Electrophile Induced Branching Cascade: A Powerful Approach to Access Various Molecular Scaffolds and Their Exploration as Novel Anti-mycobacterial Agent

Nitin T. Patil, * Ashok Konala, Sudha Sravanti, Ashita Singh, Ramesh Ummanni and Balasubramanian Sridhar

Contents

\qquad
\qquad
3. Polyheterocyclic Scaffolds Accessed Through EIBC- Literature Known Synthesis and Applications 4
4. General Procedures and Characterization Data of Compounds 6
5. Diversification of Products 23
6. Undesired Products Obtained During Optimization Studies and Characterization Data: 27
7. Enantioselective Experiment and HPLC Chromatograms 29
8. Anti mycobacterial activity 32
9. X- ray Crystallography Data: 35
10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 38

1. General Introduction

All cross coupling reactions were carried out in oven or flame dried vials with magnetic stirring under nitrogen atmosphere. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccators. All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated silica gel plates. After elution, plate was visualized under UV illumination at 254 nm for UV active materials. Further visualization was achieved by staining KMnO_{4} and charring on a hot plate. Solvents were removed in vacuo and heated with a water bath at $35^{\circ} \mathrm{C}$. Silica gel finer than 200 mesh was used for flash column chromatography. Columns were packed as slurry of silica gel in hexane and equilibrated with the appropriate solvent mixture prior to use. The compounds were loaded neat or as a concentrated solution using the appropriate solvent system. The elution was assisted by applying pressure with an air pump.

Melting points are uncorrected. IR spectra were recorded as neat liquids or KBr pellets and absorptions are reported in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on 300 and $500,600 \mathrm{MHz}$ spectrometers in appropriate solvents using TMS as internal standard or the solvent signals as secondary standards and the chemical shifts are shown in δ scales. Multiplicities of ${ }^{1} \mathrm{H}$ NMR signals are designated as s (singlet), bs (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), m (multiplet)... etc. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on $75,125,150 \mathrm{MHz}$ spectrometers. Highresolution mass spectra were obtained by using ESI-QTOF mass spectrometry.

2. Synthesis of Scaffold Building Agents (SBAs)

The scaffold building agents $\mathbf{1 , 3 , 4} \mathbf{4}$ and $\mathbf{9}$ were commercially available while others prepared by literature known procedures. The details are given below in tabular form.

SBA No	Structures	References
1		Commercially available
1(I)		Org. Biomol. Chem., 2003, 11, 383-392
1(II)		J. Org. Chem., 2010, 75, 1277-1280
1(III)		J. Indian Chem. Soc., 1980, 57, 887-889
1(VI)		J. Indian Chem. Soc., 1980, 57, 887-889
2		Angew. Chem. Int. Ed., 2007, 46, 7247-7250
2(I)		Angew. Chem. Int. Ed., 2007, 46, 7247-7250
3		Commercially available
4		Commercially available
5		Eur. J. Med. Chem., 1998, 33, 181-188
6		J. Med. Chem., 1967, 10, 334-336

7		J. Org. Chem., 2004, 69, 5578-5587
7(I)		J. Med. Chem., 1999, 42, 4362-4379
7(II)		J. Med. Chem., 2004, 47, 1997-2009
8		Tetrahedron, 1973, 29, 1429-1432
9		J. Am. Chem. Soc., 2002, 124, 11684-11688
10		Commercially available
10(I)		J. Org. Chem., 2008, 73, 4252-4255
11		Chem. Comm., 2010, 46, 448-450

3. Polyheterocyclic Scaffolds Accessed Through EIBC- Literature Known

Synthesis and Applications

$\begin{gathered} \text { Sl. } \\ \text { No. } \end{gathered}$	Scaffold	Sub-structures	Synthesis/Applications	References
1			Synthesis/TNF- α inhibition	Chem. Commun., $\begin{gathered} \text { 2011, } 47,10263- \\ 10265 \end{gathered}$
			Synthesis/Inhibition of FceRI-mediated activation of mast Cells	J. Med. Chem., 1998, 41, 1050-1059
2			Synthesis/DNA binding agent with cytotoxic properties	J. Med. Chem., 2005, 48, 4504-4506 ChemBioChem., 2006, 7, 1757-1763
		\overbrace{N}^{N}	Synthesis/Hypoglycemic agent	US4097598 A1, 1978
3			Synthesis/Lipid peroxidation inhibitory activity	Eur. J. Med. Chem., 1998, 33, 181-187
			Synthesis	Ind. J. Chem., 1970, 8 , 126-129
			Used in an organic electronic device including OLED	$\begin{gathered} \text { WO200769847 A1, } \\ 2007 \end{gathered}$
4			Synthesis/Positive allosteric modulators of AMPA receptors	J. Med. Chem., 2007, 50, 3153-3157
			Synthesis/Orally active potent cognitive enhancer	$\begin{aligned} & \text { J. Med. Chem., 2010, } \\ & 53,1700-1711 \end{aligned}$

			Synthesis/Antihypertensive agent	J. Med. Chem., 1963, 6,122-127
5			Synthesis/Lipid peroxidation inhibitory activity	Eur. J. Med. Chem., 1998, 33, 181-188
6			Synthesis	Tetrahedron Lett., 2012, 53, 2643-2646
			Inhibitor of cell multiplication	$\begin{gathered} \text { J. Med. Chem., 1967, } \\ 10,334-336 \end{gathered}$
7			Arginine vasopressin antagonists	Bioorg. Med. Chem. Lett., 2003, 13, 21952198
			Hypotensive activity	Pharmaceutical Chemistry Journal, 1987, 21, 619-624
8			Synthesis	Tetrahedron Lett., 2002, 43, 3347-3350
			Synthesis/Cataleptogenic activity	$\begin{gathered} \text { J. Org. Chem., 1994, } \\ \text { 59, 6777-6782 } \\ \text { Ger. Offen., 1971, } \\ 961,2051 \end{gathered}$
			Synthesis/Melatonin receptor ligands	Org. Biomol. Chem., 2007, 5, 2129-2137

4. General Procedures and Characterization Data of Compounds

Condition 1:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent $\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{4}\right.$, $\left.\mathrm{N}_{6}\right)(0.2205 \mathrm{mmoles})$ and 2-alkynylbenzaldehyde (0.2205 mmoles) in DCE $(0.09 \mathrm{M})$ followed by the addition of iodine (3 eq). The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at rt for 3 hrs . The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water and extracted with DCM ($10 \mathrm{~mL} x \mathrm{3}$). Work up and purification by column chromatography using EtOAc/hexane or $\mathrm{MeOH} / \mathrm{DCM}$ as an eluent afforded analytically pure compounds.

Condition 2:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent $\left(\mathrm{N}_{9}\right)(0.1442$ mmoles) and 2-alkynylbenzaldehyde (0.1442 mmoles) in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$ followed by the addition of iodine (3 eq). The reaction vial was fitted with a cap and stirred at rt for 8 hrs . The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water
and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). Work up and purification by column chromatography using $\mathrm{EtOAc} /$ hexane as an eluent afforded analytically pure compound.

Condition 3:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent (N_{10}) (0.2439 mmoles) and 2-alkynylbenzaldehyde (0.2439 mmoles) in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{ml}$) followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$, iodine (1.8 eq). The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at rt for 5 hrs . The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water, and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compound.

Condition 4:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent $\left(\mathrm{N}_{8}\right)(0.1351$ mmoles) and 2-alkynylbenzaldehyde (0.1351 mmoles) in DCE $(2.5 \mathrm{~mL})$ followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 eq), iodine (1.8 eq). The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at $75^{\circ} \mathrm{C}$ for 5 hrs . The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water, and extracted with EtOAc (10 mL x 3). Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compounds.

Condition 5:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent $\left(\mathrm{N}_{7}\right)(0.1910$ mmoles) and 2-alkynylbenzaldehyde (0.1910 mmoles) in DCE $(2.5 \mathrm{~mL})$ followed by the addition of $5 \mathrm{~mol} \% p$-TSA. The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at rt for 3 hrs . After specified time, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 eq) and iodine (1.1eq) were added in a sequential manner and the reaction mixture was allowed to stir for 2 hrs . The reaction mixture was quenched by the addition of aq. sodium thiosulphate solution, diluted with 5 mL water, and extracted with EtOAc ($10 \mathrm{~mL} \times 3$). Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compounds.

Condition 6:

To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent $\left(\mathrm{N}_{3}, \mathrm{~N}_{5}, \mathrm{~N}_{11}\right)$ (0.1442 mmoles) and 2-alkynylbenzaldehyde (0.1442 mmoles) in DCM (0.06 M) followed by the
addition of $5 \mathrm{~mol} \% p$-TSA. The reaction vial was fitted with a cap, evacuated and filled with nitrogen and allowed to stirr at rt for 6 hrs . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and then $\mathrm{ICl}(1.1$ eq) was added. The reaction mixture was stirred for 2 hrs and then subsquently quenched by the addition of aq. sodium bicarbonate solution followed by adition of water and EtOAc. Work up and purification by column chromatography using EtOAc/hexane as an eluent afforded analytically pure compounds.

13-Iodo-12-phenyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1a): 92\% yield; yellow solid (M.P. $=106-108{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.30$ (hexane $/ \mathrm{EtOAc}=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~s}, 1 \mathrm{H})$, 7.64 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.09(\mathrm{dd}, J=2.3 \mathrm{~Hz}, J=8.7,1 \mathrm{H}), 6.23(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO d d_{6}): $\delta 165.7$, 153.1, 143.9, 138.5, 136.7, 134.8, 132.9, 132.0, 130.7, 129.1, 128.4, 127.5, 127.2, 126.7, 125.6, 122.5, 117.6, 111.2, 103.1, 70.4, 67.1; IR (KBr): $v_{\max } 3420,3057,2923,1671,1626,1552,1511,1471,1336,1160,1129,1072,1025,816$, $759,696,642,543 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 451\left(\mathrm{M}^{+}+\mathrm{H}\right) ;$ HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{IN}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 451.0307, found 451.0315 .

8-Bromo-13-iodo-12-phenyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1b): 89\% yield; yellow solid (M.P. $=136-138^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.32$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.06 (s, 1H), 7.46 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 7.38-7.33 (m, 5H), 7.10 (d, $J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO} \mathrm{d}_{6}+\mathrm{CDCl}_{3}$): $\delta 164.4$, $159.9,152.5,141.6,140.3,136.8,135.9,134.9,133.8,133.0,132.5,131.9,128.0,127.8,125.8$, $124.5,122.8,118.8,116.7,110.5,66.3,65.3$; IR (KBr): $v_{\max } 3429,3232,2924,1674,1590,1472$, 1392, 1342, 1315, 1284, 1198, 1169, 1127, 1079, 1027, 905, 805, 762, 726, 698, 551, $468 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 529\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrIN}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 528.9412, found 528.9418.

8-Chloro-13-iodo-10-methyl-12-phenyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1c): 84\% yield; brown solid (M.P. $=108-110{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.34$ (hexane/EtOAc=70/30); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.87(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{tt}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dt}, J=6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{tt}, J=7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.7,153.5,144.7$, $141.6,138.3,135.3,134.2,133.7,132.3,130.9,130.5,129.1,128.7,127.8,127.1,126.3,125.5$, 124.6, 68.2, 60.3, 17.9; IR (KBr): $v_{\max } 3381,3056,2922,1725,1666,1613,1584,1451,1375,1264$, $1214,1186,1136,1035,927,879,847,961,700,634,598,565,535,477,422 \mathrm{~cm}^{-1} ;$ MS (ESI) m / z $499\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClIN}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right) 499.0074$, found 499.0068 .

13-Iodo-12-phenyl-5-(phenylamino)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1d): 84\% yield; solid (M.P. $=176-178{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.30$ (hexane $/ \mathrm{EtOAc}=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.05 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.91 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 162.3,145.9,143.7,143.1,136.6,135.8,133.7,131.8,131.1,130.2,129.8,129.5,129.2$, $128.7,128.5,128.4,125.7,125.2,122.3,121.9,120.7,116.5,113.8,69.4,75.0$; IR (KBr): $v_{\max } 3255$, 3025, 2922, 1663, 1597, 1491, 1467, 1403, 1300, 1272, 1154, 1109, 1029, 966, 876, 847, 817, 753, 694, 577, 546, $499 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 542\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{IN}_{3} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 542.0729, found 542.0723.

13-Iodo-12-phenyl-8-methyl-5-(phenylamino)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one
(1e): 83% yield; solid (M.P. $=164-166{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.31$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.04(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=$ $1.5 \mathrm{~Hz}, J=6.0,1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{dt}, J=2.3 \mathrm{~Hz}, J$ $=6.0,2 H), 6.70-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 2.13$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSOd_{6}): $\delta 164.2,160.8,148.7,147.1,143.4,140.4,136.6,135.7$, $134.3,132.5,131.0,130.7,129.9,129.8,129.3,128.4,128.1,127.7,125.0,122.7,119.8,116.1$, $112.3,75.8,74.8,19.7$; IR (KBr): $v_{\max } 3258,3056,3024,2922,2855,1662,1603,1490,1441,1405$, 1344, 1273, 1136, 1027, 966, 906, 822, 751, 727, 693, 534, $502 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 556\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OI}\left(\mathrm{M}^{+}+\mathrm{H}\right) 556.0886$, found 556.0880 .

13-Iodo-12-cyclohexenyl-5-(phenylamino)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1f): 81% yield; solid (M.P. $=170-172{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.32$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 1.88-1.69$ (m, 8H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO): $\delta 165.1,161.2,147.4,145.0,143.3,133.5,132.5,130.9$, $130.6,129.2,128.4,127.3,126.2,123.5,119.9,117.4,116.3,115.3,112.3,75.6,75.0,25.6,24.2$, 22.1, 21.7; IR (KBr): $v_{\max } 3251,3052,3029,2921,2850,1668,1607,1491,1446,1408,1341,1275$, 1132, 1022, 962, 904, 820, 759, 725, 698, $531 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 546\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{IN}_{3} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 546.1042, found546 .1048.

5-Iodo-6-phenyl-12-tosyl-12,12a-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2a): 72\% yield; thick liquid; $\mathrm{R}_{f} 0.52$ (hexane/EtOAc $=90 / 10$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72-7.68(\mathrm{~m}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.4,142.6,139.7,138.8,133.7,133.1,131.1,130.4,129.9$, 129.6, 128.7, 128.1, 127.6, 127.1, 126.4, 126.0, 123.9, 117.3, 114.7, 110.8, 82.7, 78.3, 21.3; IR : $v_{\max }$ 3446, 2924, 2856, 1728, 1630, 1593, 1539, 1454, 1378, 1236, 1152, 1110, 1001, 912, 811, 741, 678, $562 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 577\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 577.0447, found 577. 0452.

5-Iodo-6-cyclohexenyl-12-tosyl-12,12a-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2b): 68\% yield; yellow solid (M.P. $=78-80{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.54$ (hexane/EtOAc $=90 / 10$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.98(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $1.61-1.57(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.5,136.7,134.8,132.6,131.8,129.6,128.9$, 128.6, 127.5, 127.1, 126.1, 125.5, 123.3, 122.8, 120.4, 119.1, 114.6, 110.3, 86.7, 78.2, 27.3, 25.3, 22.2, 21.5, 21.3; IR (KBr): $v_{\max } 3448,2920,2852,1726,1635,1591,1530,1458,1371,1239,1158$, 1008, 914, 816, 742, 676, $560 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 581\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{~S}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 581.0760$, found 581.0765.

10-Fluoro-5-iodo-6-phenyl-12-tosyl-12,12a-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2c): 60% yield; thick liquid; $\mathrm{R}_{f} 0.50$ (hexane/EtOAc $=90 / 10$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69-7.67$ $(\mathrm{m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{dt}, J=3.0, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=2.3, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.5,160.6\left(J_{13 \mathrm{C}-19 \mathrm{~F}}=243.4 \mathrm{~Hz}\right), 144.8,140.3,140.2$, $138.4,135.3,133.6,132.7,130.8,130.5,130.0,129.8,129.1,129.0,128.3,127.7,126.9,123.5$, $120.1,120.0\left(J_{13 \mathrm{C}-19 \mathrm{~F}}=9.9 \mathrm{~Hz}\right), 106.6,106.4\left(J_{13 \mathrm{C}-19 \mathrm{~F}}=23.6 \mathrm{~Hz}\right), 99.4,99.2\left(J_{13 \mathrm{C}-19 \mathrm{~F}}=29.9 \mathrm{~Hz}\right)$, 83.8, 79.1, 21.6; IR : $v_{\max } 3441,2929,2853,1722,1637,1537,1455,1372,1239,1150,1114,910$, 817, 743, 675, $568 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 595\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{FIN}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 595.0352, found 595.0356.

10-Iodo-9-phenyl-14bH-benzimidazo[1,2-c]isoquinolino[2,1-a]quinazoline (3a): 75\% yield; yellow solid (M.P. $=198-200^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.40$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.13(\mathrm{dd}, J=1.5 \mathrm{~Hz}, J=6.0,1 \mathrm{H}), 7.97-7.94(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 4 \mathrm{H})$, $7.35(\mathrm{t}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}, J=1.5 \mathrm{~Hz}, J=6.0,2 \mathrm{H}), 6.88(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.3$, $141.9,138.8,137.2,134.9,133.8,132.4,130.8,130.5,130.3,129.4,128.8,128.3,127.9,127.7$, 127.6, 126.6, 124.6, 122.4, 121.2, 119.6, 116.9, 70.4, 59.4; IR (KBr): $v_{\max } 3062,2954,2924,2860$, 1728, 1614, 1582, 1530, 1471, 1378, 1306, 1242, 1156, 1120, 1072, 836, 751, $614 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 524\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{IN}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right) 524.0624$, found 524.0632.

10-Iodo-9-"butyl-14bH-benzimidazo[1,2-c]isoquinolino[2,1-a]quinazoline (3b): 71\% yield; thick liquid; $\mathrm{R}_{f} 0.42$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.15(\mathrm{dd}, J=1.5 \mathrm{~Hz}, J=$ $6.2,1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}$,
$3 \mathrm{H}), 7.22(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.7$, $145.3,141.1,134.9,133.8,131.3,129.6,129.0,128.4,16.2,125.4,123.3,122.9,122.1,121.6,120.9$, $119.9,116.3,111.1,109.0,73.7,69.5,36.7,28.5,22.1,13.2$; IR: $v_{\max } 3062,2958,2928,2864,1729$, $1616,1585,1534,1473,1377,1303,1240,1158,1122,1072,919,838,751,618 \mathrm{~cm}^{-1} ;$ MS (ESI) m / z $504\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{IN}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 504.0937, found 504.0931.

10-Iodo-9-cyclohexenyl-14bH-benzimidazo[1,2-c]isoquinolino[2,1-a]quinazoline (3c): $\quad 62 \%$ yield; yellow solid (M.P. $=188-190{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.41$ (hexane $/ \mathrm{EtOAc}=70 / 30$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.63(\mathrm{~m}$, $2 \mathrm{H}), 6.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{dd}, J=1.5 \mathrm{~Hz}, J=6.0,2 \mathrm{H}), 7.20-7.12(\mathrm{~m}$, $2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 1.75-1.42(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $146.9,145.8,139.3,138.0,136.6,135.6,134.6,133.7,131.8,131.1,128.9,127.7,127.2,125.9$, 123.7, 121.5, 119.4, 116.9, 111.6, 109.3, 69.4, 60.3, 28.9, 25.7, 22.8, 21.7; IR (KBr): $v_{\max } 3064$, 2956, 2925, 2860, 1728, 1614, 1582, 1530, 1471, 1378, 1306, 1242, 1156, 1120, 1072, 836, 751, 614 $\mathrm{cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}) m / z 528\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{IN}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 528.0937, found 528.0931.

13-Iodo-12-phenyl-4b \boldsymbol{H}-benzo[5,6][1,2,4]thiadiazino[3,4-a]isoquinoline-6,6-dione (4a): 80\% yield; yellow solid (M.P. $=124-126{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.35$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO d ${ }_{6}$): $\delta 9.19(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.37$ (m, 3H), 7.34-7.27 (m, 3H), $7.06(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.19(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.3,139.7,139.0,137.6,135.7$,
130.9, 129.6, 129.2, 128.9, 128.7, 128.6, 128.5, 128.1, 127.7, 127.5, 125.2, 124.0, 70.5, 60.4; IR (KBr): $v_{\max } 3381,3055,1654,1617,1589,1479,1444,1380,1338,1205,1167,1080,1022,916$, $758,700,596,544 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 486\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 486.9977, found 486.9972 .

13-Iodo-12-(4-cyanophenyl)-4b \boldsymbol{H}-benzo[5,6][1,2,4]thiadiazino[3,4-a]isoquinoline-6,6dione
(4b): 87% yield; yellow solid (M.P. $=150-152{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.36$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.2,138.5,137.8,132.8,132.5,131.9,131.6,131.2$, 129.7, 129.4, 127.9, 125.8, 124.2, 122.7, 118.4, 118.2, 112.5, 111.9, 70.8, 60.4; IR (KBr): $v_{\max } 3388$, 3050, 2252, 1650, 1612, 1582, 1478, 1442, 1382, 1335, 1202, 1168, 1084, 1028, 914, 752, 590, 541 cm^{-1}; MS (ESI) m/z $289\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{IN}_{3} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right) 511.9930$, found 511.9938.

13-Iodo-12-cyclohexenyl-4b \boldsymbol{H}-benzo[5,6][1,2,4]thiadiazino[3,4-a]isoquinoline-6,6-dione (4c): 78% yield; yellow solid (M.P. $=140-142{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.38$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.41(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $156.4,144.3,142.2,139.3,136.6,135.7,134.5,131.7,130.7,129.2,129.8,128.5,128.0,126.9$, $124.5,123.6,70.0,53.4,29.6,25.1,22.1,21.4$; IR (KBr): $v_{\text {max }} 3421,3017,1620,1588,1480,1447$, 1378, 1336, 1270, 1169, 1079, 906, 750, 689, 646, 593, 554, $494 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 491\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right) 491.0290$, found 491.0294 .

10-Iodo-9-phenyl-14bH-imidazo[1,2-c]isoquinolino[2,1-a]quinazoline (5a): 84\% yield; solid (M.P. $=208-210{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.33$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, 6.62 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.13 (d, $J=6.8 \mathrm{~Hz}, J, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.8,143.7$, $136.5,135.2,132.7,131.5,131.1,130.9,130.8,128.4,128.2,127.9,127.8,127.6,127.2,127.0$, $126.4,124.8,123.6,115.3,73.3,70.3$; IR (KBr): $v_{\max } 3425,3048,2925,2858,1654,1572,1558$, 1520, 1472, 1441, 1380, 1352, 1293, 1241, 1214, 1132, 1091, 1060, 978, 875, 804, 732, 693, 576, $462 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 474\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{IN}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right) 474.0467$, found 474 . 0462 .

10-Iodo-9-"butyl-14bH-imidazo[1,2-c]isoquinolino[2,1-a]quinazoline (5b): 62\% yield; thick liquid; $\mathrm{R}_{f} 0.32$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 2 \mathrm{H}), 0.84-0.74(\mathrm{~m}$, 2 H), 0.69-0.56 (m, 2H), $0.41(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.8,145.5$, $139.1,134.2,131.0,130.1,128.4,128.2,127.6,126.5,126.1,124.3,123.7,125.6,115.9,115.6,73.4$, $71.3,36.8,28.5,22.1,13.2$; IR : $v_{\max } 3063,2957,2927,2862,2229,1717,1617,1529,1473,1378$, 1309, 1158, 1104, 940, 871, 760, $664 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 454\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{IN}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right) 454.0780$, found 454.0774 .

10-Iodo-9-cyclohexenyl-14bH-imidazo[1,2-c]isoquinolino[2,1-a]quinazoline (5c): 75\% yield; solid (M.P. $=168-170{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.31$ (hexane $/ \mathrm{EtOAc}=70 / 30$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.02(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.17(\mathrm{~m}$, $1 \mathrm{H}), 7.05-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.46(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.36(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 2.12-1.45(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.5,142.5,138.9,137.1,133.9,133.0,131.9,130.8,130.5128 .8$, 127.9, 127.7, 127.3, 127.2, 126.6, 124.7, 123.8, 123.3, 121.2, 116.5, 70.4, 69.9, 25.9, 24.9, 21.8, 21.3; IR (KBr): $v_{\max } 3423,3045,2924,2854,1702,1659,1579,1551,1526,1478,1448,1387,1356$, $1290,1244,1217,1138,1095,1069,1037,976,920,872,809,758,735,695,579,532,465 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 478\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{IN}_{3}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 478.0780, found 478.0774.

16-Iodo-17-phenyl-isoquinolino[2,1-a]quinazolino[1,2-c]quinazolin-6(11aH)-one (6a): 49\% yield; thick liquid; $\mathrm{R}_{f} 0.40$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.01(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=1.3 \mathrm{~Hz}, J=6.4,1 \mathrm{H}), 7.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37$ $(\mathrm{m}, 8 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7,151.5,146.7,142.1,138.3,133.1,132.2,131.5,131.2,130.5$, 130.1, 129.3, 128.9, 128.7, 128.2, 128.0, 127.8, 127.2, 126.5, 125.3, 123.7, 121.4, 120.7, 116.7, 67.9, $66.7,46.4$; IR : $v_{\max } 2925,1670,1628,1550,1510,1476,1338,1156,1122,1078,1024,806,548$ cm^{-1}; MS (ESI) $m / z 552\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{IN}_{3} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right) 552.0573$, found 552.0578.

16-Iodo-17-cyclohexenyl-isoquinolino[2,1-a]quinazolino[1,2-c]quinazolin-6(11aH)-one
(6b):
53% yield; thick liquid; $\mathrm{R}_{f} 0.42$ (hexane/EtOAc=70/30); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.84$ (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.47-6.43(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.64(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.6,147.1,145.1,144.2,138.4,134.7,133.2,132.4,130.1,129.7,128.2$, 127.7, 127.2, 125.5, 123.5, 122.9, 120.6, 119.8, 116.8, 115.8, 115.3, 67.7, 60.3, 25.8, 24.9, 22.5, 22.1; IR : $v_{\max } 2921,1674,1618,1518,1466,1328,1154,1112,1072,1026,807,545 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI) $m / z 556\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{IN}_{3} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right) 556.0886$, found 556.0892.

11-Iodo-10-phenyl-15bH-isoquinolino[2,1-a]pyrrolo[2,1-c]quinoxaline (7a): 55\% yield; thick liquid; $\mathrm{R}_{f} 0.80$ (hexane/EtOAc $=95 / 05$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.42-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{dd}, J=1.5 \mathrm{~Hz}, J=6.0,2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ $(\mathrm{dt}, J=1.5 \mathrm{~Hz}, J=6.0,1 \mathrm{H}), 6.64(\mathrm{dt}, J=1.5 \mathrm{~Hz}, J=6.0,1 \mathrm{H}), 6.52(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.30(\mathrm{~m}$, 2 H), $5.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.4,135.7,133.6,129.8,128.9,128.8,127.9$, 127.6, 126.2, 124.9, 124.6, 124.3, 123.4, 119.9, 118.9, 116.8, 114.6, 114.5, 110.4, 107.9, 68.2, 56.9; IR : $v_{\max } 3058,2924,2853,1695,1607,1560,1473,1453,1343,1282,1240,1200,1106,1049$, 1024, 919, 889, 849, 760, 720, 696, 671, 608, 566, 534, $448 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 473\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{IN}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right) 473.0515$, found 473.0518 .

11-Iodo-6,7-dimethyl-10-phenyl-15bH-1soquinolino[2,1-c]quinoxaline (7b): 59\% yield; thick liquid; $\mathrm{R}_{f} 0.81$ (hexane/EtOAc $=95 / 05$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{dt}, J=1.5 \mathrm{~Hz}, J=6.0,1 \mathrm{H}), 7.13(\mathrm{dt}, J=1.5 \mathrm{~Hz}, J=6.0,2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.6,141.7,136.2,135.1,132.8,129.7$, $128.9,128.4,128.7,127.7,127.4,126.2,125.9,124.6,120.2,116.4,115.8,114.3,109.9,107.6,68.2$, 57.0, 19.5, 19.0 ; IR : $v_{\max } 2924,2855,1728,1660,1598,1518,1446,1342,1249,1157,1081,1029$, 858, 757, 667, $613 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 501\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{IN}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 501.0828 , found 501.0824 .

6-Chloro-11-iodo-10-phenyl-15bH-isoquinolino[2,1-a]pyrrolo[2,1-c]quinoxaline (7c): 50\% yield; thick liquid; $\mathrm{R}_{f} 0.82$ (hexane/EtOAc $=95 / 05$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78$ (d, $J=8.1 \mathrm{~Hz}$, 2 H), 7.42-7.35 (m, 4H), 7.30-7.27 (m, 2H), 7.19-7.16 (m, 2H), 6.93 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ (dd, $J=$ $2.1 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.8,134.9,133.5,132.5,130.9,129.1,128.8,128.3$, $128.0,127.8,126.1,124.5,125.1,119.9,118.7,117.3,115.4,114.6,110.8,108.2,108.5,57.2,56.9$; IR : $v_{\max } 3054,2922,2855,1698,1600,1568,1475,1459,1341,1280,1244,1104,1047,1022,914$, $885,843,762,724,692,675 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 507\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{ClIN}_{2}\left(\mathrm{M}^{+}\right.$ + H) 507.0125, found 507.0129.

1-Iodo-8-methyl-2-phenyl-13aH-indolo[1,2-c]isoquinolino[2,1-a]quinazoline (8a): 64\% yield; solid (M.P. $=96-98{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.76$ (hexane $/ \mathrm{EtOAc}=90 / 10$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (d, J $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.78(\mathrm{~m}$, $2 \mathrm{H}), 6.61-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.6(\mathrm{~d}, J=1.5 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.9,136.9,135.9,135.0,133.4,131.5,130.8,129.5,129.0,128.1$, $127.4,126.2,125.1,122.6,122.2,121.1,120.0,118.9,117.9,116.6,69.0,70.9,10.7$; IR (KBr): $v_{\max }$ 3422, 3056, 2924, 2854, 1647, 1603, 1577, 1462, 1382, 1335, 1260, 1218, 1143, 1073, 1030, 939, 892, 756, 698, 665, $628 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 537\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{NN}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 537.0828, found 537.0822.

1-Iodo-8-methyl-2-" ${ }^{\text {b }}$ butyl-13aH-indolo[1,2-c]isoquinolino[2,1-a]quinazoline (8b): 48\% yield; thick liquid; $\mathrm{R}_{f} 0.78$ (hexane/EtOAc $=90 / 10$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76-7.73(\mathrm{~m}, 2 \mathrm{H})$, $7.71-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 2 \mathrm{H})$, $6.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.59-$ $2.50(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1,140.2,134.1,132.5,130.8,129.4,128.8,128.6,127.7,126.4$, $125.4,122.7,121.2,119.9,119.0,118.8,116.6,110.8,108.6,72.3,71.1,37.5,29.7,23.0,13.9,10.7$; IR : $v_{\max } 3371,3054,2955,2924,2856,1692,1601,1462,1380,1358,1334,1260,1214,1160$, 1129, 1076, 1016, 980, 899, 867, 814, 740, 631, 587, 542, $460 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 517\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{IN}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 517.1141, found 517.1135.

2-Cyclohexenyl-1-iodo-8-methyl-13aH-indolo[1,2-c]isoquinolino[2,1-a]quinazoline (8c): 62\% yield; thick liquid; $\mathrm{R}_{f} 0.75$ (hexane/EtOAc $=90 / 10$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.75$ (d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.2,137.1,135.9$, $134.9,133.5,130.6,129.7,128.5,128.2,127.4,126.9,125.0,123.2,122.4,121.9,120.8,119.8$, $118.8,117.1,108.6,70.5,68.6,29.0,25.9,22.8,21.8,10.7$; IR : $v_{\max } 3428,3052,2928,2850,1646$, $1605,1572,1468,1380,1332,1261,1219,1142,1076,1039,932,898,759,695,622 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI) $m / z 541\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{IN}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 541.1141, found 541.1145.

7-Iodo-6-phenyl-11bH-indolo[2,1-c]isoquinolino[2,1-a]quinoxaline (9a): 58\% yield; thick liquid; $\mathrm{R}_{f} 0.81$ (hexane/EtOAc= 95/05); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.85(\mathrm{t}, J$ $=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.6,133.5,132.7$, 132.5, 132.0, 131.1, 129.0, 128.5, 127.9, 127.8, 127.6, 127.1, 125.1, 124.7, 123.9, 122.7, 121.1, 121.3, 120.5, 119.2, 116.8, 116.4, 112.3, 110.8, 102.4, 60.4, 57.9; IR : $v_{\max } 3382,3057,2924,2854,1668,1596,1498,1454,1395,1361,1279,1220,1111$, 1061, 1024, 886, 848, 749, 694, 667, 614, 573, 527, $440 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 523\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{IN}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right) 523.0671$, found 523.0675.

7-Iodo-6-" ${ }^{\text {b }}$ 位yl-11bH-indolo[2,1-c]isoquinolino[2,1-a]quinoxaline (9b): 52\% yield; thick liquid; $\mathrm{R}_{f} 0.82$ (hexane/EtOAc $=95 / 05$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.0(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.92$ $(\mathrm{s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 4 \mathrm{H}), 0.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.5,139.4,133.9,133.3,128.6,126.7,127.2,124.7,123.3,122.4,121.2$, $120.9,123.5,117.7,116.4,114.7,112.2,110.6,100.8,99.5,57.4,58.1,32.0,29.1,21.7,13.5$; IR : $v_{\max } 3061,2956,2927,2865,1714,1597,1496,1455,1380,1223,1049,936,784,610,426 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 503\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{IN}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right) 503.0984$, found 503.0990.

13-Iodo-12-phenyl-4b $\boldsymbol{H}, \mathbf{6} \boldsymbol{H}$-benzo[4,5][1,3]oxazino[2,3-a]isoquinoline (10a): 74\% yield; thick liquid; $\mathrm{R}_{f} 0.52$ (hexane/EtOAc $=90 / 10$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$, $5.85(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.2,140.6$, $139.8,133.3,131.4,130.5,129.9,129.6,128.4,128.2,127.8,126.9,126.8,126.1,125.5,125.0$, 124.4, 123.8, 84.3, 74.4, 67.8; IR : $v_{\max } 3379,3060,2931,1695,1652,1619,1598,1498,1450$, 1377, 1337, 1268, 1216, 1156, 1028, 835, 756, 697, 664, $640 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 438\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{INO}\left(\mathrm{M}^{+}+\mathrm{H}\right) 438.0355$, found 438.0349.

13-Iodo-12-"butyl-4bH,6H-benzo[4,5][1,3]oxazino[2,3-a]isoquinoline (10b): 63% yield; thick liquid; $\mathrm{R}_{f} 0.51$ (hexane/EtOAc $=90 / 10$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.01 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 2 \mathrm{H})$, 0.8-0.9 (m, 2H), $0.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.5,141.2,133.5,130.9$, $129.5,129.3,126.8,126.1,125.2,125.7,84.2,74.2,67.5,36.5,29.7,22.1,13.6$; IR : $v_{\max } 3444$, 2955, 2925, 2856, 1711, 1656, 1584, 1553, 1486, 1458, 1378, 1293, 1242, 1202, 1130, 1019, 916, $758 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ESI}) m / z 418\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{INO}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 418.0668, found418.0662.

13-Iodo-8-methyl-12-phenyl-4b $\boldsymbol{H}, \mathbf{6 H}$-benzo $[4,5][1,3]$ oxazino $[2,3-a]$ isoquinoline (10c): $\quad 66 \%$ yield; yellow solid (M.P. $=136-138^{\circ} \mathrm{C}$) thick liquid; $\mathrm{R}_{f} 0.50$ (hexane/EtOAc $\left.=90 / 10\right) ;{ }^{1} \mathrm{H}$ NMR $(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.77(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=15.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.04(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.8,140.2,138.4$, $133.8,132.4,131.8,130.6,129.8,129.1,128.6,128.3,127.9,126.8,126.2,125.2,124.9,123.5,84.5$, 73.8, 67.9, 14.2; IR (KBr): $v_{\text {max }} 3435,3058,2923,1698,1652,1620,1496,1446,1377,1338,1276$, 1217, 1156, 1068, 1029, 880, 812, 759, 697, 666, 637, $528 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 452\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{INO}\left(\mathrm{M}^{+}+\mathrm{H}\right) 452.0511$, found 452.0516.

10-Iodo-9-phenyl-14bH-isoquinolino[2,1-a]tetrazo[1,5-c]quinazoline (11a): 62% yield; solid (M.P. $=212-214{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.28$ (hexane $/ \mathrm{EtOAc}=60 / 40$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01$ (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H})$, $7.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO d ${ }_{6}$): $\delta 154.8,147.6,139.1,137.1,136.8,131.6,131.2,130.6,130.3$, $129.8,129.4,128.6,127.9,127.7,127.1,124.9,124.2,120.9,117.4,70.5,54.8$; $\mathrm{IR}(\mathrm{KBr}): v_{\max } 3044$, 2920, 2852, 1648, 1575, 1518, 1482, 1431, 1382, 1349, 1290, 1248, 1234, 1138, 1090, 1062, 974, 885, 814, 698, $575 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 476\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{IN}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 476.0372, found 476.0378 .

4-(10-Iodo-14bH-isoquinolino[2,1-a]tetrazolo[1,5-c]quinazolin-9-yl)benzonitrile (11b): 72\% yield; solid (M.P. $=172-174^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.29$ (hexane/EtOAc $=60 / 40$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.3,147.9$, $139.2,138.9,138.1,136.6,131.9,131.5,130.8,130.6,130.3,129.7,129.1,128.5,128.1,127.6$, 124.6, 120.9, 117.4, 70.3, 59.8; IR (KBr): $v_{\max } 3042,2928,2850,2254,1651,1576,1527,1476$, 1380, 1356, 1294, 1138, 1097, 1062, 974, 876, 732, 695, $468 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 501\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{IN}_{6}\left(\mathrm{M}^{+}+\mathrm{H}\right) 501.0325$, found 501.0329.

5. Diversification of Products

The scope and synthetic utility of this newly developed EIBC approach was enhanced by diversifying branch-1 via metal catalyzed cross- coupling reactions. For instance, compound 1a was subjected to Sonogashira, Stille, Heck, Suzuki, Kumada and Negishi cross-coupling reaction conditions to afford products 1aa, 1ab, 1ac, 1ad, 1ae and 1af; respectively, in moderate to good yields.

a) Sonogashira coupling ($1 \mathrm{a} \rightarrow \mathbf{1 a a}$):

To a 25 mL round bottom flask a solution of $\mathbf{1 a}(0.050 \mathrm{~g}, 1 \mathrm{eq})$ in DMF $(2.5 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{eq})$ and purged with dry nitrogen for 30 minutes. Catalysts $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.004 \mathrm{~g}, 0.05 \mathrm{eq})$ and $\mathrm{CuI}(0.001 \mathrm{~g}, 0.05 \mathrm{eq})$ were introduced into the flask under nitrogen atmosphere at room temperature. To the above flask phenyl acetylene ($0.012 \mathrm{~g}, 1.1 \mathrm{eq}$) was added drop wise. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction mixture was cooled to room temperature and filtered through a short SiO_{2} pad followed by addition of water to remove DMF and extracted with DCM ($10 \mathrm{~mL} \times 3$). Work up and purification by column chromatography using hexane/ethyl acetate $(70 / 30)$ as eluent to afford $\mathbf{1 a a}(94 \%)$ as a pure product.

12-Phenyl-13-(phenylethynyl)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1aa): 94\% yield; solid (M.P. $=106-108{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.31$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03-$ $7.99(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H})$, $6.49(\mathrm{~s}, 1 \mathrm{H}), 6.38-6.36(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.3,145.4,142.8$, $134.5,133.2,132.4,132.2,131.5,130.8,130.0,129.4,129.1,128.9,128.5,128.3,128.2,128.0$, 127.6, 124.8, 123.7, 123.2, 94.5, 86.4,67.3; IR (KBr): $v_{\max } 3199,3055,2923,2196,1672,1599$ 1552, 1517, 1480, 1349, 1306, 1160, 1071, 1026, 908, 756, 727, 692, 641, 542, 430 $\mathrm{cm}^{-1} ;$ MS (ESI) $m / z 375\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 375.1497, found 375.1491.

b) Stille coupling ($\mathbf{1 a} \rightarrow \mathbf{1 a b}$):

To a 25 mL round bottom flask a solution of $\mathbf{1 a}(0.060 \mathrm{~g}, 1 \mathrm{eq})$ in DMF $(2.5 \mathrm{~mL})$ was added tri ${ }^{n}$ butyl(prop-1-en-2-yl) stannane ($54 \mathrm{mg}, 1.2 \mathrm{eq}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{mg}, 0.04 \mathrm{eq}), \mathrm{CuI}(1.2 \mathrm{mg}, 0.05 \mathrm{eq})$ CsF ($0.020 \mathrm{~g}, 2 \mathrm{eq}$) and purged with dry nitrogen for 30 minutes. The reaction mixture was heated to $100{ }^{\circ} \mathrm{C}$ and stirred for 8 hr . The reaction mixture was cooled to room temperature and filtered through a short SiO_{2} pad followed by addition of water to remove DMF and extracted with DCM (10 $\mathrm{mL} \times 3$). Work up and purification by column chromatography by using hexane/ethyl acetate (70/30) as eluent to afford $\mathbf{1 a b}(72 \%)$ as a pure product.

12-Phenyl-13-(prop-1-en-2-yl)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1ab): 72\% yield; thick liquid ; $\mathrm{R}_{f} 0.32$ (hexane/EtOAc $=70 / 03$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 9 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (s, 1H), 6.15 (s, 1H), 5.32 $(\mathrm{s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6,143.8,140.4,136.6,133.5$, 133.1, 129.4, 129.1, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.1, 127.8, 126.6, 124.2, 123.8, 121.2, 119.6, 117.7, 67.6, 24.1; IR : $v_{\max } 3192,3054,2928,1674,1594,1559,1502,1480,1348$, 1306, 1164, 1072, 1024, 904, 751, 696, 646, 542, $434 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 365\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right) 365.1654$, found 365.1661.

c) Heck coupling ($\mathbf{1 a} \rightarrow \mathbf{1 a c}$):

To a 25 mL round bottom flask a solution of $\mathbf{1 a}(0.050 \mathrm{~g}, 1 \mathrm{eq})$ in $\mathrm{DMF}(2.5 \mathrm{~mL})$ was added styrene (. $0042 \mathrm{~g}, 3 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{mg}, 0.05 \mathrm{eq}), \mathrm{PPh}_{3}(0.006 \mathrm{~g}, 0.1 \mathrm{eq}), \mathrm{Bu}{ }_{4} \mathrm{NBr}(0.036 \mathrm{~g}, 1 \mathrm{eq})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.035 \mathrm{~g}, 3 \mathrm{eq})$ and purged with dry nitrogen for 30 minutes. The reaction mixture was heated to $100{ }^{\circ} \mathrm{C}$ and stirred for 8 hr . The reaction mixture was cooled to room temperature and filtered through a short SiO_{2} pad followed by addition of water to remove DMF and extracted with DCM ($10 \mathrm{~mL} x \mathrm{3}$). Work up and purification by column chromatography by using hexane/ethyl acetate $(70 / 30)$ as eluent to afford $\mathbf{1 a c}(86 \%)$ as a pure product.

12-Phenyl-13-(styryl)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1ac): 86\% yield; solid (M.P. $=208-206{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.31$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96-7.93(\mathrm{~m}$, $1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 6 \mathrm{H})$, 7.02-6.99 (m, 2H), 6.39-6.36 (m, 2H), $6.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.1,145.2$, $142.6,134.9,134.3,133.0,132.2,131.9,131.7,131.3,130.6,129.8,129.2,128.9,128.7,128.3$, 128.1, 127.9, 127.8, 127.4, 126.5, 126.2, 125.9, 125.1, 124.6, 123.5, 123.0, 67.1 ; IR (KBr): $v_{\max }$ $3190,3052,2928,2198,1678,1590,1558,1512,1484,1345,1307,1162,1074,1025,902,758$, $720,696,646,543,435 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 427\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 427.1810, found 427.1815.

d) Suzuki coupling ($\mathbf{1 a} \rightarrow \mathbf{1 a d}$):

To a 25 mL round bottom flask a solution of $\mathbf{1 a}(0.050 \mathrm{~g}, 1 \mathrm{eq})$ in $\operatorname{DMF}(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.031 \mathrm{~g}, 2$ eq) and purged with dry nitrogen for 30 minutes. To the above flask p-bromobenzene boronic acid $(0.033 \mathrm{~g}, 1.5 \mathrm{eq})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.008 \mathrm{~g}, 0.1 \mathrm{eq})$ were introduced under nitrogen atmosphere at room temperature. The reaction mixture was heated to 100 ${ }^{\circ} \mathrm{C}$ and stirred for 8 hr . The reaction mixture was cooled to room temperature and filtered through a short SiO_{2} pad followed by addition of water to remove DMF and extracted with DCM ($10 \mathrm{~mL} \times 3$). Work up and purification by column chromatography using hexane/ethyl acetate (70/30) as eluent to afford $\mathbf{1 a d}(88 \%)$ as a pure product.

12-Phenyl-13-(4-bromophenyl)-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1ad): 88% yield; thick liquid; $\mathrm{R}_{f} 0.30$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02-7.99(\mathrm{~m}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H})$, 6.38-6.35 (m, 1H), $6.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 163.5,143.7,138.5,136.6,134.7$, 133.5, 133.3, 132.1, 131.8, 131.7, 131.0, 130.1, 128.6, 128.3, 128.1, 127.9, 127.4, 126.9, 126.6, $124.5,67.7$; IR : $3182,3055,2927,1679,1600,1519,1480,1356,1317,1254,1163,1123,1020$, 918, 800, 754, 720, 698, 597, 549v $\max _{\max } \mathrm{cm}^{-1}$; MS (ESI) $m / z 479\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right) 479.0759$, found 479.0765.

e) Kumada coupling ($\mathbf{1 a} \rightarrow \mathbf{1 a e}$):

To a 25 mL round bottom flask a solution of $\mathbf{1 a}(0.050 \mathrm{~g}, 1 \mathrm{eq})$ in THF (3 ml) was added $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.008 \mathrm{~g}, 0.1 \mathrm{eq})$ and purged with dry nitrogen for 30 minutes. To the above flask $\mathrm{CH}_{3} \mathrm{MgI}(0.055 \mathrm{~g}, 3 \mathrm{eq})$ was introduced under nitrogen atmosphere at room temperature. The reaction mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction mixture was cooled to room temperature and filtered through a short $\mathrm{SiO}_{2} \mathrm{pad}$ and the filtrate was concentrated. The residue was purified by column chromatography by using hexane/ethyl acetate (70/30) as eluent to afford 1ae (64\%) as a pure product.

12-Phenyl-13-methyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1ae): 64% yield; solid (M.P. $=178-180{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.30$ (hexane $/ \mathrm{EtOAc}=70 / 30$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.96-7.94(\mathrm{~m}, 1 \mathrm{H})$, 7.64 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.01$ $(\mathrm{m}, 2 \mathrm{H}), 6.39-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta 161.6$, $144.1,141.8,143.8,134.8,132.8,130.8,130.0,129.0,128.1,127.1,125.7,125.5,123.3,119.7$,
116.4, 66.9, 30.6 ; IR (KBr): $v_{\max } 3445,3293,3146,2926,2853,1634,1494,1442,748 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI) $m / z 339\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 339.1497, found 339.1452.

f) Negishi coupling ($\mathbf{1 a} \rightarrow \mathbf{1 a f}$):

To a 25 mL round bottom flask a solution of $\mathbf{1 a}(0.050 \mathrm{~g}, 1 \mathrm{eq})$ in DMF $(2.5 \mathrm{ml})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{mg}, 0.05 \mathrm{eq}), \mathrm{Bu}_{4} \mathrm{NBr}(0.036 \mathrm{~g}, 1 \mathrm{eq})$ purged with dry nitrogen for 30 minutes. To the above flask benzene $\mathrm{PhZnCl}(0.023 \mathrm{~g}, 1.2 \mathrm{eq})$ was introduced under nitrogen atmosphere at room temperature. The reaction mixture was stirred at rt for 12 hrs then the reaction mixture was cooled to room temperature and filtered through a short SiO_{2} pad followed by the addition of water to remove DMF and extracted with DCM (10 mL x 3). Work up and purification by column chromatography column chromatography by using hexane/ethyl acetate (70/30) as eluent to afford $\mathbf{1 a f}(68 \%)$ as a pure product.

12,13-Diphenyl-4bH-isoquinolino[2,1-a]quinazolin-6(5H)-one (1af): 68% yield; thick liquid; R_{f} 0.30 (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31-7.19 (m, 7H), 7.14-7.08 (m, 3H), 7.05-6.97 (m, 4H), $6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,163.7,143.9,138.7,136.9$, $134.9,133.5,132.3,132.0,131.9,131.2,130.3,130.9,128.8,128.5,128.2,128.0,127.8,127.6$, $127.2,126.8,124.7,122.0,67.8$; IR : $v_{\max } 3180,3053,2923,1673,1602,1516,1480,1403,1358$, 1310, 1255, 1161, 1122, 1023, 910, 801, 756, 727, 699, 644, 594, 541, 424 cm^{-1}; MS (ESI) $\mathrm{m} / \mathrm{z} 401$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 401.1654, found 401.1662.

6. Undesired Products Obtained During Optimization Studies and Characterization Data:

The following undesired products were observed in some cases during optimization studies. In case of SBA-1 prolonging the reaction for $8 \mathrm{hrs}, \mathbf{1 a}^{\prime}$ was observed as a major product. In case of SBA-2 under the reaction condition-4, $\mathbf{2 a}^{\prime}$ was the major product. In case of SBA-7 under the reaction condition-1, $7 \mathbf{a}^{\prime}$ was the major product. In case of SBA-9 under the reaction condition-1, intermediate dihydroindoloquinoxaline $9 \mathbf{a}^{\prime}$ was the major product.

13-Iodo-12-phenyl-6H-isoquinolino[2,1-a]quinazolin-6-one (1a'): 76\% yield; solid (M.P. = 94-96 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.24$ (hexane/EtOAc $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (dd, $J=1.5 \mathrm{~Hz}, J=8.3$, $1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{dd}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.9,154.1,151.2,138.3,136.8,133.5,132.3$, $131.5,130.6,130.1,129.3,128.7,127.9,127.5,127.1,126.8,126.4,122.1,117.8,67.9$; IR (KBr): $v_{\text {max }} 2925,1672,1628,1554,1518,1474,1336,1162,1130,1062,1045,806,729,686,542 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 449\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{IN}_{2} \mathrm{O}\left(\mathrm{M}^{+}+\mathrm{H}\right) 449.0151$, found 449.0158 .

5-Iodo-6-phenylbenzo[4, 5]imidazo[2, 1-a]isoquinoline (2a'): 71\% yield; solid (M.P. = 194-196 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f} 0.52$ (hexane/EtOAc= 90/10); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.91-8.88(\mathrm{~m}, 1 \mathrm{H}), 8.20-8.17$ $(\mathrm{m}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.69(\mathrm{~m}, 5 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.4,143.6,139.6$, $138.4,132.4,130.9,130.3,129.8,129.5,128.6,125.0,124.5,122.4,121.6,119.5,113.9,86.9 ;$ IR (KBr): $v_{\max } 2928,2854,1726,1631,1593,1452,1372,1232,1150,1118,914,740,672,568 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 421\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{I}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 421.0202, found 421.0212.

4-[(2-phenyl-1-ethynyl)phenyl]pyrrolo[1,2-a]quinoxaline (7a'): 58\% yield; thick liquid; $\mathrm{R}_{f} 0.48$ (hexane/EtOAc $=95 / 05$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08$ (dd, $J=1.4 \mathrm{~Hz}, J=6.7,1 \mathrm{H}$), 8.01$8.00(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H})$, 7.19-7.12 (m, 3H), 7.05-7.04 (m, 2H), 6.88-6.87 (m, 1H), 6.79-6.78 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 154.2,140.1,136.0,132.9,131.3,130.2,129.2,128.9,128.2,127.9,127.6,127.3,125.8$, 125.2, 123.1, 122.5, 114.2, 113.7, 113.9, 109.0; IR (KBr): $v_{\max } 3050,2926,2858,1690,1605,1564$, 1475, 1346, 1284, 1205, 1108, 1046, 768, 698, 618, 560, $445 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 345\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right) 345.1392$ found 345.1385 .

6-[(2-phenyl-1-ethynyl)phenyl]-5,6-dihydroindolo[1,2-a]quinoxaline (9a'): 65\% yield; thick liquid; $\mathrm{R}_{f} 0.78$ (hexane/EtOAc $=95 / 05$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.07-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.5,133.8,133.4,132.4,131.9,129.8,128.9,128.5,128.1,127.9$, 127.7, 126.1, 125.0, 124.6, 123.8, 122.6, 121.1, 120.4,119.1, 118.5, 116.7, 116.3, 112.2, 102.3, 57.8; IR (KBr): $v_{\max } 3384,2924,2852,1596,1490,1451,1392,1274,1224,1066,1022,840,698,664$, $615,526 \mathrm{~cm}^{-1}$; MS (ESI) $m / z 397\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right) 397.1705$, found 397.1712.

7. Enantioselective Experiment and HPLC Chromatograms

The EIBC approach could be made enantioselective under the catalysis of chiral Brønsted acid with the realm of iodine cyclization. To our satisfaction, when substrate 2-(phenylethynyl) benzaldehyde Xa treated with 2-amino-5-bromobenzamide 1(I) in the presence of $5 \mathrm{~mol} \%(S)$-3,3'-
bis (9-anthracenyl)-1,1'-binaphthyl-2,2'-diylhydrogenphosphate in DCE followed by addition of 1.3 eq $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 1.2 eq I_{2}, the product $\mathbf{1 b}$ was obtained in 60% yield with 90% ee.

Experimental procedure:To a screw-cap 2.5 ml vial containing stir bar, were added scaffold building agent $\mathbf{1}$ (I) ($0.030 \mathrm{~g}, 1 \mathrm{eq}$) and 2-ethynylbenzaldehyde $\mathbf{X a}(1 \mathrm{eq})$ in DCE $(0.09 \mathrm{M})$ followed by the addition of $4 \mathrm{~A}^{\circ} \quad \mathrm{MS}$ and $5-\mathrm{mol} \% \quad(S)-3,3^{\prime}-$ bis(9 -anthracenyl)-1, 1^{\prime}-binaphthyl-2,2'diylhydrogenphosphate ${ }^{1}$. The reaction vial was fitted with a cap, evacuated and filled with nitrogen and stirred at $-5{ }^{\circ} \mathrm{C}$ for 32 hrs . After the prescribed time, the reaction mixture was cooled to $-15{ }^{\circ} \mathrm{C}$ followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{eq})$ and iodine (1.2 eq) in a sequential manner and allowed to stir for 2 hrs . The reaction mixture was quenched by the addition of aq.sodium thiosulphate solution, diluted with 5 mL water and extracted with DCM ($10 \mathrm{~mL} \times 3$). Work up and purification by column chromatography using $\mathrm{MeOH} / \mathrm{DCM}$ as an eluent to afford analytically pure compound in 60% yield with 90% ee. HPLC conditions: OD-H column, n-hexane $/ 2$-propanol $=80 / 20$, flow rate 0.8 $\mathrm{mL} / \mathrm{min} ; \lambda=360 \mathrm{~nm} ; \mathrm{t}_{\text {minor }}=9.12, \mathrm{t}_{\text {major }}=12.64 ;[\alpha]_{\mathrm{D}}{ }^{28.4}=-156.8\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right)$

[^0]Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

1 PDA Multi $3 / 360 \mathrm{~nm} 3 \mathrm{~nm}$
PDA Ch3 360nm 3nm

Peak\#	Ret. Time	Area	Area \%
1	8.24	32362	2.00
2	9.07	752373	46.39
3	12.60	800289	49.35
4	18.23	36770	2.27
Total		1621795	100.00

1 PDA Multi $2 / 360 \mathrm{~nm} 5 \mathrm{~nm}$

PDA Ch2 360nm 5nm

Peak\#	Ret. Time	Area	Area \%
1	9.12	56771	4.52
2	10.54	13880	1.11
3	11.35	124908	9.95
4	12.64	1060073	84.43
Total		1255632	100.00

8. Anti mycobacterial activity

Tuberculosis is a foremost destroyer worldwide causing an estimated 1.4 million deaths per year. ${ }^{2}$ The re-emergence of TB as a public health threat emphasizes a need to develop novel antimycobacterial agents with lesser toxicity. Some of poly heterocyclic compounds resulted through EIBC resembles structures of reported anti-tubercular agents. ${ }^{3}$ Therefore, compounds accessed through EIBC were evaluated for their anti-mycobacterial activities. The assay was performed with Mycobacterium.smegmatis ($\mathrm{MC}^{2} 155$) as surrogate model for screening drugs against mycobacterium ${ }^{4}$ using growth inhibition assay by broth dilution method. The results were analyzed as the percentage of growth inhibition and from dose response curves MIC of all compounds are calculated and presented in Table 1. The screening results revealed that the compounds $\mathbf{7 a}, \mathbf{7 b}$, and 8a show excellent anti-mycobacterial activities in a reference to isoniazid and rifampicin.

Table 1: Anti-mycobacterial activities of selected compounds

$\begin{aligned} & \text { Sl. } \\ & \text { No } \end{aligned}$	product	MIC $\mu \mathrm{g} / \mathrm{mL}$	$\begin{gathered} \hline \text { Sl. } \\ \text { N } \\ \text { o. } \end{gathered}$	product	MIC ${ }^{\text {a,b,c,d }}$ $\mu \mathrm{g} / \mathrm{mL}$
1	1a	>50	11	4c	>50
2	1b	>50	12	5a	>50
3	1c	>50	13	5c	>50
4	1d	>50	14	7 a	11.15 ± 0.24
5	1f	>50	15	7b	6.14 ± 0.03
6	2 a	>50	16	8a	7.70 ± 0.58
7	3a	>50	17	9 a	31.04 ± 0.17
8	3 c	30.49 ± 2.06	18	10a	>50
9	4a	49.59 ± 2.44	19	10b	23.47 ± 0.72
10	4b	>50	20	11a	47.82 ± 4.41
*	Rifampicin	1.87	*	Isoniazid	15.25

${ }^{a}$ Mycobacterium.smegmatis ATCC 14468 ($\mathrm{MC}^{2} 155$). ${ }^{b} \mathrm{MIC}$ is the concentration of compounds inhibiting growth by 90%. ${ }^{c} 50 \mu \mathrm{~g} / \mathrm{mL}$ of compound concentration is considered as showing no significant activity. ${ }^{d}$ All experiments were carried out in triplicates and results were reported as \pm SD.

Next, we have evaluated cytotoxicity effect of the same compounds using cell-based assays to shed light on selectivity issues. The in vitro cell cytotoxicity assays were performed on four different human cancer cell lines such as A549 (human lung carcinoma epithelial), HeLa (human

[^1]epithelial cervical cancer), DU145 (prostate cancer) and MCF-7 (breast cancer). The selectivity index (SI, $\mathrm{IC}_{50} /$ MIC ratio) is summarized in the Table 2 which showed that the compounds 7a, 7b and 8a displayed extraordinary selectivity towards Mycobacterium.smegmatis. The results are very promising as these compounds especially $\mathbf{7 a}, \mathbf{7 b}$ and $\mathbf{8 a}$ are active against mycobacterium with no cytotoxicity and therefore could have potential for further optimization as potential anti-TB drugs.

Table 2: Selectivity index (SI) is the ratio of $\mathrm{IC}_{50} / \mathrm{MIC}$

Sl. No	product	DU145	Hela	MCF-7	A549
1	$\mathbf{3 c}$	1.62	>13	2.85	2.31
2	$\mathbf{4 a}$	0.83	>13	>13	1.45
3	$\mathbf{7 a}$	$\mathbf{5 . 6 6}$	$\mathbf{4 . 1 7}$	$\mathbf{3 . 9 8}$	$\mathbf{4 . 1 9}$
4	$\mathbf{7 b}$	$\mathbf{6 . 9 4}$	$\mathbf{1 3 . 3 7}$	$\mathbf{1 4 . 2 5}$	$\mathbf{1 0 . 5 4}$
5	$\mathbf{8 a}$	>13	>13	$>\mathbf{1 3}$	$\mathbf{1 1 . 1 5}$
6	$\mathbf{9 a}$	1.28	2.71	63.12	1.99
7	$\mathbf{1 0 b}$	1.42	>13	>13	2.83
8	$\mathbf{1 1 a}$	1.11	1.66	>13	1.60

Methods:

In vitro anti-mycobacterial activity assay: Anti-mycobacterial activity of the synthesized compounds was performed with Mycobacterium. smegmatis strain using growth inhibition assay by turbidometry. Briefly, isolated single colonies of M. smegmatis MC ${ }^{2} 155$ (ATCC 14468) from 7H10 agar plate were grown overnight in Middlebrook 7H9 medium (0.47% Middlebrook 7 H 9 broth base, 10% ADS, 0.2% glycerol, and 0.1% Tween-80) to mid exponential phase at $37^{\circ} \mathrm{C}$. Subsequently, 5 ml of Middlebrook 7H9 broth were inoculated with the overnight grown culture and allowed to grow at $37{ }^{\circ} \mathrm{C}$ to early \log phase $\left(\mathrm{OD}_{600} \approx 0.3\right)$. For anti-microbial assay, $98 \mu 1$ of $1: 1000$-folds dilution of secondary culture was dispensed into 96 -well microtiter plate. To each well $2 \mu \mathrm{l}$ of test compound was added to attain a final concentration of $6.25,12.5,25$ and $50 \mu \mathrm{M}$, and allowed to grow at $37{ }^{\circ} \mathrm{C}$ for 32 hours. $240 \mu 1$ of sterile water were added to each well of the peripheral rows of 96 -well plate to minimize media evaporation during assay incubation. Bacterial growth was assessed after 32 hours of incubation by measuring turbidity at $600 \mathrm{~nm} \mathrm{OD}_{600}$ values using TECAN Infinite 200 PRO $^{\text {TM }}$ (Tecan Instruments, Switzerland). Positive controls were included in every assay plates using stock solutions of INH ($10 \mathrm{mg} / \mathrm{mL}$, HiMedia) and Rifampicin ($10 \mathrm{mg} / \mathrm{mL}$, HiMedia) to achieve the final concentration of $0.5,1,2,4,8$ and $16 \mu \mathrm{~g} / \mathrm{mL}$ for INH and $0.25,0.5,1,2,4$ and $8 \mu \mathrm{~g} / \mathrm{mL}$ for Rifampicin. Additional controls DMSO (solvent without compound) and medium without inoculums were included in all the assay plates avoiding intra assay variability. The results were analyzed as the
percentage of growth inhibition. All experiments were carried out in triplicates and results were reported as \pm SD. From the percentage of the growth inhibition, the GI_{50} values are calculated.

Anti cell proliferative Assays: The synthesized compounds have been valuated for their in vitro cytotoxicity in four different human cancer cell lines. All cell lines used in this study were purchased from the American Type Culture Collection (ATCC, USA). A549 (human lung carcinoma epithelial), HeLa (human epithelial cervical cancer), DU145 (prostate cancer) and MCF-7 (breast cancer) were grown in standard Dulbecco's modified Eagles medium containing 10\% FBS in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ at $37{ }^{\circ} \mathrm{C}$. Cells were trypsinized when sub-confluent from T75 flasks/ 90 mm dishes and seeded in 96 well plates at a density of 5000-10000 cells/well depending on the doubling time of individual cell lines further continued to grow in complete medium under standard conditions. After 18 hrs to treat cells with test molecules, aliquots of $2 \mu \mathrm{~L}$ of the compound dilutions were added to the appropriate microtiter wells already containing $198 \mu \mathrm{~L}$ of fresh medium with cells, resulting in the required final drug concentrations. As a standard reference drug we have used Doxorubicin in all assay plates served as internal control. For each, compound four concentrations $(0.1,1,10$ and $100 \mu \mathrm{M})$ were evaluated as per NCI cell line screening protocol and each was done in triplicate wells. Plates were incubated further for 48 h and assay was terminated by the addition of $10 \mu \mathrm{~L}$ of 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT, $5 \mathrm{mg} / \mathrm{ml}$) and incubated for 60 min at $37^{\circ} \mathrm{C}$. The plates were air-dried and the dye bound to the cells was subsequently solubilized in $100 \mu \mathrm{l}$ of DMSO, and the absorbance was red on a multimode reader (Tecan) at a wavelength of 560 nm is directly proportional to cell growth. Percent growth was calculated for test wells relative to control wells. The above determinations were repeated three times. The growth inhibitory effects of the compounds were analyzed by generating dose response curves as a plot of the percentage surviving cells versus drug concentration. Sensitivity of the cancer cells to the drug treatment was expressed in terms of the concentration of drug required for 50% inhibition of cell growth (IC_{50}) results were presented in table 03 supplementary materials.

Table 03: Selected compounds IC_{50} values for different cancer cell lines

		DU-145		HeLa		MCF-7		A549	
S.	No.	IC-50	Std $(\mu \mathrm{M})$	IC-50 Dev.	Std $(\mu \mathrm{M})$	IC-50 $(\mu \mathrm{M})$	Std Dev.	IC-50 $(\mu \mathrm{M})$	Std Dev.
1	1a	14.27	1.71	>200		113.27	5.69	138.08	12.74
2	1b	79.58	6.86	120.57	2.32	165.11	12.32	143.47	10.70
3	1c	27.95	3.65	127.66	24.93	126.62	6.26	125.68	1.20
4	2a	85.59	3.24	>200		>200		146.87	7.17

5	3a	131.71	14.05	>200		173.90	22.52	175.99	7.95
6	$\mathbf{3 c}$	93.74	7.45	>200		165.09	0.05	133.63	9.82
7	$\mathbf{4 a}$	84.26	12.29	>200		>200		148.29	21.44
8	$\mathbf{4 b}$	95.41	7.27	>200		>200		126.67	0.07
9	$\mathbf{4 c}$	88.58	5.12	165.28	14.27	155.34	9.82	168.59	7.87
10	$\mathbf{5 a}$	87.29	12.97	>200		185.73	29.64	125.71	16.52
11	$\mathbf{5 c}$	65.47	3.01	153.38	6.87	192.21	20.01	137.54	12.02
12	7a	133.72	3.28	98.41	14.02	94.06	6.10	99.02	3.30
13	7b	85.15	1.81	164.09	39.61	174.90	12.34	129.33	25.96
14	$\mathbf{8 a}$	>200		>200		>200		160.09	9.49
15	$\mathbf{9 a}$	76.37	1.42	161.10	12.11	185.61	11.69	118.21	4.98
16	$\mathbf{1 0 a}$	81.27	5.40	>200		>200		>200	
17	$\mathbf{1 0 b}$	79.91	5.38	>200		>200		159.30	33.25
18	$\mathbf{1 d}$	87.74	4.10	159.52	13.53	>200		138.68	20.71
19	$\mathbf{1 f}$	160.78	20.54	>200		>200		>200	
20	$\mathbf{1 1 a}$	111.88	6.08	166.70	26.00	>200		160.60	6.41
21	Doxorubucin	6.73	0.18	7.51	0.10	7.87	0.13	7.17	0.39

9. X- ray Crystallography Data:

X-ray data for the compounds were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated $\mathrm{MoK} \alpha$ radiation ($\lambda=0.71073 \AA$) with ω-scan method [Bruker (2001). SAINT (Version 6.28a) \& SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]. Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.

Integration and scaling of intensity data were accomplished using SAINT program [Bruker (2001). SAINT (Version 6.28a) \& SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.]. The structure was solved by direct methods using SHELXS97 [Sheldrick GM. (2008) Acta Crystallogr A64: 112-122.] and refinement was carried out by full-matrix least-squares technique using SHELXL97 [Sheldrick GM. (2008) Acta Crystallogr A64: 112-122.]. Anisotropic displacement parameters were included for all non-hydrogen atoms. The hydrogen atoms attached to nitrogen atoms of $\mathbf{1 e}$ were located in a difference density map and refined isotropically. All other H atoms were positioned geometrically and treated as riding on their parent C atoms with $\mathrm{C}-\mathrm{H}=0.93$ $0.96 \AA$ and $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2$ or $1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. In $\mathbf{1 e}$, the ethyl acetate solvent shows high thermal vibrations, hence attempts were made to refine the solvent with disorder model was unsuccessful. The ethyl acetate atoms $\mathrm{C} 30 / \mathrm{C} 31 / \mathrm{C} 32 / \mathrm{C} 33 / \mathrm{O} 2 / \mathrm{O} 3$ were constrained with distance and ISOR restrains. In $\mathbf{5 c}$,
the atoms C22 and C23 were disordered over two sites (C22/C22' \& C23/C23') and the siteoccupancy factors of the disordered atoms were refined to $0.63(2)$ and $0.37(2)$. The major and minor components of the disordered atoms were restrained to be similar using SIMU and DELU instructions. The C-C distances of the disordered atoms were constrained with $1.45(1) \AA$.

ORTEP diagram of $\mathbf{1 b}$ (CCDC 928899)

ORTEP diagram of $\mathbf{1 e}$ (CCDC 929085)

ORTEP diagram of 5c (CCDC928900)

10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

\qquad
-25.685
$\begin{array}{r}22.807 \\ \hline\end{array}$

\qquad
-29.123
-21.735
13.517

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2013

-163.612

-163.522

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

[^0]: 1 J. Itoh, K. Fuchibe, T. Akiyama, Angew. Chem., Int. Ed., 2006, 45, 4796-4798.

[^1]: 2 WHO global health observatory data report. Geneva: GlobalTuberculosis Program; 2012
 3 a) L. Ballell, R. H. Bates, R. J. Young, D. Alvarez-Gomez, E. Alvarez-Ruiz, V. Barroso, D. Blanco, B. Crespo, J. Escribano, R. González, S. Lozano, S. Huss, A. Santos-Villarejo, J. J. Martín-Plaza, A. Mendoza, M. J. Rebollo-Lopez, M. Remuiñan-Blanco, J. L. Lavandera, E. Pérez-Herran, F. J. Gamo-Benito, J. F. García-Bustos, D. Barros, J. P. Castro, N. Cammack, ChemMedChem, 2013, 8, 313-321; b) L. G. Dover, G. D. Coxon, J. Med. Chem. 2011, 54, 6157-6165.
 4 a) M. Altaf, C. H. Miller, D. S. Bellows, R. Toole, Tuberculosis 2010, 90, 333-337; b) C. O. Esimone, C. S. Nworu, E. B. Onuigbo, J. U. Omeje, K. L. Nsirim, J. C. Ogbu, M. I. Ngwu, K. F. Chah, International journal of Green Pharmacy 2009, 3, 201-205; c) V. Chaturvedi, N. Dwivedi, R. P. Tripathi, S. Sinha, J. Gen. Appl. Microbiol., 2007, 53, 333-337.

