Supporting Information

Three-Dimensional π-Electron Acceptor, Tri-Phenyl-o-Carborane, Bearing a Rigid Conformation with End-On Phenyl Units

Guo Fan Jin,[†] Jo-Hyun Hwang,[‡] Jong-Dae Lee,^{‡,*} Kyung-Ryang Wee,[†] Il-Hwan Suh,[†] and Sang Ook Kang^{†,*}

[†]Department of Advanced Materials Chemistry, Korea University, Sejong-ro 2511, Sejong city 339-700, Korea. [‡]Department of Chemistry, Chosun University, Gwangju 501-759, Korea.

	Contents	Page
1.	General Procedures	S2-S3
2.	Synthesis of phenylated o-carboranes	S4-S6
3.	NMR spectra of 1, 2, and 3	S7-S12
4.	X-ray crystallography data of 1, 2, 3, and 4	S13-S15
5.	UV/vis absorption spectra of 1, 2, 3, and 4	S16
6.	Simulated and experimental Raman spectra	S17-S19
7.	Cyclic voltammetry for 2 and 3	S20
8.	DFT/TDDFT calculations	S21-28
9.	References	S29-S30

General Procedures. All manipulations were performed under a dry nitrogen or argon atmosphere using standard Schlenk techniques. Tetrahydrofuran (THF) was distilled under nitrogen from sodium/benzophenone. The elemental analyses were performed using a Carlo Erba Instruments CHNS-O EA 1108 analyzer. High Resolution Tandem Mass Spectrometry (Jeol LTD JMS-HX 110/110A) was performed at the Korean Basic Science Institute. The ¹H, ¹¹B, and ¹³C NMR spectra were recorded on a Bruker600 spectrometer operating at 600.1, 150.9, and 192.6 MHz, respectively. All ¹¹B chemical shifts were referenced to BF₃·O(C₂H₅)₂ (0.0 ppm) with a negative sign indicating an up-field shift. All proton and carbon chemical shifts were measured relative to the internal residual CHCl₃ from the lock solvent (99.9% CDCl₃). The absorption and photoluminescence spectra were recorded on a SHIMADZU UV-3101PC UV-VIS-NIR scanning spectrophotometer and a VARIAN Cary Eclipse fluorescence spectrophotometer, respectively. Decaborane, o-carborane, and 1-phenyl-o-carborane were purchased from Katchem and *N*,*N*-dimethylaniline, dichlorophenylborane, n-BuLi (2.5 M in hexane), chromium hexacarbonyl [Cr(CO)₆], and benzene-chromium(0) tricarbonyl[(η^6 -Bz)Cr(CO)₃] were purchased from Aldrich Chemicals.

Crystal Structure Determination. Crystals of **1**, **2**, **3**, and **4** were obtained from toluene, sealed in glass capillaries under argon, and mounted on the diffractometer. Preliminary examination and data collection were performed using a Bruker SMART CCD detector system single-crystal X-ray diffractometer equipped with a sealed-tube X-ray source (40 kV \times 50 mA) using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Preliminary unit cell constants were determined with a set of 45 narrow-frame (0.3° in ϖ) scans. The double-pass method of scanning was used to exclude any noise. The collected frames were integrated using an orientation matrix determined from the narrow-frame scans. The SMART software package was used for data collection, and SAINT was used for frame integration.¹ Final cell

constants were determined by a global refinement of xyz centroids of reflections harvested from the entire data set. Structure solution and refinement were carried out using the SHELXTL-PLUS software package.²

Cyclic voltammetry. The cyclic voltammetry experiments were performed using a BAS 100 electrochemical analyzer. A three-electrode cell system containing a platinum disk, a platinum wire, and Ag/AgNO₃ as the working, counter, and reference electrodes, respectively, was used. All data were obtained for Ar-purged CH_2Cl_2 solution containing 0.1M tetrabutylammonium perchlorate (TBAP) at a scan rate of 0.1 V s⁻¹.

Raman spectroscopy. Raman spectra were obtained using a micro-Raman system (JY-Horiba, LabRam 300) with a collimated 50 x objective lens (Olympus, NA 0.75). This system is equipped with a thermoelectrically cooled charged-coupled device (CCD) detector and the signal was obtained by 180°backscattering geometry. The 647 nm line of CW Kr ion laser (Coherent, Innova 300C) was used as a Raman excitation source.

Density Functional Calculations. Full geometry optimizations of the complexes in their singlet ground state were performed with DFT using the B3LYP functional,³ with the relativistic effective core potential and basis set LanL2DZ⁴ for the chromium and the 6- $31G^5$ basis set for the remaining atoms. No symmetry constraints were applied during the geometry optimizations, which were carried out with the Gaussian 09 package.⁶ The nature of the stationary points located was further checked by computations of harmonic vibrational frequencies at the same level of theory. All Isodensity plots (isodensity contour = 0.03 a.u.) of the frontier orbitals were visualized by Chem3D Ultraprogram.⁷ The various properties of all compounds, such as HOMOs, LUMOs, and energy gaps were obtained from the computed results and were compared to the available experimental data. The excitation energies and oscillator strengths for the lowest 30 singlet–singlet transitions at the optimized geometry in the ground state were obtained in TDDFT calculations using the same basis set and functional S3

as for the ground state. Frequency calculations of all carboranes including Raman data were calculated by the same functional basis set using an optimized structure. Simulated absorption spectra and Raman spectra of all carborane compounds were obtained by GaussSum 2.2 program.⁸

Synthesis of 1,2,3-triphenyl-o-carborane (1). 1-Phenyl-o-carborane (1.10 g, 5.0 mmol) was added to a solution of KOH (0.84 g, 15 mmol) in 50 mL of ethanol and the clear reaction mixture was heated to reflux. TLC of the reaction mixture sample showed no starting material spot after that time. The reaction mixture was evaporated to dryness and re-dissolved in 50 mL of distilled water. An excess of Me₄NCl was added to the reaction mixture and the precipitate of the tetramethylammonium nido-carborane salt formed was filtered off and dried using air suction (1.42 g, 100%). A 2.5 M solution of n-BuLi in hexane (1.0 mL, 2.2 mmol) was slowly added dropwise to a stirred solution of tetramethylammonium nido-carborane salt (0.57 g, 2.0 mmol) in 40 mL of THF at -78 °C, and then dichlorophenylborane (0.35 g, 2.2 mmol)mmol) was added via cannula. After this addition the reaction mixture was left to warm to room temperature and was then heated to reflux 6 h. The white precipitate of lithium chloride was removed by filtration in air and washed with THF. After evaporation the crude reaction mixture was purified by column chromatography (Hexane eluent) to give 1,2,3-triphenyl-ocarborane1and was then recrystallized from hexane to obtain a white powder.Yield: 86% (0.64 g, 1.72 mmol). m.p.: 193-194 °C. HRMS: Calcd for $[{}^{12}C_{20}{}^{11}B_{10}{}^{1}H_{24}]^+$ 374.2809. Found: 374.2802. IR spectrum (KBr pellet, cm⁻¹): v(B-H) 2581, 2601; v(C-H) 3237. ¹H NMR (CDCl₃, 600.1 MHz) δ 7.410 (m, 4H, Ph-*H*), 7.310 (m, 3H, Ph-*H*), 7.150 (m, 8H, Ph-*H*). ¹³C NMR (CDCl₃, 150.9 MHz) δ 135.6, 131.3, 131.0, 129.9, 128.9, 128.0, 127.36 (Ph), 83.6 (Ph-Ccab). ¹¹B NMR (CDCl₃, 192.6 MHz) δ -1.62 (1B), -2.99 (2B), -8.02 (3B), -8.57 (2B), -10.15 (2B).

Synthesis of 1,3,6-triphenyl-o-carborane (2). A procedure analogous to the preparation of S4

1was used and obtained a white powder. Yield: 58% (0.43 g, 1.2 mmol). m.p.: 178-179 °C. HRMS: Calcd for [${}^{12}C_{20}{}^{11}B_{10}{}^{1}H_{24}$]⁺ 374.2809. Found: 374.2819. IR spectrum (KBr pellet, cm⁻¹): v(B–H) 2581, 2601; v(C–H) 3237. ¹H NMR (CDCl₃, 600.1 MHz) δ 7.334 (d, 4H, J = 7.8 Hz), 7.218 (d, 1H, J = 7.2 Hz), 7.206 (d, 1H, J = 7.8 Hz), 7.129 (d, 2H, J = 7.2 Hz), 7.117 (d, 2H, J = 7.8 Hz), 7.001 (t, 1H, J = 7.2 Hz), 6.900 (d, 1H, J = 8.4 Hz), 6.887 (d, 1H, J = 7.2 Hz), 6.791 (d, 2H, J = 7.8 Hz), 4.433 (s, 1H). ¹³C NMR (CDCl₃, 150.9 MHz) δ 133.7, 130.5, 129.2, 128.6, 127.7, 127.6, 127.1 (*Ph*), 78.3 (Ph-Ccab), 57.8 (H-Ccab). ¹¹B NMR (CDCl₃, 192.6 MHz) δ –0.88 (2B), -2.77 (1B), -4.82 (1B), -9.75 (2B), -11.04 (2B), -14.05 (2B).

Synthesis of 1,2,3,6-tetraphenyl-o-carborane (3). A procedure analogous to the preparation of **1** was used and obtained a white powder. Yield: 37% (0.33 g, 0.74 mmol). m.p.: 252-253 °C. HRMS: Calcd for $[{}^{12}C_{26}{}^{11}B_{10}{}^{1}H_{28}]^+$ 450.3122. Found: 450.3108. IR spectrum (KBr pellet, cm⁻¹): v(B–H) 2581, 2601; v(C–H) 3237. ¹H NMR (CDCl₃, 600.1 MHz) δ 7.294 (d, 4H, *J* = 7.8 Hz, Ph-*H*), 7.242 (d, 4H, *J* = 8.4 Hz, Ph-*H*), 7.229 (d, 4H, *J* = 7.8 Hz, Ph-*H*), 7.138 (d, 2H, *J* = 7.2 Hz, Ph-*H*), 7.126 (d, 2H, *J* = 7.8 Hz, Ph-*H*), 6.991 (t, 4H, *J* = 7.8 Hz, Ph-*H*). ¹³C NMR (CDCl₃, 150.9 MHz) δ 134.6, 132.0, 130.2, 129.5, 128.9, 127.6, 127.1 (*Ph*), 80.3 (Ph-Ccab). ¹¹B NMR (CDCl₃, 192.6 MHz) δ 1.44 (2B), –2.75 (2B), –8.50 (2B), –9.45 (4B).

Synthesis of 1,2-bis(phenyl- η^6 -chromium(0)tricarbonyl)-3-phenyl-o-carborane (4). Compound 1 (0.37 g, 1.0 mmol) and [Cr(CO)₆] (0.44 g, 2.0 mmol) were dissolved in a mixture of THF (5 mL) and di-*n*-butyl ether (50 mL). The mixture was refluxed for 72 h and the resulting dark reddish solution was cooled to room temperature and filtered over Celite. The solvents were evaporated under reduced pressure. After evaporation the crude reaction mixture was purified using column chromatography (CH₂Cl₂:Hexane eluent) to give chromium complex **4**, and then recrystallized from hexane to obtain red crystals. Yield: 87% (0.59 g, 0.87 mmol). HRMS: Calcd for $[C_{28}H_{30}B_{10}Cr_2O_6]^+$ 676.1783. Found: 676.1768. IR spectrum (KBr pellet, cm⁻¹): v(B–H) 2583, 2589; v(CO) 1960, 1892. ¹H NMR (CDCl₃, 300.1 MHz) δ 7.62 (m, 4H, Ph-*H*), 7.47 (m, 3H, Ph-*H*), 7.30 (m, 8H, Ph-*H*). ¹³C NMR (CDCl₃, 75.4 MHz) δ 231.4 (Cr-CO), 141.5, 137.9, 134.8, 132.7, 131.3, 130.8, 128.7 (*Ph*), 85.6 (Ph-Ccab). ¹¹B NMR (CDCl₃, 96.3 MHz) δ –1.84 (1B), –3.11 (3B), –8.54 (3B), –8.71 (2B), –10.37 (1B).

Figure S1. ¹H-NMR spectrum of **1**.

Figure S2. ¹H-NMR spectrum of **2**.

Figure S3. ¹H-NMR spectrum of **3**.

Figure S4. ¹³C-NMR spectrum of **1**.

Figure S6. ¹³C-NMR spectrum of **3**.

Figure S7. ¹¹B-NMR spectrum of **1**.

Figure S8. ¹¹B-NMR spectrum of **2**.

Figure S9. ¹¹B-NMR spectrum of **3**.

Figure S10. ¹¹B{¹H}-NMR spectrum of **1**.

Figure S12. ¹¹B{¹H}-NMR spectrum of **3**.

Figure S13. ORTEP drawing (30% probability for thermal ellipsoids) of 1 (the hydrogen atoms are omitted for clarity).

Figure S14. ORTEP drawing (30% probability for thermal ellipsoids) of 2 (the hydrogen atoms are omitted for clarity).

Figure S15. ORTEP drawing (30% probability for thermal ellipsoids) of 3 (the hydrogen atoms are omitted for clarity).

Figure S16. ORTEP drawing (30% probability for thermal ellipsoids) of **4** (the hydrogen atoms are omitted for clarity).

•	1	2	3	4
Identification code	k110211	k111101	k120303	k120304
Empirical formula	$C_{20} \; H_{24} \; B_{10}$	$C_{20}H_{24}B_{10}$	$C_{26} H_{28} B_{10}$	C26 H24 B10 Cr2 O6
Formula weight	372.49	372.49	448.58	644.55
Temperature	293(2) K	293(2) K	293(2) K	293(2) K
Wavelength	0.71073 A	0.71073 Å	0.71073 Å	0.71073 A
Crystal system,	Monoclinic,	Monoclinic,	Monoclinic,	Monoclinic,
space group	$P2_{1}2_{1}2_{1}$	$P2_{1}/n$	<i>P</i> 2 ₁ /c	P 21/c
Unit cell dimensions	a = 8.2745(7) Å	a = 12.5359(8) Å	a = 18.545(3) Å	a = 16.531(3) Å
	b = 15.5626(13) Å	b = 12.9150(8) Å	b = 10.3481(15) Å	b = 11.276(2) Å
	c = 16.2094(14) Å	c = 13.3882(8) Å	c = 13.6761(19) Å	c = 15.770(3) Å
Volume	2087.3(3) Å ³	2137.1(2) Å ³	2484.3(6) Å ³	2929.1(9) Å ³
Z, D _{calc}	4, 1.185 g/cm ³	4, 1.158 g/cm^3	4, 1.199 g/cm ³	4, 1.462 g/cm ³
<i>F</i> (000)	776	776	936	1304
Crystal size	$0.10 \times 0.08 \times 0.05 \ mm$	$0.40 \times 0.20 \times 0.20 \text{ mm}$	$0.2\times0.15\times0.1~mm$	$0.3\times0.2\times0.15~mm$
θ range for data	1.81 to 28.34°	2.06 to 28.36°	1.16 to 28.43°	1.24 to 28.31°
collection				
Limiting indices	$-11 \le h \le 10$, $-20 \le k \le 20$,	$-16 \le h \le 16$, $-17 \le k \le 17$,	-24≤h≤24, -13≤k≤13,	-22≤h≤22, -15≤k≤14,
	-21≤l≤21	−17≤l≤17	-18 <u><</u> 1 <u>8</u>	-20≤l≤21
Reflections collected /	21438 / 5180 [<i>R</i> (int) =	28537 / 5335 [<i>R</i> (int) =	24319 / 6192 [<i>R</i> (int) =	29354 / 7259 [<i>R</i> (int) =
unique	0.0326]	0.0335]	0.0750]	0.0281]
Completeness to θ =	99.9 %	99.8 %	99.0 %	99.6 %
25.96				
Refinement method	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares
	on F^2	on F^2	on F^2	on F^2
Data / restraints /	5180 / 0 / 271	5335 / 0 / 280	6192 / 0 / 333	7259 / 0 / 406
parameters				
Goodness-of-fit on F^2	1.019	1.054	1.055	1.060
Final R indices [I> 2θ	${}^{a}R_{1} = 0.0427, {}^{b}wR_{2} =$	${}^{a}R_{1} = 0.0592, {}^{b}wR_{2} =$	${}^{a}R_{1} = 0.0758, {}^{b}wR_{2} =$	$R_1 = 0.0422, wR_2 =$
(I)]	0.1155	0.1565	0.1846	0.1228
R indices (all data)	${}^{a}R_{1} = 0.0458, {}^{b}wR_{2} =$	${}^{a}R_{1} = 0.0770, {}^{b}wR_{2} =$	${}^{a}R_{1} = 0.1346, {}^{b}wR_{2} =$	$R_1 = 0.0558, wR_2 =$
	0.1190	0.1759	0.2137	0.1359
Largest diff. peak and hole	0.263 and -0.191 e.Å ⁻³	0.270 and $-0.305 \text{ e.}\text{\AA}^{-3}$	0.292 and $-0.269 \text{ e.}\text{\AA}^{-3}$	0.782 and –0.574 e.Å $^{-3}$

Table S1. Crystal data and structure refinement

 ${}^{a}R_{1} = \sum ||F_{o}| \cdot |F_{c}||$ (based on reflections with $F_{o}^{2} > 2\sigma F^{2}$), ${}^{b}wR_{2} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]]^{1/2}$; $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.095P)^{2}]$; $P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3$ (also with $F_{o}^{2} > 2\sigma F^{2}$)

rubie 52. Selected Cond lenguis [11] and torsion ungles[] for 1, 2, 0, and 1

	Bond length	ıs [Å]	Torsion angles[^o]	
	C(1)-C(13)	1.519	C13-C18 vs C19-C24	88.73(6)
1	C(1)-C(2)	1.763	C19-C24 vs C25-C30	41.27(5)
	C(2)-C(19)	1.515	C25-C30 vs C13-C18	50.05(6)
	C(1) C(12)	1 501	C13-C18 vs C19-C24	49.12(7)
2	C(1) - C(13)	1.501 1.501	C19-C24 vs C25-C30	71.27(6)
	C(1)-C(2) 1.052	C25-C30 vs C13-C18	68.07(5)	
	C(1)-C(13)	1.520	C13-C18 vs C19-C24	67.06(1)
3	C(1)-C(2)	1.704	C25-C30 vs C31-C36	26.43(1)
	C(2)-C(19)	1.513	C25-C30 vs C13-C18	85.20(8)
	C(1)-C(13)	1.512	C13-C18 vs C19-C24	42.86(8)
4	C(1)-C(2)	1.777	C25-C30 vs C13-C18	82.24(9)
	C(2)-C(19)	1.581	C19-C24 vs C25-C30	57.43(9)

Figure S17. UV-vis absorption spectra of benzene, Ph2C2, 1, 2, and 3 in hexane solution at room temperature.

Figure S18. UV-vis absorption spectra of **4** and $[(\eta^6-Bz)Cr(CO)_3]$ (forcomparison) in hexane solution at room temperature.

Figure S19. Simulated and experimental Raman spectra of o-carborane at room temperature.

Figure S20. Simulated and experimental Raman spectra of PhC at room temperature.

Figure S21. Simulated and experimental Raman spectra of Ph2C2 at room temperature.

Figure S22. Simulated and experimental Raman spectra of 2 at room temperature.

Figure S23. Simulated and experimental Raman spectra of **3** at room temperature.

Figure S24. Simulated and experimental Raman spectra of 4 at room temperature.

Figure S25. Cyclic Voltammetry for 2(black)and3(red) (TBAP (0.1 M)/sample (1 mM), Scan rate: 100 mV/s, Solvent: CH₂Cl₂).

					-					
No	Atom	Х	Y	Z	_	No	Atom	Х	Y	Z
1	С	1.127132	-0.003382	0.892335		28	Н	-0.031069	4.239927	-2.541742
2	С	0.282717	0.947058	-1.711569		29	Н	-0.036927	4.235178	2.547212
3	С	-1.222469	2.643295	3.388872		30	Н	-2.203354	0.848418	-4.044497
4	С	1.127947	-0.001597	-0.891210		31	Н	-0.900495	-0.631247	-2.588786
5	С	-1.218663	2.650355	-3.384910		32	Н	-0.900476	-0.637044	2.589213
6	С	0.511149	2.327595	1.731370		33	Н	0.893167	-1.933508	2.439731
7	С	-1.448877	1.267271	3.395581		34	С	-1.204199	-1.593500	-0.001926
8	С	0.281006	0.943551	1.713779		35	Н	0.895109	-1.928731	-2.442434
9	С	0.514617	2.330841	-1.727829		36	Н	1.277571	-3.738946	-0.002934
10	С	-0.232803	3.173134	-2.549796		37	Н	3.714611	-2.756189	-1.539467
11	С	-0.237309	3.168123	2.554231		38	Н	3.713397	-2.759109	1.537435
12	С	-1.446730	1.274615	-3.393051		39	Н	3.044124	0.151676	2.440647
13	С	-0.706447	0.432385	-2.566520		40	Н	2.677620	1.781870	0.003112
14	С	-0.707594	0.426823	2.568151		41	Н	3.046149	0.156250	-2.437664
15	В	1.410908	-1.593651	1.434038		42	Н	4.852880	-0.329751	0.001790
16	В	2.466108	0.625400	0.001749		43	Н	-1.800961	3.298084	4.033534
17	В	0.356885	-1.316083	-0.000926		44	Н	-1.796367	3.306508	-4.028892
18	В	3.707108	-0.632939	0.001026		45	С	-1.643722	-2.931843	-0.004574
19	В	2.705497	-0.378087	-1.439474		46	С	-2.999963	-3.259312	-0.005696
20	В	2.704254	-0.380818	1.441209		47	С	-3.963854	-2.251661	-0.004216
21	В	3.043420	-2.029996	0.885438		48	С	-3.556939	-0.917173	-0.001637
22	В	1.607574	-2.600913	-0.001666		49	С	-2.199760	-0.596316	-0.000520
23	В	1.411995	-1.590858	-1.435609		50	Н	-0.913032	-3.733324	-0.005817
24	В	3.044115	-2.028336	-0.886600		51	Н	-3.300564	-4.303193	-0.007741
25	Н	1.292265	2.757600	1.120715		52	Н	-5.020805	-2.502742	-0.005093
26	Н	-2.205011	0.839478	4.046550		53	Н	-4.295782	-0.120739	-0.000517
27	Н	1.296431	2.759189	-1.116897		54	Н	-1.919229	0.450164	0.001420
~										

Table S3. Ground state optimized geometry of 1 obtained by DFT calculation^a

Figure S26. Energy levels and isodensity plots (isodensity contour = 0.03 a.u.) for selected occupied and unoccupied molecular orbitals of **1** obtained by DFT calculations.

Figure S27. Simulated absorption spectra and oscillator strengths of **1** obtained by TDDFT calculations.

No.	Wavelength (nm)	Osc. Strength	Major contribs
1	270.022	0.0026	HOMO->LUMO (97%)
2	261.623	0.0116	H-1->LUMO (98%)
3	248.165	0.0935	H-2->LUMO (79%)
4	243.754	0.0115	H-5->LUMO (13%), H-3->LUMO (66%)
5	240.398	0.0044	H-1->L+2 (35%), HOMO->L+2 (25%), HOMO->L+4 (15%)
6	240.096	0.0403	H-4->LUMO (37%), H-2->LUMO (15%), HOMO->L+1 (29%)
7	236.046	0.0021	H-4->LUMO (32%), HOMO->L+1 (63%)
8	234.448	0.0564	H-5->LUMO (68%), H-3->LUMO (17%)
9	230.422	0.0013	H-1->L+1 (98%)
10	226.955	0.0266	HOMO->L+3 (85%)
11	226.213	0.0805	H-1->L+2 (20%), HOMO->L+2 (51%), HOMO->L+4 (12%)
12	222.379	0.0	H-1->L+3 (87%)
13	221.529	0.0088	H-4->L+1 (30%), H-2->L+1 (25%), H-2->L+3 (19%)
14	219.486	0.0	H-3->L+1 (15%), H-2->L+2 (58%)
15	217.877	0.0223	H-5->L+1 (13%), H-3->L+1 (23%), H-2->L+2 (38%)
16	215.503	0.1597	H-1->L+2 (20%), HOMO->L+4 (49%)
17	213.635	0.0111	H-1->L+4 (54%)
18	212.788	0.0364	H-3->L+2 (46%), H-2->L+1 (17%)
19	211.236	0.0753	H-5->L+2 (10%), H-3->L+2 (34%), H-2->L+1 (23%)
20	209.286	0.0076	H-6->LUMO (12%), H-5->L+1 (33%), H-3->L+1 (24%)
21	208.754	0.0007	H-6->LUMO (85%)
22	206.835	0.059	H-5->L+2 (60%), H-1->L+4 (13%)
23	206.411	0.0	H-4->L+2 (87%)
24	205.066	0.0427	H-5->L+3 (15%), H-3->L+3 (16%), H-2->L+4 (53%)
25	202.955	0.0301	H-4->L+3 (26%), H-3->L+4 (41%), H-2->L+3 (17%)
26	201.435	0.0198	H-7->LUMO (54%), H-5->L+3 (15%), H-4->L+4 (11%)
27	200.864	0.0304	H-7->LUMO (41%), H-4->L+4 (23%), H-3->L+3 (14%)
28	200.454	0.0198	H-5->L+4 (27%), H-3->L+4 (11%), HOMO->L+5 (27%)
29	200.315	0.0812	H-5->L+4 (10%), H-4->L+3 (12%), H-1->L+6 (17%)
30	198.850	0.0235	H-8->LUMO (90%)

Table S4. Calculated electronic transitions and oscillator strengths of 1

No	Atom	Х	Y	Ζ	-	No	Atom	Х	Y	Ζ
1	С	-0.000041	-1.138154	0.824994	-	28	Н	0.000404	-3.551085	-2.841100
2	С	-0.000053	1.080676	-0.746108		29	Н	0.000255	-4.845730	-0.037682
3	С	-0.000045	-0.423678	-0.630365		30	Н	1.462806	-2.857766	1.868366
4	С	-0.000040	3.877113	-1.053473		31	С	2.717714	-0.311224	0.400232
5	Н	-0.000301	-0.479383	1.681918		32	Н	1.469384	-0.849630	-2.596323
6	С	-0.000256	1.923204	0.372627		33	Н	2.477819	-3.340140	-1.050091
7	С	-0.000242	3.308603	0.219312		34	Н	-0.000029	4.956407	-1.170930
8	С	0.000140	3.046421	-2.173654		35	С	-3.578774	0.281707	-0.540114
9	С	0.000136	1.661060	-2.022853		36	С	-4.673835	1.046002	-0.138507
10	В	-0.886876	-2.587785	0.870542		37	С	-4.935612	1.236224	1.219004
11	В	1.501671	-1.195406	-0.056411		38	С	-4.098190	0.652709	2.170507
12	В	-1.501715	-1.195595	-0.056673		39	С	-3.006082	-0.112294	1.761957
13	В	1.451202	-2.804806	-0.797995		40	Н	-3.391798	0.142081	-1.600341
14	В	0.891020	-1.394516	-1.720647		41	Н	-5.323419	1.491978	-0.886222
15	В	0.886914	-2.587718	0.870728		42	Н	-5.788777	1.830577	1.533272
16	В	0.000139	-3.674054	-0.217441		43	Н	-4.298241	0.787554	3.229708
17	В	-1.450928	-2.805022	-0.798249		44	Н	-2.378930	-0.575107	2.519932
18	В	-0.890790	-1.394659	-1.720843		45	С	3.579695	0.280455	-0.539783
19	В	0.000235	-2.926857	-1.833144		46	С	4.674777	1.044717	-0.138180
20	Н	-0.000450	1.516548	1.376387		47	С	4.935570	1.236359	1.219323
21	Н	-0.000400	3.941410	1.101362		48	С	4.097148	0.654281	2.170824
22	Н	0.000291	3.473673	-3.171768		49	С	3.005015	-0.110690	1.762276
23	Н	0.000282	1.028810	-2.902544		50	Н	3.393505	0.139671	-1.599996
24	Н	-1.462890	-2.857999	1.868067		51	Н	5.325154	1.489558	-0.885883
25	С	-2.717801	-0.311422	0.399908		52	Н	5.788744	1.830698	1.533590
26	Н	-1.469146	-0.849812	-2.596550		53	Н	4.296427	0.790224	3.230030
27	Н	-2.477479	-3.340457	-1.050397	-	54	Н	2.377086	-0.572391	2.520290

Table S5. Ground state optimized geometry of 2 obtained by DFT calculation^a

Figure S28. Energy levels and isodensity plots (isodensity contour = 0.03 a.u.) for selected occupied and unoccupied molecular orbitals of **2** obtained by DFT calculations.

Figure S29. Simulated absorption spectra and oscillator strengths of **2** obtained by TDDFT calculations.

No.	Wavelength (nm)	Osc. Strength	Major contribs
1	248.269	0.0044	HOMO->LUMO (89%)
2	240.389	0.0	H-3->LUMO (24%), H-2->LUMO (24%), H-1->L+1 (21%)
3	238.379	0.0079	H-5->LUMO (13%), H-4->L+2 (10%), H-1->LUMO (62%)
4	236.948	0.0018	H-5->LUMO (20%), H-4->L+2 (12%), H-2->L+1 (23%)
5	235.642	0.0041	H-3->LUMO (44%), H-2->LUMO (52%)
6	232.204	0.0437	H-3->LUMO (30%), H-2->LUMO (20%), H-1->L+1 (21%)
7	232.122	0.0002	H-5->LUMO (18%), H-2->L+1 (16%), H-1->LUMO (30%)
8	227.333	0.2555	H-1->L+1 (11%), HOMO->L+1 (80%)
9	225.235	0.0088	HOMO->L+2 (79%)
10	223.421	0.0942	H-4->LUMO (67%)
11	221.161	0.0002	H-4->L+1 (87%)
12	218.376	0.0288	H-3->L+1 (14%), H-2->L+1 (21%), H-1->L+2 (51%)
13	217.904	0.0136	H-2->L+2 (69%), H-1->L+1 (10%)
14	215.998	0.0875	H-3->L+2 (83%)
15	215.844	0.0368	H-3->L+1 (64%), H-1->L+2 (19%)
16	213.055	0.0056	H-5->L+1 (95%)
17	207.743	0.029	H-4->L+2 (11%), HOMO->L+3 (49%)
18	206.966	0.0	H-5->L+2 (11%), H-2->L+1 (13%), H-1->L+3 (49%)
19	206.856	0.001	H-2->L+3 (56%), H-1->L+1 (18%), HOMO->L+4 (11%)
20	206.181	0.0115	H-5->L+2 (10%), H-4->L+2 (40%), H-4->L+3 (28%)
21	202.497	0.1261	H-5->L+2 (32%), H-5->L+3 (10%), HOMO->L+3 (11%)
22	200.047	0.0079	H-3->L+3 (73%), H-1->L+4 (13%)
23	197.936	0.0083	H-3->L+4 (32%), HOMO->L+5 (49%)
24	197.542	0.0015	H-3->L+5 (36%), HOMO->L+4 (46%)
25	196.350	0.017	H-4->L+4 (68%), H-1->L+4 (21%)
26	195.940	0.005	H-4->L+3 (36%), H-4->L+5 (32%), H-1->L+5 (13%)
27	195.252	0.0	HOMO->L+6 (93%)
28	194.367	0.0045	H-2->L+4 (39%), H-1->L+5 (36%)
29	194.027	0.0014	H-4->L+4 (27%), H-2->L+5 (36%), H-1->L+4 (25%)
30	191.891	0.0022	H-5->L+3 (37%), H-5->L+5 (17%), H-4->L+5 (16%)

Table S6. Calculated electronic transitions and oscillator strengths of ${\bf 2}$

No	Atom	Х	Y	Ζ	•	No	Atom	Х	Y	Z
1	С	0.000014	0.303492	-1.049524	•	33	Н	1.489530	0.990433	-2.934209
2	С	0.000014	-1.232773	1.383818		34	С	2.880610	-0.186718	-0.399844
3	С	0.000000	4.305554	0.627617		35	Н	1.464501	-3.124851	-0.324062
4	С	-0.000057	-1.140632	-0.137125		36	Н	2.472649	-1.918963	-2.992258
5	С	0.000080	-1.560475	4.189391		37	Н	0.000024	-3.742416	-2.967385
6	С	0.000036	1.906158	0.965747		38	Н	-0.000010	-1.129146	-4.631103
7	С	-0.000059	4.097139	-0.751664		39	Η	-1.489491	0.990443	-2.934234
8	С	-0.000024	1.684226	-0.418630		40	С	-2.880657	-0.186782	-0.399888
9	С	-1.203244	-1.333276	2.100826		41	Н	-1.464452	-3.124900	-0.324060
10	С	-1.201269	-1.488191	3.486321		42	Н	-2.472585	-1.918963	-2.992341
11	С	0.000043	3.203154	1.479813		43	Η	0.000018	5.313551	1.031053
12	С	1.201386	-1.488738	3.486194		44	Н	0.000115	-1.682137	5.268469
13	С	1.203296	-1.333822	2.100698		45	С	3.890593	-1.156158	-0.226629
14	С	-0.000070	2.803443	-1.269987		46	С	5.167328	-0.814586	0.216475
15	В	0.880385	0.067023	-2.518347		47	С	5.479363	0.517611	0.490651
16	В	-1.494663	-0.652196	-1.011390		48	С	4.505341	1.497749	0.306173
17	В	1.494620	-0.652131	-1.011349		49	С	3.227653	1.150370	-0.135768
18	В	-1.436695	-1.613293	-2.504625		50	Н	3.674774	-2.197112	-0.446627
19	В	-0.887212	-2.332989	-0.985859		51	Η	5.919366	-1.588928	0.338839
20	В	-0.880392	0.067008	-2.518363		52	Н	6.473469	0.788971	0.834282
21	В	0.000020	-1.160699	-3.445816		53	Н	4.738381	2.540798	0.501181
22	В	1.436728	-1.613273	-2.504621		54	Н	2.502480	1.940250	-0.283939
23	В	0.887204	-2.332948	-0.985820		55	С	-3.890591	-1.156252	-0.226582
24	В	0.000039	-2.656273	-2.491554		56	С	-5.167323	-0.814710	0.216565
25	Н	0.000069	1.076421	1.654960		57	С	-5.479394	0.517482	0.490711
26	Н	-0.000093	4.941838	-1.433830		58	С	-4.505410	1.497649	0.306165
27	Н	-2.150633	-1.289058	1.585397		59	С	-3.227734	1.150305	-0.135829
28	Н	-2.149127	-1.558761	4.011276		60	Н	-3.674743	-2.197209	-0.446534
29	Н	0.000092	3.343519	2.556426		61	Н	-5.919320	-1.589080	0.338998
30	Н	2.149264	-1.559736	4.011054		62	Н	-6.473491	0.788821	0.834382
31	Н	2.150661	-1.290035	1.585185		63	Н	-4.738481	2.540693	0.501160
32	Н	-0.000109	2.666903	-2.343532		64	Н	-2.502585	1.940202	-0.284026

Table S7. Ground state optimized geometry of **3** obtained by DFT calculation^a

Figure S30. Energy levels and isodensity plots (isodensity contour = 0.03 a.u.) for selected occupied and unoccupied molecular orbitals of **3** obtained by DFT calculations.

Figure S31. Simulated absorption spectra and oscillator strengths of **3** obtained by TDDFT calculations.

No.	Wavelength (nm)	Osc. Strength	Major contribs
1	252.913	0.0019	HOMO->LUMO (96%)
2	250.163	0.0001	HOMO->L+1 (96%)
3	246.625	0.0243	H-1->LUMO (88%)
4	246.306	0.0007	H-2->LUMO (67%)
5	243.754	0.0076	H-3->LUMO (60%)
6	241.730	0.0002	H-1->L+1 (80%)
7	239.280	0.0018	H-6->L+1 (25%), H-5->L+2 (15%), H-2->L+1 (39%)
8	239.202	0.0009	H-3->L+3 (13%), H-1->L+1 (16%), HOMO->L+2 (30%)
9	237.716	0.0007	H-6->L+1 (10%), H-2->L+1 (51%)
10	237.379	0.0014	H-7->LUMO (20%), H-6->LUMO (20%), H-4->L+2 (14%)
11	236.966	0.0003	H-3->LUMO (21%), H-2->L+3 (18%), H-1->L+2 (11%)
12	235.862	0.0	H-3->L+1 (98%)
13	234.010	0.0005	H-5->LUMO (98%)
14	231.614	0.0041	H-3->L+3 (14%), H-2->L+2 (22%), HOMO->L+2 (42%)
15	228.658	0.1581	H-3->L+2 (18%), H-1->L+2 (19%), HOMO->L+3 (50%)
16	228.368	0.0337	H-6->LUMO (10%), H-4->LUMO (66%)
17	227.688	0.0231	H-6->L+1 (14%), H-4->L+1 (73%)
18	226.984	0.0029	H-2->L+3 (18%), H-1->L+2 (51%), HOMO->L+3 (16%)
19	225.301	0.0154	H-3->L+3 (13%), H-2->L+2 (40%)
20	225.154	0.054	H-7->LUMO (15%), H-6->LUMO (51%), H-4->LUMO (13%)
21	224.351	0.1499	H-3->L+2 (67%), HOMO->L+3 (19%)
22	221.898	0.0102	H-5->L+1 (17%), H-1->L+3 (39%), HOMO->L+4 (33%)
23	220.371	0.0631	H-6->L+2 (12%), H-5->L+1 (42%), HOMO->L+4 (32%)
24	218.326	0.001	H-4->L+3 (78%)
25	218.311	0.0582	H-1->L+3 (40%), HOMO->L+4 (23%)
26	217.175	0.0016	H-7->L+1 (74%), H-6->L+1 (17%)
27	215.765	0.0024	H-5->L+3 (95%)
28	215.103	0.0746	H-1->L+4 (88%)
29	214.790	0.0104	H-3->L+3 (19%), H-2->L+4 (67%)
30	213.993	0.0	H-4->L+3 (15%), H-3->L+4 (60%), H-2->L+3 (19%)

Table S8. Calculated electronic transitions and oscillator strengths of **3**

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No	Atom	Х	Y	Z	-	No	Atom	Х	Y	Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	С	0.918925	0.239069	1.056342	-	35	Н	-2.439832	2.031386	1.814841
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	С	-1.692016	-0.123845	-0.186992		36	Н	-0.000747	3.386803	3.054462
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	С	3.108601	-0.722960	-2.597541		37	Н	-1.535691	1.315184	4.671227
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	С	-0.918654	0.238660	1.056320		38	Н	1.535137	1.316135	4.671380
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	С	-3.107755	-0.724888	-2.597478		39	Н	2.432458	-0.872782	2.650693
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	С	1.657084	-1.420744	-0.764472		40	Н	0.000890	-2.077130	1.465959
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	С	3.202930	0.568001	-2.025895		41	Н	-2.431625	-0.874156	2.650268
9 C -1.657104 -1.421939 -0.763438 43 H 3.663460 -0.957262 -3.499009 10 C -2.315519 -1.714371 -1.982642 44 H -3.662421 -0.959504 -3.498980 11 C 2.315416 -1.712531 -1.983798 45 C -0.000160 4.159098 0.145089 12 C -3.201595 0.566605 -2.026718 46 C -0.00013 5.135212 -0.81856 13 C -2.533797 0.843212 -0.818162 47 C 0.000358 4.764738 -2.196674 14 C 2.534844 0.844000 -0.817248 48 C 0.000355 3.409947 -2.53848 15 B 1.440763 1.467252 2.094705 49 C 0.000355 2.439103 -1.528127 16 B 0.000571 -0.97183 1.873702 50 H -0.000465 4.741493 1.182656	8	С	1.692501	-0.122987	-0.186995		42	Н	0.000488	-1.358742	4.423985
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	С	-1.657104	-1.421939	-0.763438		43	Н	3.663460	-0.957262	-3.499009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	С	-2.315519	-1.714371	-1.982642		44	Н	-3.662421	-0.959504	-3.498980
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	С	2.315416	-1.712531	-1.983798		45	С	-0.000160	4.159098	0.145089
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	С	-3.201595	0.566605	-2.026718		46	С	-0.000013	5.135212	-0.851856
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	С	-2.533797	0.843212	-0.818162		47	С	0.000358	4.764738	-2.196674
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	С	2.534844	0.844000	-0.817248		48	С	0.000535	3.409947	-2.530848
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	В	1.440763	1.467252	2.094705		49	С	0.000395	2.439103	-1.528127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	В	0.000571	-0.972183	1.873702		50	Н	-0.000465	4.474193	1.182656
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	В	0.000106	1.752828	1.045275		51	Н	-0.000203	6.185363	-0.574261
19B-1.442666-0.2337222.60929953H0.0007803.104863-3.57370020B1.443133-0.2329442.60963954H0.0005221.397563-1.82847321B0.8845581.0248103.72517255Cr3.817277-0.955504-0.47899122B-0.0004202.2377762.76745756C5.444334-1.436728-1.21690123B-1.4410141.4665632.09443757C4.7255620.0278810.80471024B-0.8848451.0243023.72507058C3.913372-2.4442400.61998025H1.118734-2.212771-0.26484759Cr-3.817403-0.955121-0.47870126H3.8336021.324483-2.47592360C-4.7234660.0269500.80758527H-1.119518-2.213957-0.26295961C-3.916112-2.4461780.61692028H-2.266655-2.715063-2.39394362C-5.445613-1.431257-1.21735729H2.265875-2.712771-2.39610363O-5.2773270.6589791.60338330H-3.8316491.323109-2.47758464O-6.452545-1.723818-1.71035831H-2.6495431.819197-0.36868965O-3.951819-3.3875231.290352	18	В	0.000282	-0.517643	3.590179		52	Н	0.000506	5.522091	-2.975340
20B1.443133-0.2329442.60963954H0.0005221.397563-1.82847321B0.8845581.0248103.72517255Cr3.817277-0.955504-0.47899122B-0.0004202.2377762.76745756C5.444334-1.436728-1.21690123B-1.4410141.4665632.09443757C4.7255620.0278810.80471024B-0.8848451.0243023.72507058C3.913372-2.4442400.61998025H1.118734-2.212771-0.26484759Cr-3.817403-0.955121-0.47870126H3.8336021.324483-2.47592360C-4.7234660.0269500.80758527H-1.119518-2.213957-0.26295961C-3.916112-2.4461780.61692028H-2.266655-2.715063-2.39394362C-5.445613-1.431257-1.21735729H2.265875-2.712771-2.39610363O-5.2773270.6589791.60338330H-3.8316491.323109-2.47758464O-6.452545-1.723818-1.71035831H-2.6495431.819197-0.36868965O-3.951819-3.3875231.29035232H2.6510121.819590-0.36700766O5.2807840.6607801.598869 <t< td=""><td>19</td><td>В</td><td>-1.442666</td><td>-0.233722</td><td>2.609299</td><td></td><td>53</td><td>Н</td><td>0.000780</td><td>3.104863</td><td>-3.573700</td></t<>	19	В	-1.442666	-0.233722	2.609299		53	Н	0.000780	3.104863	-3.573700
21B0.8845581.0248103.72517255Cr3.817277-0.955504-0.47899122B-0.0004202.2377762.76745756C5.444334-1.436728-1.21690123B-1.4410141.4665632.09443757C4.7255620.0278810.80471024B-0.8848451.0243023.72507058C3.913372-2.4442400.61998025H1.118734-2.212771-0.26484759Cr-3.817403-0.955121-0.47870126H3.8336021.324483-2.47592360C-4.7234660.0269500.80758527H-1.119518-2.213957-0.26295961C-3.916112-2.4461780.61692028H-2.266655-2.715063-2.39394362C-5.445613-1.431257-1.21735729H2.265875-2.712771-2.39610363O-5.2773270.6589791.60338330H-3.8316491.323109-2.47758464O-6.452545-1.723818-1.71035831H-2.6495431.819197-0.36868965O-3.951819-3.3875231.29035232H2.6510121.819590-0.36700766O5.2807840.6607801.59886933H2.4394352.0325211.81548167O6.450599-1.732523-1.709335 <t< td=""><td>20</td><td>В</td><td>1.443133</td><td>-0.232944</td><td>2.609639</td><td></td><td>54</td><td>Н</td><td>0.000522</td><td>1.397563</td><td>-1.828473</td></t<>	20	В	1.443133	-0.232944	2.609639		54	Н	0.000522	1.397563	-1.828473
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	В	0.884558	1.024810	3.725172		55	Cr	3.817277	-0.955504	-0.478991
23 B -1.441014 1.466563 2.094437 57 C 4.725562 0.027881 0.804710 24 B -0.884845 1.024302 3.725070 58 C 3.913372 -2.444240 0.619980 25 H 1.118734 -2.212771 -0.264847 59 Cr -3.817403 -0.955121 -0.478701 26 H 3.833602 1.324483 -2.475923 60 C -4.723466 0.026950 0.807585 27 H -1.119518 -2.213957 -0.262959 61 C -3.916112 -2.446178 0.616920 28 H -2.266655 -2.715063 -2.393943 62 C -5.445613 -1.431257 -1.217357 29 H 2.265875 -2.712771 -2.396103 63 O -5.277327 0.658979 1.603383 30 H -3.831649 1.323109 -2.477584 64 O -6.452545 -1.723818 -1.710358 31 H -2.649543 1.819197 -0.368689 65	22	В	-0.000420	2.237776	2.767457		56	С	5.444334	-1.436728	-1.216901
24B-0.8848451.0243023.72507058C3.913372-2.4442400.61998025H1.118734-2.212771-0.26484759Cr-3.817403-0.955121-0.47870126H3.8336021.324483-2.47592360C-4.7234660.0269500.80758527H-1.119518-2.213957-0.26295961C-3.916112-2.4461780.61692028H-2.266655-2.715063-2.39394362C-5.445613-1.431257-1.21735729H2.265875-2.712771-2.39610363O-5.2773270.6589791.60338330H-3.8316491.323109-2.47758464O-6.452545-1.723818-1.71035831H-2.6495431.819197-0.36868965O-3.951819-3.3875231.29035232H2.6510121.819590-0.36700766O5.2807840.6607801.59886933H2.4394352.0325211.81548167O6.450599-1.732523-1.70933534C0.0000822.782979-0.16088968O3.947475-3.3840511.295629	23	В	-1.441014	1.466563	2.094437		57	С	4.725562	0.027881	0.804710
25H1.118734-2.212771-0.26484759Cr-3.817403-0.955121-0.47870126H3.8336021.324483-2.47592360C-4.7234660.0269500.80758527H-1.119518-2.213957-0.26295961C-3.916112-2.4461780.61692028H-2.266655-2.715063-2.39394362C-5.445613-1.431257-1.21735729H2.265875-2.712771-2.39610363O-5.2773270.6589791.60338330H-3.8316491.323109-2.47758464O-6.452545-1.723818-1.71035831H-2.6495431.819197-0.36868965O-3.951819-3.3875231.29035232H2.6510121.819590-0.36700766O5.2807840.6607801.59886933H2.4394352.0325211.81548167O6.450599-1.732523-1.70933534C0.0000822.782979-0.16088968O3.947475-3.3840511.295629	24	В	-0.884845	1.024302	3.725070		58	С	3.913372	-2.444240	0.619980
26H3.8336021.324483-2.47592360C-4.7234660.0269500.80758527H-1.119518-2.213957-0.26295961C-3.916112-2.4461780.61692028H-2.266655-2.715063-2.39394362C-5.445613-1.431257-1.21735729H2.265875-2.712771-2.39610363O-5.2773270.6589791.60338330H-3.8316491.323109-2.47758464O-6.452545-1.723818-1.71035831H-2.6495431.819197-0.36868965O-3.951819-3.3875231.29035232H2.6510121.819590-0.36700766O5.2807840.6607801.59886933H2.4394352.0325211.81548167O6.450599-1.732523-1.70933534C0.0000822.782979-0.16088968O3.947475-3.3840511.295629	25	Н	1.118734	-2.212771	-0.264847		59	Cr	-3.817403	-0.955121	-0.478701
27 H -1.119518 -2.213957 -0.262959 61 C -3.916112 -2.446178 0.616920 28 H -2.266655 -2.715063 -2.393943 62 C -5.445613 -1.431257 -1.217357 29 H 2.265875 -2.712771 -2.396103 63 O -5.277327 0.658979 1.603383 30 H -3.831649 1.323109 -2.477584 64 O -6.452545 -1.723818 -1.710358 31 H -2.649543 1.819197 -0.368689 65 O -3.951819 -3.387523 1.290352 32 H 2.651012 1.819590 -0.367007 66 O 5.280784 0.660780 1.598869 33 H 2.439435 2.032521 1.815481 67 O 6.450599 -1.732523 -1.709335 34 C 0.000082 2.782979 -0.160889 68 O 3.947475 -3.384051 1.295629	26	Н	3.833602	1.324483	-2.475923		60	С	-4.723466	0.026950	0.807585
28 H -2.266655 -2.715063 -2.393943 62 C -5.445613 -1.431257 -1.217357 29 H 2.265875 -2.712771 -2.396103 63 O -5.277327 0.658979 1.603383 30 H -3.831649 1.323109 -2.477584 64 O -6.452545 -1.723818 -1.710358 31 H -2.649543 1.819197 -0.368689 65 O -3.951819 -3.387523 1.290352 32 H 2.651012 1.819590 -0.367007 66 O 5.280784 0.660780 1.598869 33 H 2.439435 2.032521 1.815481 67 O 6.450599 -1.732523 -1.709335 34 C 0.000082 2.782979 -0.160889 68 O 3.947475 -3.384051 1.295629	27	Н	-1.119518	-2.213957	-0.262959		61	С	-3.916112	-2.446178	0.616920
29H2.265875-2.712771-2.39610363O-5.2773270.6589791.60338330H-3.8316491.323109-2.47758464O-6.452545-1.723818-1.71035831H-2.6495431.819197-0.36868965O-3.951819-3.3875231.29035232H2.6510121.819590-0.36700766O5.2807840.6607801.59886933H2.4394352.0325211.81548167O6.450599-1.732523-1.70933534C0.0000822.782979-0.16088968O3.947475-3.3840511.295629	28	Н	-2.266655	-2.715063	-2.393943		62	С	-5.445613	-1.431257	-1.217357
30H-3.8316491.323109-2.47758464O-6.452545-1.723818-1.71035831H-2.6495431.819197-0.36868965O-3.951819-3.3875231.29035232H2.6510121.819590-0.36700766O5.2807840.6607801.59886933H2.4394352.0325211.81548167O6.450599-1.732523-1.70933534C0.0000822.782979-0.16088968O3.947475-3.3840511.295629	29	Н	2.265875	-2.712771	-2.396103		63	0	-5.277327	0.658979	1.603383
31H-2.6495431.819197-0.36868965O-3.951819-3.3875231.29035232H2.6510121.819590-0.36700766O5.2807840.6607801.59886933H2.4394352.0325211.81548167O6.450599-1.732523-1.70933534C0.0000822.782979-0.16088968O3.947475-3.3840511.295629	30	Н	-3.831649	1.323109	-2.477584		64	0	-6.452545	-1.723818	-1.710358
32 H 2.651012 1.819590 -0.367007 66 O 5.280784 0.660780 1.598869 33 H 2.439435 2.032521 1.815481 67 O 6.450599 -1.732523 -1.709335 34 C 0.000082 2.782979 -0.160889 68 O 3.947475 -3.384051 1.295629	31	Н	-2.649543	1.819197	-0.368689		65	0	-3.951819	-3.387523	1.290352
33 H 2.439435 2.032521 1.815481 67 O 6.450599 -1.732523 -1.709335 34 C 0.000082 2.782979 -0.160889 68 O 3.947475 -3.384051 1.295629	32	Н	2.651012	1.819590	-0.367007		66	0	5.280784	0.660780	1.598869
34 C 0.000082 2.782979 -0.160889 68 O 3.947475 -3.384051 1.295629	33	Н	2.439435	2.032521	1.815481		67	0	6.450599	-1.732523	-1.709335
	34	С	0.000082	2.782979	-0.160889		68	0	3.947475	-3.384051	1.295629

Table S9. Ground state optimized geometry of 4 obtained by DFT calculation^a

Figure S32. Energy levels and isodensity plots (isodensity contour = 0.03 a.u.) for selected occupied and unoccupied molecular orbitals of **4** obtained by DFT calculations.

Figure S33. Simulated absorption spectra and oscillator strengths of 1 obtained by TDDFT calculations.

Table	S10. Calculated e	electronic trans	itions and oscillator strengths of 4
No.	Wavelength (nm)	Osc. Strength	Major contribs
1	434.861	0.0018	H-3->L+1 (16%), H-2->LUMO (73%)
2	433.538	0.0012	H-3->LUMO (76%), H-2->L+1 (16%)
3	419.670	0.0993	HOMO->LUMO (76%)
4	410.568	0.0094	H-1->LUMO (66%)
5	403.933	0.0006	H-5->L+1 (16%), H-4->LUMO (72%)
6	403.565	0.0012	H-5->LUMO (75%), H-4->L+1 (17%)
7	370.619	0.0	H-1->L+3 (20%), HOMO->L+2 (62%)
8	368.416	0.0006	H-1->L+2 (53%), HOMO->L+3 (28%)
9	354.948	0.0001	H-5->L+7 (11%), HOMO->L+1 (29%)
10	353.520	0.0044	H-5->L+8 (10%), H-4->L+7 (16%), H-1->L+1 (17%)
11	351.217	0.0003	H-4->L+2 (10%), H-3->L+8 (10%), H-2->L+7 (16%)
12	351.108	0.0005	H-5->L+2 (10%), H-3->L+7 (16%), H-2->L+8 (11%)
13	346.758	0.0024	H-5->L+7 (12%), H-4->L+8 (11%), HOMO->L+1 (13%)
14	346.138	0.0027	H-4->L+2 (12%), HOMO->L+5 (10%)
15	344.073	0.0014	H-5->L+2 (13%), HOMO->L+1 (24%)
16	342.476	0.0101	H-1->L+1 (37%)
17	340.641	0.0005	H-3->L+6 (10%), HOMO->L+7 (13%)
18	340.520	0.0001	H-2->L+1 (12%)
19	336.335	0.0001	H-3->LUMO (12%), H-2->L+1 (49%)
20	335.652	0.0005	H-5->L+2 (10%), H-3->L+1 (48%), H-2->LUMO (10%)
21	333.979	0.0001	H-5->L+3 (14%), H-4->L+2 (23%), H-2->L+1 (10%)
22	333.916	0.002	H-5->L+2 (21%), H-4->L+3 (13%), H-3->L+1 (16%)
23	318.649	0.0	H-5->LUMO (18%), H-4->L+1 (67%)
24	318.387	0.002	H-5->L+1 (67%), H-4->LUMO (17%)
25	309.942	0.0345	H-2->L+2 (18%), H-2->L+6 (10%)
26	309.169	0.0046	H-3->L+2 (19%), H-3->L+6 (10%)
27	307.384	0.0009	HOMO->L+6 (11%)
28	307.246	0.0024	H-2->L+7 (10%), H-1->L+6 (10%)
29	299.505	0.0419	H-1->L+2 (15%), HOMO->L+3 (25%), HOMO->L+4 (22%)
30	298.532	0.0209	HOMO->L+3 (16%), HOMO->L+4 (44%)

References

- 1. SMART and SAINT; Bruker Analytical X-Ray Division: Madison, WI, 2002.
- Sheldrick, G. M. SHELXTL-PLUS Software Package; Bruker Analytical X-Ray Division: Madison, WI, 2002.
- (a) Lee, C.; Yang, W.; Parr, R.G.*Phys. Rev.* B1988, 37, 785. (b) Vosko, S.H.; Wilk, L.; Nusair, M.*Can. J. Phys.*1980, 58, 1200. (c) Becke, A.D.*J.Chem.Phys.*1993, 98, 5648. (d) Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J.*J.Phys.Chem.*1994, 98, 11623.
- 4. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
- (a) "Gaussian Basis Sets for Molecular Calculations" S.Huzinaga, J.Andzelm, M.Klobukowski, E.Radzio-Andzelm, Y.Sakai, H.Tatewaki Elsevier, Amsterdam, 1984. (b) Davidson, E.R.; Feller, D. Chem. Rev. 1986, 86, 681.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
- 7. Chem3D Ultra 9.0 for PC, CambridgeSoft, 100 CambridgeParkDrive, Cambridge, MA S29

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

02140.

8. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput.Chem. 2008, 29, 839.