Hz), 5.21 (s, 1Hz)

1H), 5.04 (d, J = 14.9 Hz, 1H), 2.19 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 144.8, 140.2, 138.4, 133.8, 132.4, 131.8, 130.6, 129.8, 129.1, 128.6, 128.3, 127.9, 126.8, 126.2, 125.2, 124.9, 123.5, 84.5, 73.8, 67.9, 14.2; IR (KBr): v_{max} 3435, 3058, 2923, 1698, 1652, 1620, 1496, 1446, 1377, 1338, 1276, 1217, 1156, 1068, 1029, 880, 812, 759, 697, 666, 637, 528 cm⁻¹; MS (ESI) m/z 452 (M⁺ + H); HRMS calcd. for C₂₃H₁₉INO (M⁺ + H) 452.0511, found 452.0516.

10-Iodo-9-phenyl-14bH-isoquinolino[2,1-a]tetrazo[1,5-c]quinazoline (**11a**): 62% yield; solid (M.P. = 212-214 °C); R_f 0.28 (hexane/EtOAc= 60/40); ¹H NMR (300 MHz, CDCl₃): δ 8.01 (d, J = 7.6Hz, 1H), 7.92 (d, J = 3.8 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.46-7.44 (m, 4H), 7.36 (d, J = 3.8 Hz, 1H), 7.21 (s, 1H), 7.06 (t, J = 8.1 Hz, 1H), 7.46-7.44 (m, 4H), 7.36 (d, J = 3.8 Hz, 1H), 7.06 (t, J = 8.1 Hz, 1H), 7.46-7.44 (m, 4H), 7.36 (d, J = 3.8 Hz, 1H), 7.21 (s, 1H), 7.06 (t, J = 8.1 Hz, 1H), 6.55 (d, J = 8.3 Hz, 1H), 6.50 (d, J = 7.6 Hz, 1H); ¹³C NMR (125 MHz, DMSO d₆): δ 154.8, 147.6, 139.1, 137.1, 136.8, 131.6, 131.2, 130.6, 130.3, 129.8, 129.4, 128.6, 127.9, 127.7, 127.1, 124.9, 124.2, 120.9, 117.4, 70.5, 54.8; IR (KBr): v_{max} 3044, 2920, 2852, 1648, 1575, 1518, 1482, 1431, 1382, 1349, 1290, 1248, 1234, 1138, 1090, 1062, 974, 885, 814, 698, 575 cm⁻¹; MS (ESI) *m*/*z* 476 (M⁺ + H); HRMS calcd. for C₂₂H₁₅ IN₅ (M⁺ + H) 476.0372, found 476.0378.

4-(10-Iodo-14bH-isoquinolino[2,1-a]tetrazolo[1,5-c]quinazolin-9-yl)benzonitrile (11b): 72% yield; solid (M.P. = 172-174 °C); R_f 0.29 (hexane/EtOAc= 60/40); ¹H NMR (300 MHz, CDCl₃): δ 7.93 (d, J = 7.9 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.51-7.48 (m, 3H), 7.39-7.36 (m, 4H), 7.28 (d, J = 6.7 Hz, 1H), 6.82 (d, J = 7.0 Hz, 2H), 6.60 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 155.3, 147.9, 139.2, 138.9, 138.1, 136.6, 131.9, 131.5, 130.8, 130.6, 130.3, 129.7, 129.1, 128.5, 128.1, 127.6, 124.6, 120.9, 117.4, 70.3, 59.8; IR (KBr): v_{max} 3042, 2928, 2850, 2254, 1651, 1576, 1527, 1476, 1380, 1356, 1294, 1138, 1097, 1062, 974, 876, 732, 695, 468 cm⁻¹; MS (ESI) *m/z* 501 (M⁺ + H); HRMS calcd. for C₂₃H₁₄IN₆ (M⁺ + H) 501.0325, found 501.0329.

5. Diversification of Products

The scope and synthetic utility of this newly developed EIBC approach was enhanced by diversifying branch-1 via metal catalyzed cross- coupling reactions. For instance, compound **1a** was subjected to Sonogashira, Stille, Heck, Suzuki, Kumada and Negishi cross-coupling reaction conditions to afford products **1aa**, **1ab**, **1ac**, **1ad**, **1ae** and **1af**; respectively, in moderate to good yields.

a) Sonogashira coupling $(1a \rightarrow 1aa)$:

To a 25 mL round bottom flask a solution of **1a** (0.050 g, 1 eq) in DMF (2.5 mL) was added Et_3N (5 eq) and purged with dry nitrogen for 30 minutes. Catalysts $PdCl_2(PPh_3)_2$ (0.004 g, 0.05 eq) and CuI (0.001 g, 0.05 eq) were introduced into the flask under nitrogen atmosphere at room temperature. To the above flask phenyl acetylene (0.012 g, 1.1 eq) was added drop wise. The reaction mixture was heated to 80 °C and stirred for 12 h. The reaction mixture was cooled to room temperature and filtered through a short SiO₂ pad followed by addition of water to remove DMF and extracted with DCM (10 mL x 3). Work up and purification by column chromatography using hexane/ethyl acetate (70/30) as eluent to afford **1aa** (94%) as a pure product.

12-Phenyl-13-(phenylethynyl)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1aa): 94% yield; solid (M.P. = 106-108 °C); R_f 0.31 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.03-7.99 (m, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.56-7.47 (m, 5H), 7.39-7.30 (m, 8H), 7.07-7.01 (m, 2H), 6.49 (s, 1H), 6.38-6.36 (m, 1H), 6.27 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 163.3, 145.4, 142.8, 134.5, 133.2, 132.4, 132.2, 131.5, 130.8, 130.0, 129.4, 129.1, 128.9, 128.5, 128.3, 128.2, 128.0, 127.6, 124.8, 123.7, 123.2, 94.5, 86.4,67.3; IR (KBr): v_{max} 3199, 3055, 2923, 2196, 1672, 1599, 1552, 1517, 1480, 1349, 1306, 1160, 1071, 1026, 908, 756, 727, 692, 641, 542, 430cm⁻¹; MS (ESI) m/z 375 (M⁺ + H); HRMS calcd. for C₂₆H₁₉N₂O (M⁺ + H) 375.1497, found 375.1491.

b) Stille coupling $(1a \rightarrow 1ab)$:

To a 25 mL round bottom flask a solution of **1a** (0.060 g, 1 eq) in DMF (2.5 mL) was added tri ^{*n*} butyl(prop-1-en-2-yl) stannane (54 mg, 1.2 eq), Pd(PPh₃)₄ (6mg, 0.04 eq), CuI (1.2 mg, 0.05 eq) , CsF (0.020 g, 2 eq) and purged with dry nitrogen for 30 minutes. The reaction mixture was heated to 100 °C and stirred for 8 hr. The reaction mixture was cooled to room temperature and filtered through a short SiO₂ pad followed by addition of water to remove DMF and extracted with DCM (10 mL x 3). Work up and purification by column chromatography by using hexane/ethyl acetate (70/30) as eluent to afford **1ab** (72%) as a pure product.

12-Phenyl-13-(prop-1-en-2-yl)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1ab): 72% yield; thick liquid ; R_f 0.32 (hexane/EtOAc= 70/03); ¹H NMR (300 MHz, CDCl₃): δ 7.95 (d, J = 9.1 Hz, 1H), 7.46-7.30 (m, 9H), 7.04-6.93 (m, 2H), 6.42 (d, J = 8.3 Hz, 1H), 6.26 (s, 1H), 6.15 (s, 1H), 5.32 (s, 1H), 5.04 (s, 1H), 1.68 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 163.6, 143.8, 140.4, 136.6, 133.5, 133.1, 129.4, 129.1, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.1, 127.8, 126.6, 124.2, 123.8, 121.2, 119.6, 117.7, 67.6, 24.1; IR : v_{max} 3192, 3054, 2928, 1674, 1594, 1559, 1502, 1480, 1348, 1306, 1164, 1072, 1024, 904, 751, 696, 646, 542, 434 cm⁻¹; MS (ESI) *m/z* 365 (M⁺ + H); HRMS calcd. for C₂₅H₂₁N₂O (M⁺ + H) 365.1654, found 365.1661.

c) Heck coupling $(1a \rightarrow 1ac)$:

To a 25 mL round bottom flask a solution of **1a** (0.050 g, 1 eq) in DMF(2.5 mL) was added styrene (.0042 g, 3 eq), Pd(OAc)₂ (2 mg, 0.05 eq), PPh₃ (0.006 g, 0.1 eq), Bu₄NBr (0.036 g, 1 eq), Na₂CO₃ (0.035 g, 3 eq) and purged with dry nitrogen for 30 minutes. The reaction mixture was heated to 100 °C and stirred for 8 hr. The reaction mixture was cooled to room temperature and filtered through a short SiO₂ pad followed by addition of water to remove DMF and extracted with DCM (10 mL x 3). Work up and purification by column chromatography by using hexane/ethyl acetate (70/30) as eluent to afford **1ac** (86%) as a pure product.

12-Phenyl-13-(styryl)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1ac): 86% yield; solid (M.P. = 208-206 °C); R_f 0.31 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 7.96-7.93 (m, 1H), 7.70-7.63 (m, 4H), 7.55-7.52 (m, 1H), 7.49-7.43 (m, 4H), 7.39-7.36 (m, 2H), 7.33-7.23 (m, 6H), 7.02-6.99 (m, 2H), 6.39-6.36 (m, 2H), 6.20 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 163.1, 145.2, 142.6, 134.9, 134.3, 133.0, 132.2, 131.9, 131.7, 131.3, 130.6, 129.8, 129.2, 128.9, 128.7, 128.3, 128.1, 127.9, 127.8, 127.4, 126.5, 126.2, 125.9, 125.1, 124.6, 123.5, 123.0, 67.1 ; IR (KBr): v_{max} 3190, 3052, 2928, 2198, 1678, 1590, 1558, 1512, 1484, 1345, 1307, 1162, 1074, 1025, 902, 758, 720, 696, 646, 543, 435 cm⁻¹; MS (ESI) *m/z* 427 (M⁺ + H); HRMS calcd. for C₃₀H₂₃N₂O (M⁺ + H) 427.1810, found 427.1815.

d) Suzuki coupling (1a \rightarrow 1ad):

To a 25 mL round bottom flask a solution of **1a** (0.050 g, 1 eq) in DMF(2.5 mL) and H₂O (0.5 mL) was added K₂CO₃ (0.031 g, 2 eq) and purged with dry nitrogen for 30 minutes. To the above flask *p*-bromobenzene boronic acid (0.033 g, 1.5 eq) and PdCl₂(PPh₃)₂ (0.008 g, 0.1 eq) were introduced under nitrogen atmosphere at room temperature. The reaction mixture was heated to 100 °C and stirred for 8 hr. The reaction mixture was cooled to room temperature and filtered through a short SiO₂ pad followed by addition of water to remove DMF and extracted with DCM (10 mL x 3). Work up and purification by column chromatography using hexane/ethyl acetate (70/30) as eluent to afford **1ad** (88%) as a pure product.

12-Phenyl-13-(4-bromophenyl)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1ad): 88% yield; thick liquid; R_f 0.30 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 8.02-7.99 (m, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.55-7.44 (m, 5H), 7.39-7.30 (m, 7H), 7.06-7.02 (m, 2H), 6.49 (s, 1H), 6.38-6.35 (m, 1H), 6.27 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 163.5, 143.7, 138.5, 136.6, 134.7, 133.5, 133.3, 132.1, 131.8, 131.7, 131.0, 130.1, 128.6, 128.3, 128.1, 127.9, 127.4, 126.9, 126.6, 124.5, 67.7 ; IR : 3182, 3055, 2927, 1679, 1600, 1519, 1480, 1356, 1317, 1254, 1163, 1123, 1020, 918, 800, 754, 720, 698, 597, 549 v_{max} cm⁻¹; MS (ESI) *m/z* 479 (M⁺ + H); HRMS calcd. for C₂₈H₂₀BrN₂O (M⁺ + H) 479.0759, found 479.0765.

e) Kumada coupling (1a \rightarrow 1ae):

To a 25 mL round bottom flask a solution of **1a** (0.050 g, 1 eq) in THF (3 ml) was added $Ni(PPh_3)_2Cl_2$ (0.008 g, 0.1 eq) and purged with dry nitrogen for 30 minutes. To the above flask CH₃MgI (0.055 g, 3 eq) was introduced under nitrogen atmosphere at room temperature. The reaction mixture was warmed to 80 °C and stirred for 12 h. The reaction mixture was cooled to room temperature and filtered through a short SiO₂ pad and the filtrate was concentrated. The residue was purified by column chromatography by using hexane/ethyl acetate (70/30) as eluent to afford **1ae** (64%) as a pure product.

12-Phenyl-13-methyl-4bH-isoquinolino[**2,1-a**]**quinazolin-6(5H)-one (1ae**): 64% yield; solid (M.P. = 178-180 °C); R_f 0.30 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 7.96-7.94 (m, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 9.0 Hz, 2H), 7.35-7.29 (m, 5H), 7.25-7.23 (m, 1H), 7.00-7.01 (m, 2H), 6.39-6.37 (m, 1H), 6.18 (s, 1H), 1.59 (s, 3H); ¹³C NMR (125MHz, DMSO d₆): δ 161.6, 144.1, 141.8, 143.8, 134.8, 132.8, 130.8, 130.0, 129.0, 128.1, 127.1, 125.7, 125.5, 123.3, 119.7,

116.4, 66.9, 30.6 ; IR (KBr): v_{max} 3445, 3293, 3146, 2926, 2853, 1634, 1494, 1442, 748 cm⁻¹; MS (ESI) m/z 339 (M⁺ + H); HRMS calcd. for C₂₃H₁₉N₂O (M⁺ + H) 339.1497, found 339.1452.

f) Negishi coupling $(1a \rightarrow 1af)$:

To a 25 mL round bottom flask a solution of **1a** (0.050 g, 1 eq) in DMF (2.5 ml) was added $Pd(OAc)_2$ (2 mg, 0.05 eq), Bu_4NBr (0.036 g, 1 eq) purged with dry nitrogen for 30 minutes. To the above flask benzene PhZnCl (0.023 g, 1.2 eq) was introduced under nitrogen atmosphere at room temperature. The reaction mixture was stirred at rt for 12 hrs then the reaction mixture was cooled to room temperature and filtered through a short SiO₂ pad followed by the addition of water to remove DMF and extracted with DCM (10 mL x 3). Work up and purification by column chromatography column chromatography by using hexane/ethyl acetate (70/30) as eluent to afford **1af** (68%) as a pure product.

12,13-Diphenyl-4bH-isoquinolino[**2,1-a**]**quinazolin-6(5H)-one (1af**): 68% yield; thick liquid; R_f 0.30 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 7.95 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 6.9 Hz, 2H), 7.31-7.19 (m, 7H), 7.14-7.08 (m, 3H), 7.05-6.97 (m, 4H), 6.92 (t, J = 7.5 Hz, 1H), 6.39 (d, J = 7.4 Hz, 1H), 6.26 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 170.7, 163.7, 143.9, 138.7, 136.9, 134.9, 133.5, 132.3, 132.0, 131.9, 131.2, 130.3, 130.9, 128.8, 128.5, 128.2, 128.0, 127.8, 127.6, 127.2, 126.8, 124.7, 122.0, 67.8; IR : v_{max} 3180, 3053, 2923, 1673, 1602, 1516, 1480, 1403, 1358, 1310, 1255, 1161, 1122, 1023, 910, 801, 756, 727, 699, 644, 594, 541, 424cm⁻¹; MS (ESI) *m/z* 401 (M⁺ + H); HRMS calcd. for C₂₈H₂₁N₂O (M⁺ + H) 401.1654, found 401.1662.

6. Undesired Products Obtained During Optimization Studies and Characterization Data:

The following undesired products were observed in some cases during optimization studies. In case of SBA-1 prolonging the reaction for 8 hrs, **1a**' was observed as a major product. In case of SBA-2 under the reaction condition-4, **2a**' was the major product. In case of SBA-7 under the reaction condition-1, **7a**' was the major product. In case of SBA-9 under the reaction condition-1, intermediate dihydroindoloquinoxaline **9a**' was the major product.

13-Iodo-12-phenyl-6H-isoquinolino[**2**,**1-a**]**quinazolin-6-one (1a')**: 76% yield; solid (M.P. = 94-96 °C); R_f 0.24 (hexane/EtOAc= 70/30); ¹H NMR (300 MHz, CDCl₃): δ 7.93 (dd, *J* = 1.5 Hz, *J* = 8.3, 1H), 7.70-7.65 (m, 2H), 7.44-7.37 (m, 5H), 7.31 (dd, *J* = 3.7 Hz, 2H), 7.02 (t, *J* = 9.0 Hz, 1H), 6.85 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 167.9, 154.1, 151.2, 138.3, 136.8, 133.5, 132.3, 131.5, 130.6, 130.1, 129.3, 128.7, 127.9, 127.5, 127.1, 126.8, 126.4, 122.1, 117.8, 67.9 ; IR (KBr): v_{max} 2925, 1672, 1628, 1554, 1518, 1474, 1336, 1162, 1130, 1062, 1045, 806, 729, 686, 542 cm⁻¹; MS (ESI) *m/z* 449 (M⁺ + H); HRMS calcd. for C₂₂H₁₄IN₂O (M⁺ + H) 449.0151, found 449.0158.

5-Iodo-6-phenylbenzo[4, 5]imidazo[2, 1-a]isoquinoline (2a'): 71% yield; solid (M.P. = 194-196 °C); R_f 0.52 (hexane/EtOAc= 90/10); ¹H NMR (300 MHz, CDCl₃): δ 8.91-8.88 (m, 1H), 8.20-8.17 (m, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.78-7.69 (m, 5H), 7.49-7.46 (m, 2H), 7.37 (t, J = 7.3 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H), 5.83 (d, J = 8.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 147.4, 143.6, 139.6, 138.4, 132.4, 130.9, 130.3, 129.8, 129.5, 128.6, 125.0, 124.5, 122.4, 121.6, 119.5, 113.9, 86.9; IR (KBr): v_{max} 2928, 2854, 1726, 1631, 1593, 1452, 1372, 1232, 1150, 1118, 914, 740, 672, 568 cm⁻¹; MS (ESI) m/z 421 (M⁺ + H); HRMS calcd. for C₂₁H₁₄N₂I (M⁺ + H) 421.0202, found 421.0212.

4-[(2-phenyl-1-ethynyl)phenyl]pyrrolo[**1**,**2**-*a*]**quinoxaline** (7*a*'): 58% yield; thick liquid; R_{*f*} 0.48 (hexane/EtOAc= 95/05); ¹H NMR (300 MHz, CDCl₃): δ 8.08 (dd, *J* = 1.4 Hz, *J* = 6.7, 1H), 8.01-8.00 (m, 1H), 7.91 (d, *J* = 8.2 Hz, 1H), 7.73-7.70 (m, 2H), 7.56-7.53 (m, 1H), 7.50-7.46 (m, 3H), 7.19-7.12 (m, 3H), 7.05-7.04 (m, 2H), 6.88-6.87 (m, 1H), 6.79-6.78 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 154.2, 140.1, 136.0, 132.9, 131.3, 130.2, 129.2, 128.9, 128.2, 127.9, 127.6, 127.3, 125.8, 125.2, 123.1, 122.5, 114.2, 113.7, 113.9, 109.0; IR (KBr): *v_{max}* 3050, 2926, 2858, 1690, 1605, 1564, 1475, 1346, 1284, 1205, 1108, 1046, 768, 698, 618, 560, 445 cm⁻¹; MS (ESI) *m/z* 345 (M⁺ + H); HRMS calcd. for C₂₅H₁₇N₂ (M⁺ + H) 345.1392 found 345.1385.

6-[(2-phenyl-1-ethynyl)phenyl]-5,6-dihydroindolo[1,2-*a***]quinoxaline (9***a'***): 65% yield; thick liquid; R_f 0.78 (hexane/EtOAc= 95/05); ¹H NMR (300 MHz, CDCl₃): \delta 8.07 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 9.1 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 8.3 Hz, 2H), 7.23-7.13 (m, 3H), 7.07-7.02 (m, 1H), 6.93-6.84 (m, 4H), 6.77 (s, 1H), 6.66 (s, 1H), 6.52 (d, J = 9.1 Hz, 1H), 6.42 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): \delta 143.5, 133.8, 133.4, 132.4, 131.9, 129.8, 128.9, 128.5, 128.1, 127.9, 127.7, 126.1, 125.0, 124.6, 123.8, 122.6, 121.1, 120.4, 119.1, 118.5, 116.7, 116.3, 112.2, 102.3, 57.8; IR (KBr): v_{max} 3384, 2924, 2852, 1596, 1490, 1451, 1392, 1274, 1224, 1066, 1022, 840, 698, 664, 615, 526 cm⁻¹; MS (ESI)** *m/z* **397 (M⁺ + H); HRMS calcd. for C₂₉H₂₁N₂ (M⁺ + H) 397.1705, found 397.1712.**

7. Enantioselective Experiment and HPLC Chromatograms

The EIBC approach could be made enantioselective under the catalysis of chiral Brønsted acid with the realm of iodine cyclization. To our satisfaction, when substrate 2-(phenylethynyl) benzaldehyde Xa treated with 2-amino-5-bromobenzamide 1(I) in the presence of 5 mol% (S)-3,3'-

bis (9-anthracenyl)-1,1'-binaphthyl-2,2'-diylhydrogenphosphate in DCE followed by addition of 1.3 eq K_2CO_3 and 1.2 eq I_2 , the product **1b** was obtained in 60% yield with 90% ee.

Experimental procedure: To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent 1 (I) (0.030 g, 1 eq) and 2-ethynylbenzaldehyde Xa (1 eq) in DCE (0.09 M) followed by the of $4A^{\circ}$ MS % (S)-3,3'-bis(9-anthracenyl)-1,1'-binaphthyl-2,2'addition and 5-mol divlhydrogenphosphate¹. The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at -5 °C for 32 hrs. After the prescribed time, the reaction mixture was cooled to -15 °C followed by the addition of K_2CO_3 (1.3 eq) and iodine (1.2 eq) in a sequential manner and allowed to stir for 2 hrs. The reaction mixture was quenched by the addition of aq.sodium thiosulphate solution, diluted with 5 mL water and extracted with DCM (10 mL x 3). Work up and purification by column chromatography using MeOH/DCM as an eluent to afford analytically pure compound in 60% yield with 90% ee. HPLC conditions: OD-H column, n-hexane/2-propanol = 80/20, flow rate 0.8 mL/min; $\lambda = 360$ nm; t_{minor} = 9.12, t_{maior} = 12.64; $[\alpha]_D^{28.4} = -156.8$ (c = 0.25, CHCl₃)

J. Itoh, K. Fuchibe, T. Akiyama, Angew. Chem., Int. Ed., 2006, 45, 4796–4798.

PDA Ch3 360nm 3nm

Peak#	Ret. Time	' Area	Area %
1	8.24	32362	2.00
2	9.07	752373	46.39
3	12.60	800289	49.35
4	18.23	36770	2.27
Total		1621795	100.00

PDA Ch2 360nm 5nm

Peak#	Ret. Time	Area	Area %
1	9.12	56771	4.52
2	10.54	13880	1.11
3	11.35	124908	9.95
4	12.64	1060073	84.43
Total		1255632	100.00

8. Anti mycobacterial activity

Tuberculosis is a foremost destroyer worldwide causing an estimated 1.4 million deaths per year.² The re-emergence of TB as a public health threat emphasizes a need to develop novel antimycobacterial agents with lesser toxicity. Some of poly heterocyclic compounds resulted through EIBC resembles structures of reported anti-tubercular agents.³ Therefore, compounds accessed through EIBC were evaluated for their anti-mycobacterial activities. The assay was performed with *Mycobacterium.smegmatis* (MC²155) as surrogate model for screening drugs against mycobacterium⁴ using growth inhibition assay by broth dilution method. The results were analyzed as the percentage of growth inhibition and from dose response curves MIC of all compounds are calculated and presented in Table 1. The screening results revealed that the compounds **7a**, **7b**, and **8a** show excellent anti-mycobacterial activities in a reference to isoniazid and rifampicin.

Sl. No	product	MIC µg/mL	Sl. N o.	product	MIC ^{a,b,c,d} µg/mL
1	1a	>50	11	4c	>50
2	1b	>50	12	5a	>50
3	1c	>50	13	5c	>50
4	1d	>50	14	7a	11.15 ± 0.24
5	1f	>50	15	7b	6.14±0.03
6	2a	>50	16	8 a	7.70±0.58
7	3a	>50	17	9a	31.04±0.17
8	3c	30.49±2.06	18	10a	>50
9	4 a	49.59±2.44	19	10b	23.47±0.72
10	4b	>50	20	11a	47.82±4.41
*	Rifampicin	1.87	*	Isoniazid	15.25

Table 1: Anti-mycobacterial activities of selected compounds

^{*a*}*Mycobacterium.smegmatis* ATCC 14468 (MC²155). ^{*b*}MIC is the concentration of compounds inhibiting growth by 90%. ^{*c*}50 μ g/mL of compound concentration is considered as showing no significant activity. ^{*d*}All experiments were carried out in triplicates and results were reported as \pm SD.

Next, we have evaluated cytotoxicity effect of the same compounds using cell-based assays to shed light on selectivity issues. The *in vitro* cell cytotoxicity assays were performed on four different human cancer cell lines such as A549 (human lung carcinoma epithelial), HeLa (human

² WHO global health observatory data report. Geneva: GlobalTuberculosis Program; 2012

a) L. Ballell, R. H. Bates, R. J. Young, D. Alvarez-Gomez, E. Alvarez-Ruiz, V. Barroso, D. Blanco, B. Crespo, J. Escribano, R. González, S. Lozano, S. Huss, A. Santos-Villarejo, J. J. Martín-Plaza, A. Mendoza, M. J. Rebollo-Lopez, M. Remuiñan-Blanco, J. L. Lavandera, E. Pérez-Herran, F. J. Gamo-Benito, J. F. García-Bustos, D. Barros, J. P. Castro, N. Cammack, *ChemMedChem*, 2013, *8*, 313-321; b) L. G. Dover, G. D. Coxon, *J. Med. Chem.* 2011, *54*, 6157-6165.

^{a) M. Altaf, C. H. Miller, D. S. Bellows, R. Toole,} *Tuberculosis* 2010, 90, 333-337; b) C. O. Esimone, C. S. Nworu, E. B. Onuigbo, J. U. Omeje, K. L. Nsirim, J. C. Ogbu, M. I. Ngwu, K. F. Chah, *International journal of Green Pharmacy* 2009, 3, 201-205; c) V. Chaturvedi, N. Dwivedi, R. P. Tripathi, S. Sinha, J. Gen. Appl. Microbiol., 2007, 53, 333-337.

epithelial cervical cancer), DU145 (prostate cancer) and MCF-7 (breast cancer). The selectivity index (SI, IC_{50} /MIC ratio) is summarized in the Table 2 which showed that the compounds **7a**, **7b** and **8a** displayed extraordinary selectivity towards *Mycobacterium.smegmatis*. The results are very promising as these compounds especially **7a**, **7b** and **8a** are active against mycobacterium with no cytotoxicity and therefore could have potential for further optimization as potential anti-TB drugs.

Sl. No	product	DU145	Hela	MCF-7	A549
1	3c	1.62	>13	2.85	2.31
2	4 a	0.83	>13	>13	1.45
3	7a	5.66	4.17	3.98	4.19
4	7b	6.94	13.37	14.25	10.54
5	8 a	>13	>13	>13	11.15
6	9a	1.28	2.71	63.12	1.99
7	10b	1.42	>13	>13	2.83
8	11a	1.11	1.66	>13	1.60

Table 2: Selectivity index (SI) is the ratio of IC₅₀/MIC

Methods:

In vitro anti-mycobacterial activity assay: Anti-mycobacterial activity of the synthesized compounds was performed with *Mycobacterium*. *smegmatis* strain using growth inhibition assay by turbidometry. Briefly, isolated single colonies of *M. smegmatis* MC² 155 (ATCC 14468) from 7H10 agar plate were grown overnight in Middlebrook 7H9 medium (0.47% Middlebrook 7H9 broth base, 10% ADS, 0.2% glycerol, and 0.1% Tween-80) to mid exponential phase at 37 °C. Subsequently, 5 ml of Middlebrook 7H9 broth were inoculated with the overnight grown culture and allowed to grow at 37 °C to early log phase (OD₆₀₀ \approx 0.3). For anti-microbial assay, 98 µl of 1:1000-folds dilution of secondary culture was dispensed into 96-well microtiter plate. To each well 2 µl of test compound was added to attain a final concentration of 6.25, 12.5, 25 and 50 µM, and allowed to grow at 37 °C for 32 hours. 240 µl of sterile water were added to each well of the peripheral rows of 96-well plate to minimize media evaporation during assay incubation. Bacterial growth was assessed after 32 hours of incubation by measuring turbidity at 600nm OD₆₀₀ values using TECAN Infinite 200 PROTM (Tecan Instruments, Switzerland). Positive controls were included in every assay plates using stock solutions of INH (10 mg/mL, HiMedia) and Rifampicin (10 mg/mL, HiMedia) to achieve the final concentration of 0.5, 1, 2, 4, 8 and 16 μ g/mL for INH and 0.25, 0.5, 1, 2, 4 and 8 μ g/mL for Rifampicin. Additional controls DMSO (solvent without compound) and medium without inoculums were included in all the assay plates avoiding intra assay variability. The results were analyzed as the percentage of growth inhibition. All experiments were carried out in triplicates and results were reported as \pm SD. From the percentage of the growth inhibition, the GI₅₀ values are calculated.

Anti cell proliferative Assays: The synthesized compounds have been valuated for their in vitro cytotoxicity in four different human cancer cell lines. All cell lines used in this study were purchased from the American Type Culture Collection (ATCC, USA). A549 (human lung carcinoma epithelial), HeLa (human epithelial cervical cancer), DU145 (prostate cancer) and MCF-7 (breast cancer) were grown in standard Dulbecco's modified Eagles medium containing 10% FBS in a humidified atmosphere of 5% CO₂ at 37 °C. Cells were trypsinized when sub-confluent from T75 flasks/ 90mm dishes and seeded in 96 well plates at a density of 5000-10000 cells/well depending on the doubling time of individual cell lines further continued to grow in complete medium under standard conditions. After 18 hrs to treat cells with test molecules, aliquots of 2 µL of the compound dilutions were added to the appropriate microtiter wells already containing 198 µL of fresh medium with cells, resulting in the required final drug concentrations. As a standard reference drug we have used Doxorubicin in all assay plates served as internal control. For each, compound four concentrations (0.1, 1, 10 and 100 µM) were evaluated as per NCI cell line screening protocol and each was done in triplicate wells. Plates were incubated further for 48h and assay was terminated by the addition of 10 µL of 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT, 5mg/ml) and incubated for 60 min at 37 °C. The plates were air-dried and the dye bound to the cells was subsequently solubilized in 100 µl of DMSO, and the absorbance was red on a multimode reader (Tecan) at a wavelength of 560 nm is directly proportional to cell growth. Percent growth was calculated for test wells relative to control wells. The above determinations were repeated three times. The growth inhibitory effects of the compounds were analyzed by generating dose response curves as a plot of the percentage surviving cells versus drug concentration. Sensitivity of the cancer cells to the drug treatment was expressed in terms of the concentration of drug required for 50% inhibition of cell growth (IC_{50}) results were presented in table 03 supplementary materials.

		DU-1	145	Hel	La	MC	F -7	A5	49
S.		IC-50	Std	IC-50	Std	IC-50	Std	IC-50	Std
No.	Compound	(µM)	Dev.	(µM)	Dev.	(µM)	Dev.	(µM)	Dev.
1	1a	14.27	1.71	>200		113.27	5.69	138.08	12.74
2	1b	79.58	6.86	120.57	2.32	165.11	12.32	143.47	10.70
3	1c	27.95	3.65	127.66	24.93	126.62	6.26	125.68	1.20
4	2a	85.59	3.24	>200		>200		146.87	7.17

Table 03: Selected compounds IC₅₀ values for different cancer cell lines

5	3a	131.71	14.05	>200		173.90	22.52	175.99	7.95
6	3c	93.74	7.45	>200		165.09	0.05	133.63	9.82
7	4a	84.26	12.29	>200		>200		148.29	21.44
8	4b	95.41	7.27	>200		>200		126.67	0.07
9	4c	88.58	5.12	165.28	14.27	155.34	9.82	168.59	7.87
10	5a	87.29	12.97	>200		185.73	29.64	125.71	16.52
11	5c	65.47	3.01	153.38	6.87	192.21	20.01	137.54	12.02
12	7a	133.72	3.28	98.41	14.02	94.06	6.10	99.02	3.30
13	7b	85.15	1.81	164.09	39.61	174.90	12.34	129.33	25.96
14	8a	>200		>200		>200		160.09	9.49
15	9a	76.37	1.42	161.10	12.11	185.61	11.69	118.21	4.98
16	10a	81.27	5.40	>200		>200		>200	
17	10b	79.91	5.38	>200		>200		159.30	33.25
18	1d	87.74	4.10	159.52	13.53	>200		138.68	20.71
19	lf	160.78	20.54	>200		>200		>200	
20	11a	111.88	6.08	166.70	26.00	>200		160.60	6.41
21	Doxorubucin	6.73	0.18	7.51	0.10	7.87	0.13	7.17	0.39

9. X- ray Crystallography Data:

X-ray data for the compounds were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK α radiation (λ =0.71073Å) with ω -scan method [Bruker (2001). SAINT (Version 6.28a) & SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]. Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.

Integration and scaling of intensity data were accomplished using SAINT program [Bruker (2001). SAINT (Version 6.28a) & SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]. The structure was solved by direct methods using SHELXS97 [Sheldrick GM. (2008) Acta Crystallogr A64: 112-122.] and refinement was carried out by full-matrix least-squares technique using SHELXL97 [Sheldrick GM. (2008) Acta Crystallogr A64: 112-122.]. Anisotropic displacement parameters were included for all non-hydrogen atoms. The hydrogen atoms attached to nitrogen atoms of **1e** were located in a difference density map and refined isotropically. All other H atoms were positioned geometrically and treated as riding on their parent C atoms with C-H = 0.93 - 0.96 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. In **1e**, the ethyl acetate solvent shows high thermal vibrations, hence attempts were made to refine the solvent with disorder model was unsuccessful. The ethyl acetate atoms C30/C31/C32/C33/O2/O3 were constrained with distance and ISOR restrains. In **5c**,
the atoms C22 and C23 were disordered over two sites (C22/C22' & C23/C23') and the siteoccupancy factors of the disordered atoms were refined to 0.63(2) and 0.37(2). The major and minor components of the disordered atoms were restrained to be similar using SIMU and DELU instructions. The C-C distances of the disordered atoms were constrained with 1.45(1)Å.

ORTEP diagram of 1b (CCDC 928899)

ORTEP diagram of 1e (CCDC 929085)

ORTEP diagram of 5c (CCDC928900)

	-27.276
	-25.280
-	-22.222
	~21.555
	~21.266

81

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

118

