Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Communications

Kinetic and Thermodynamic of Metal Binding to the N-terminus of Human Copper Transporter, hCTR1

85

Xiubo Du, Hongyan Li, Xinghao Wang, Qiong Liu, Jiazuan Ni and Hongzhe Sun (e-mail: hsun@hku.hk)

Sample preparation

- ⁵ The GB1-tagged wild-type hCTR1_N and its mutants (GB1-WT, GB1-MutA, GB1-MutB and GB1-MutC, for sequences see Fig. S1) were expressed and purified as described previously.¹ hCTR1_N and its variants were isolated from the tagged proteins via Factor Xa cleavage followed by a two-step purification with
- ¹⁰ Ni²⁺-IMAC and size exclusion chromatography.
- Protein samples were analyzed by SDS-PAGE (13%, Tris-Glycine running buffer) and visualized with Coomassie Blue R-250 (Fig S2-A). Band corresponding to hCTR1_N was digested with Chymotrypsin (Sigma) at 37 °C overnight. Peptide
- 15 fragments were then analyzed with matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) and compared with theoretically digested peptides calculated by MSdigest software.

ESI mass spectra were recorded on Finnigan LCQ Deca

- ²⁰ (Thermo) mass spectrometer with a capillary voltage set at 27 V and sample flow rate of 5 μ l/min. Purified proteins were prepared in ammonium bicarbonate buffer (5 mM, pH 8.0) and diluted to ca. 20 μ M. Equal volume of methanol was added to the protein solution and acetic acid was used to adjust pH to 3.
- ²⁵ Parameters used in mass experiments were as followed: spray voltage, 4.6 kV; capillary temp., 200 °C; number of scan, 50; sheath gas flow rate, 90.

The identities of both wild-type and muant hCTR1_N were confirmed by MALDI-TOF-MS (Fig S2-B) and ESI-MS (Fig ³⁰ S3).

Cu⁺ Titration

UV-Vis spectra were recorded on a Varian Cary 3E UV-visible spectrophotometer with a 1-cm cuvette at room temperature. $\rm Cu^+$ titration experiment was carried out under anaerobic condition.

- ³⁵ Briefly, apo-protein (20 μ M) in 20 mM MES/Tris buffer, pH 8.5 was thoroughly de-oxygenated and transferred to the cuvette sealed with a septum cap. Aliquots of 1 mM [Cu(MeCN)₄]PF₆ dissolved in de-oxygenated acetonitrile were titrated into the cuvette using an airtight syringe. The absorption spectra were
- ⁴⁰ monitored over the wavelength range of 200-800 nm, and normalized with the absorbance at 800 nm.

Circular Dichroism Spectroscopy

Circular dichroism experiments were carried out in a 0.1-cmpathlength quartz cell on a Jasco J-720 spectropolarimeter

⁴⁵ calibrated with 0.06% (+)-10-camphorsulphonic acid solution (Sigma-Aldrich). CD spectra of 60 μ M apo- or Cu-bound hCTR1_N in 5 mM ammonium bicarbonate buffer (pH 8.5) were

recorded. The spectra were baseline-corrected by substracting the corresponding buffer spectra obtained under identical condition ⁵⁰ and smoothed using a fast Fourier transform (FFT) filter.

Estimation of Cu⁺ Binding Constants

Bicinchoninic acid is a colorimetric Cu⁺ chelator, which can form a stable purple complex with Cu⁺ in a 2:1 ratio as $[Cu(BCA)_2]^{3-}$ that exhibits absorption maxima at 562 nm (ϵ = 7900 M⁻¹·cm⁻¹)

ss and 358 nm (ε = 42 900 M⁻¹·cm⁻¹).² Therefore, the transfer of Cu⁺ from BCA to protein was evaluated by monitoring the changes in UV-Vis absorbance of Cu(BCA)₂ at 562 nm. At the wavelength between 450 nm and 650 nm, neither apo- nor copper-bound proteins gave any absorption, while UV absorption from BCA 60 occurs at $\gamma \le 370$ nm.

Experiments of competition reaction between the protein and BCA were carried out under anaerobic conditions as described previously.³ Briefly, Cu^+ solutions in the form of $[Cu(MeCN)_4]PF_6$ were mixed with BCA in a molar ratio of 1:3 in

- 65 MES/Tris buffer (20 mM, pH 8.5) as a stock solution. Protein solutions at various concentrations were then mixed with the stock solution to give rise to a final concentration of Cu⁺ of 27 μ M and BCA of 84 μ M. Ascorbic acid was kept at 0.8 mM to maintain the oxidation state of Cu⁺ in the reaction mixture. To 70 ensure the equilibrium to be reached, the mixture was incubated
- at room temperature for at least 1 hour (no additional change in absorption was observed). The results were corrected for dilution and base-line absorbance at 800 nm.
- The absorbance data obtained in hCTR1_N titrated into ⁷⁵ [$Cu(BCA)_2^{3-}$] (Fig. S7-B) were used to calculate the binding constants for Cu⁺-hCTR1_N complexes, using the following equations.

$$Cu(BCA)_{2} + P = (Cu - P) + 2BCA$$

$$K_{a1} = \frac{[Cu - P][BCA]^{2}}{[Cu(BCA)_{2}][P]}$$

$$Cu(BCA)_{2} + (Cu - P) = (Cu_{2} - P) + 2BCA$$
(Eq.1)

$$K_{a2} = \frac{[Cu_2 - P][BCA]^2}{[Cu(BCA)_2][Cu - P]}$$
(Eq.2)

$$Cu(BCA)_{2} + (Cu_{n-1} - P) = (Cu_{n} - P) + 2BCA$$

$$K_{an} = \frac{[Cu_{n} - P][BCA]^{2}}{[Cu(BCA)_{2}][Cu_{n-1} - P]}$$

$$Cu^{+} + 2BCA^{2-} = Cu(BCA)_{2}^{3-}$$
(Eq.3)

$$\beta_2 = \frac{[Cu(BCA)_2]}{[Cu][BCA]^2}$$
(Eq.4)

(Eq.6)

 β_2 is the associated constant of Cu(BCA)₂ and two different values $(4.6 \times 10^{14} \text{ and } 2.0 \times 10^{17})^{2,3}$ were reported previously. The former was obtained by ITC and it was considered to underestimate the affinity between Cu⁺ and the chelator due to the

- 5 diminished heat release as a result of conversion of Cu(I)Cl_n species to Cu(I)(BCA)₂. Here we chosed the later value which was also used to calculate the Cu⁺ binding constants of several other Met-containing Cu transporters or chaperones, such as CopK, CopC, PcoC and CusF.
- ¹⁰ Here we assumed that the n binding sites for Cu^+ on hCTR1_N are independent and equivalent. We take n=2 first and then generalize the result to cases for which n > 2.

The relationships between the equilibrium constants K_{a1} and K_{a2} and the stablity constants for Cu⁺-hCTR1_N (K₁ and K₂) and the

15 association constant for $Cu(BCA)_2$ (β_2) are given by the following equations.

$$Cu + P = Cu - P$$

$$K_1 = \frac{[Cu - P]}{[Cu][P]} = \beta_2 \cdot K_{a1}$$
(Eq.5)

 $Cu + (Cu - P) = Cu_2 - P$

 $K_{2} = \frac{[Cu_{2} - P]}{[Cu][Cu - P]} = \beta_{2} \cdot K_{a2}$ The fractional saturation Y=(concentration of Cu bound to P)/(total concentration of all forms of P), that is

$$Y = \frac{[Cu - P] + 2[Cu_2 - P]}{[P] + [Cu - P] + [Cu_2 - P]}$$
(Eq.7)

Rearranging Eqs 1, 2 and 7 results in Eq. 8:

$$Y = \frac{\frac{K_{a1}[P]}{X} + \frac{2K_{a2}}{X} \cdot \frac{K_{a1}[P]}{X}}{[P] + \frac{K_{a1}[P]}{X} + \frac{K_{a2}}{X} \cdot \frac{K_{a1}[P]}{X}}{K_{a1} + 2K_{a2} - K_{a1}}$$
(Eq.8)

25

$$= \frac{\frac{K_{a1}}{X} + \frac{2K_{a2}}{X} \cdot \frac{K_{a1}}{X}}{1 + \frac{K_{a1}}{X} + \frac{K_{a2}}{X} \cdot \frac{K_{a1}}{X}}$$
$$= \frac{\frac{2K_{a}}{X} + \frac{2K_{a}^{2}}{X^{2}}}{1 + \frac{2K_{a}}{X} + \frac{K_{a}^{2}}{X^{2}}} = \frac{\frac{2K_{a}}{X}}{1 + \frac{K_{a}}{X}} = \frac{2K_{a}}{X + K_{a}}$$

Where $X = \frac{[BCA]^2}{[Cu(BCA)_2]}$, K_a is the intrinsic binding constants,

and $K_{a1}=2K_a$ and $K_{a2}=K_a/2$ from statistic point of view. Therefore:

$$\frac{1}{Y} = \frac{1}{2} + \frac{1}{2K_a} \cdot X$$
 (Eq.9)

Eq. 9 is the result obtained for two equivalent sites. In general, 30 for n equivalent sites, it can be written in:

$$\frac{1}{Y} = \frac{1}{n} + \frac{1}{nK_a} \cdot X \tag{Eq.10}$$

The slopes of the plot of 1/Y versus X gave log $K_a = -2.38 \pm 0.04$ (correlation coefficient r = 0.99, n = 2.81) for WT, log $K_a = -3.11$ \pm 0.05 (correlation coefficient r = 0.96, n = 1.85) for MutA and $_{35} \log K_a = -2.42 \pm 0.05$ (correlation coefficient r = 0.94, n = 1.08) for WT. The binding numbers obtained from the data fitting are in

- good agreements with those obtained from UV-titration. Using the known value for the association constant of Cu(BCA)₂ of log $\beta_2 = 17.30$, binding constants of log $K_{WT} = 14.92$, log $K_{MutA} =$
- ⁴⁰ 14.19 and log $K_{\text{MutB}} = 14.88$ were calculated for Cu⁺ hCTR1_N variants.

hCTR1_N Chemical Modification of with Diethylpyrocarbonate (DEPC)

45 To modify the histidine residues of hCTR1_N, 100 molar equivalents of DEPC (freshly diluted in absolute ethanol) were added to 0.05 mM of hCTR1_N in 20 mM Na₂HPO₄ / NaH₂PO₄ buffer, pH 7.4. The mixture was stirred at room temperature for 3 hrs, and excess DEPC was then removed by dialysis. The number 50 absorbance of N-carbethoxyimidazole at 240 nm with known $\Delta \epsilon_{240}$ of 3200 M⁻¹ cm⁻¹.⁴

Kinetics of Cu⁺ Exchange Between hCTR1_N and BCA

Kinetics of Cu⁺ Binding

55 Cu⁺ in the form of [Cu(MeCN)₄]PF₆ was mixed with BCA in a molar ratio of 1:3 under anaerobic conditions in 20 mM MES/Tris buffer at pH 8.5 as a stock solution. Ascorbic acid of 1 mM was supplied to maintain the Cu⁺ oxidation state in the reaction mixture. hCTR1_N with various final concentrations 60 were then added to the stock solution to give the final concentration of Cu⁺ of 30 µM and BCA of 90 µM and the protein of 0, 125, 188, 250 and 313 $\mu M.$ Kinetics of $Cu^{\scriptscriptstyle +}$ binding to hCTR1_N was monitored by the absorbance change at 562 nm using a Varian Cary 3E UV-Vis spectrophotometer.

Kinetics of Cu⁺ Release

Five molar equivalents of Cu⁺ (as [Cu(MeCN)₄]PF₆) were added to 100 µM of hCTR1_N under anaerobic conditions in 50 mM MES/Tris buffer, 1 mM ascorbic acid, pH 8.0. After incubation at 70 room temperature for an hour, excess Cu⁺ ions were removed from the protein by a PD-10 desalting column. BCA with final concentrations of 0, 25, 75, 100 and 1000 µM was added to the Cu⁺ bound hCTR1_N and the absorbance change at 562 nm was recorded using a Varian Cary 3E UV-Vis spectrophotometer.

75 All kinetics data were fitted to a first-order reaction function.

Isothermal Titration Calorimetry (ITC)

ITC measurements were performed on a MicroCal iTC-200 microcalorimeter (Northampton, MA) at 25 °C. The purified 80 proteins were treated with 10 mM EDTA for 3 hours and then subjected to three rounds of dialysis against appropriate buffer. The titrant was made by mixing appropriate amounts of stock solution of metal ions (20 mM AgNO₃ or 10 mM CuSO₄ in nanopure Milli-Q water) with a buffer retained from the final 85 dialysis of the protein sample. The metal concentration of the

stock solution was determined by ICP-MS.

Briefly, 2 µl of 1.5-3 mM AgNO₃ or CuSO₄ were titrated into 200 µl of 24-110 µM proteins over 4 s with a 3-min interval between each injection. Twenty injections were made in total. 90 The reaction solution was stirred at 1000 rpm. The heat of dilution, mechanical effects and non-specific interactions were

- accounted for by averaging the last three points of titration and the value was subtracted from all data points. The results were analyzed by Origin 7.0 (Microcal) using either one-site binding
- 95 or sequential binding model. A nonlinear least square method was used to obtain the best fit parameters for the number of binding sites, *n*, the association constant, K_a , and the change of enthalpy

 ΔH . All of the experiments were performed in trplicate under the same conditions.

\mathbf{Ag}^{*} binding to hCTR1_N examined by Equilibrium Dialysis and ICP-MS

- s Binding of Ag⁺ to the wild-type hCTR1_N and its mutants were investigated via equilibrium dialysis with the metal concentrations determined by ICP-MS (Inductively coupled plasma mass spectrometry). The proteins (ca. 100 μ l at 20 μ M) in 20 mM MES/Tris buffer, pH 7.4, were dialyzed using 3 kDa cut-
- ¹⁰ off mini-dialysis kit (Amersham Biosciences) against the same buffer supplemented with a series of concentrations of AgNO₃ ranging from 0 to 80 μ M at 4 °C overnight. The Ag⁺ concentrations inside and outside the dialysis tubes were measured by ICP-MS. Each measurement was performed in ¹⁵ trplicate.

The results were analyzed by Origin 7 Hill function using the one-site binding model, which gave rise to the maximal binding capacity of 3.48 ± 0.33 and the dissociation constant (K_d) of (7.17±1.99) μ M for the wild-type protein (Fig. S8). Under the

²⁰ same conditions, MutA and MutB were found to bind (2.36±0.20) and (1.17±0.09) Ag⁺ ions per monomer of the protein, with the dissociation constants of (14.66±2.60) and (10.60±1.67) μ M, respectively. No specific binding was observed in the case of MutC. (due to the high deviation of K_d =(5.01±1305.9) μ M)

25 Estimation of Buffer-independent Cu²⁺ Binding Constants

 Cu^{2+} binding to hCTR1_*N* variants were studied by ITC at 25 °C in 20 mM *N*-(2-acetamido)-2-aminoethanesulfonic acid (ACES; pH 7.4) and 100 mM NaCl. ACES was chosen not only for its buffering capacity at the desired pH, but also for the formation of ³⁰ the well-defined Cu²⁺(ACES)₂ complex. A recently reported method was used to extract buffer-independent binding constants.⁵ The *K_{ITC}* equation is shown as:

$$K_{ITC} = \frac{[P - 2Cu^{2+}]}{[P]_{ITC}([Cu^{2+}]_{ITC})^2}$$
(1)

where $[P]_{TTC}$ and $[Cu^{2+}]_{TTC}$ represent the fractions of protein and ³⁵ Cu²⁺ that are not found in the metal-protein complex, respectively.

$$[Cu^{2+}]_{ITC} = [Cu^{2+}]_{C} - 2[P - 2Cu^{2+}]$$

$$= [Cu^{2+}] + [ACES - Cu^{2+}] + [2ACES - Cu^{2+}]$$

$$+ [ACES - Cu^{2+} - (H_{-1}ACES)] + [2(H_{-1}ACES) - Cu^{2+}]$$
(2)

where $[Cu^{2+}]_C$ represents total Cu^{2+} concentration.

The pH 7.4 requirement restricts the analysis to a single peptide ⁴⁰ protonation state as represented by Eq. 3:

$$[P]_{TTC} = [P] \tag{3}$$

The expressions that represent the various metal-buffer equilibria (Eqs. 4-7) and the buffer-independent *K* expression (Eq. 8) required for the analysis are listed below. Log *K* and log β values ⁴⁵ can be found in the reference.

$$K_{MB} = \frac{[ACES - Cu^{2+}]}{[Cu^{2+}][ACES]}; (\log K = 4.32)$$
(4)

$$K_{MB2} = \frac{[2ACES - Cu^{2+}]}{[ACES]^2 [Cu^{2+}]}; (\log \beta = 7.77)$$
(5)

$$K_{M(H_{-1}B)B} = \frac{[2ACES - Cu^{2+}]}{[H][ACES - Cu^{2+} - H_{-1}ACES]}; (\log K = 7.36)$$
(6)

$$K_{M(H_{-1}B)_2} = \frac{[2ACES - Cu^{2+}]}{[H]^2 [2H_{-1}ACES - Cu^{2+}]}; (\log \beta = 15.34) \quad (7)$$

$$K_{P-2Cu^{2+}} = \frac{[P-2Cu^{2+}]}{[Cu^{2+}]^2[P]}$$
(8)

$$K_{p-2Cu^{2+}} = K_{ITC} \left(\frac{[Cu^{2+}]_{ITC}}{[Cu^{2+}]^2} \right)^2$$
(9)

$$K_{P-2Cu^{2+}} = K_{ITC}(1 + K_{MB}[ACES] + K_{MB_2}[ACES]^2 + K_{MB_2}[ACES]^2 + K_{MB_2}[ACES]^2 + K_{MB_2}[ACES]^2 + K_{MB_2}[ACES]^2 + K_{M(H_{-1}B)}[ACES]^2 + K_{M(H_{-1}B)}[ACES]^2 + K_{M(H_{-1}B)}[ACES]^2 + K_{M(H_{-1}B)}[ACES]^2 + K_{MB_2}[ACES]^2 +$$

Substituting the value of K_{ITC} into Eq 10 provided the bufferindependent binding constant (K) and dissociation constant (K_d).

Reference

- 1. X. Wang, X. Du, H. Li, D. S. Chan and H. Sun, *Angew Chem Int Ed Engl*, 2011, **50**, 2706-2711.
- 2. Z. Xiao, P. S. Donnelly, M. Zimmermann and A. G. Wedd, *Inorg Chem*, 2008, **47**, 4338-4347.
- 3. L. A. Yatsunyk and A. C. Rosenzweig, *J Biol Chem*, 2007, **282**, 8622-8631.
- 4. P. S. Jois, N. Madhu and D. N. Rao, *Biochem J*, 2008, **410**, 543-553.
- ⁷⁰ 5. N. E. Grossoehme, A. M. Spuches and D. E. Wilcox, *J Biol Inorg Chem*, 2010, **15**, 1183-1191.

WT:	MDHSHH	MGMS	YMI	OSNSTMQP	SHHHPTTSAS	HSHGGGDSS	M	MMMPM	FFYFG	FKNVE
MutA:	MDHSHH	AGAS	YAI	OSNSTMQP	SHHHPTTSAS	HSHGGGDSS	M	MMMPM'	FFYFG	FKNVE
MutB:	MDHSHH	MGMS	YMI	DSNSTMQP	SHHHPTTSAS	HSHGGGDSS2	Α.	AAAPA	FFYFG	FKNVE
MutC:	MDHSHH	AGAS	YAI	OSNSTMQP	SHHHPTTSAS	HSHGGGDSS2	Α.	AAAPA	FFYFG	FKNVE

Fig. S1 Protein sequences of the wild-type and mutant hCTR1_*N*. The two methionine-rich motifs are highlighted in yellow. Met and Ala residues in these motifs are shown as blue and red, respectively.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 ARTICLE TYPE www.rsc.org/xxxxx

Fig. S2 (A) SDS-PAGE showing the expression and purificiation of hCTR1_N. lane 1, non-induced cell extract; lane 2, IPTG-induced cell extract; lane 3, pellets; lane 4, supernatant; lane 5, purified GB1-hCTR1_N; lane 6, GB1-hCTR1_N cut with Factor Xa and the digested products were applied to Ni²⁺-IMAC; lane 7, flow-through, corresponding to GB1 tag; lane 8, elutes with 120 mM imidazole, 5 corresponding to hCTR1_N; lane 9, hCTR1_N purified with gel filtration. (B) MALDI-TOF-MS analysis of hCTR1_N digested with chymotrypsin.

The spectrum revealed two major peaks at m/z 1332.5 and 1348.5 respectively, corresponding to the N-terminal peptide MDHSHHMGMSY of hCTR1_N (calc, 1332.49, and 1348.48 with oxidation).

Fig.S3 ESI-MS analysis of the wild-type and mutant hCTR1_N. Spectrum of the wild-type protein showed two peaks at m/z 1544.73 and 1236.00, corresponding to +4 and +5 charged proteins (calc, 1544.97 and 1236.17, respectively). Spectra of mutant proteins revealed ⁵ peaks at m/z: 1499.60, 1199.80 and 1000.07, corresponding to +4, +5 and +6 charged MutA (calc, 1499.88, 1200.11 and 1000.26); 1469.23, 1176.03 and 980.73, corresponding to +4, +5 and +6 charged MutB (calc, 1469.83, 1176.06 and 980.22); 1424.02, 1140.17 and 950.05, corresponding to +4, +5 and +6 charged MutC (calc, 1424.74, 1139.99 and 950.16).

Fig. S4 Circular dichroism spectra of apo- and Cu⁺- bound hCTR1_N (60 µM) in 5 mM ammonium bicarbonate buffer, pH 8.5.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Fig. S5 UV-visible spectra of DEPC-WT, MutC and DEPC-MutC with the addition of 1 equiv $[Cu^{1}(CH_{3}CN)_{4}]^{+}$ in 50 mM MES/Tris buffer at pH 8.5.

Fig. S6 UV-visible spectra of MutA and MutB proteins titrated with $[Cu^{1}(CH_{3}CN)_{4}]^{+}$ (1.6 mM) in 50 mM MES/Tris buffer at pH 8.5. *Inserts*: Plots of absorbance at 265 nm versus Cu/protein ratio, indicative of 2.0 and 1.0 Cu⁺ binding to MutA and MutB respectively.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Fig. S7 (A) UV_vis spectra of Cu (27 μM), ascorbate (0.8 mM) and BCA (84 μM), with the addition of hCTR1_N variants. (B) Titration of hCTR1_N variants into 27 μM Cu⁺, 84 μM BCA and 0.8 mM ascorbate. (C) Effects of DEPC modification on Cu⁺ binding to hCTR1_N. UV-vis absorption spectra of 125 μM Cu(BCA)₂ (–), 125 μM Cu(BCA)₂ incubated with 0.5 mM hCTR1_N (–), or with 0.5 s mM DEPC modified hCtr1 N (–) for one hour. Experiments were carried out in 20 mM MES/Tris buffer, pH 8.0, at 25 °C.

Fig. S8 Binding profiles of Ag⁺ to hCTR1_N and its variants by equilibrium dialysis. The proteins at 20 μ M were dialyzed against the same buffer supplemented with AgNO₃ concentrations ranging from 0 to 80 μ M at 4 °C overnight. The graphs show Hill plots of the ⁵ molar ratios of bound Ag⁺ to proteins against concentrations of AgNO₃ in the dialysis buffer.

Fig. S9 Calorimetric titration of Ag^+ to hCTR1_N variants. Top, raw data. Bottom, plots of integrated heat versus the Ag/protein ratio. The solid line represents the best fit using single binding site model (A) 24 µM MutA titrated with 1.5 mM AgNO₃ (B) 110 µM MutB ⁵ titrated with 2 mM AgNO₃ (C) 81 µM MutC titrated with 3 mM AgNO₃. All experiments were carried out in 50 mM MES/Tris buffer, pH 8.0, at 25 °C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

Fig. S10 Difference UV-visible spectra of hCTR1_N (100 μM) titrated with CuSO₄ in 50 mM Tris buffer, pH 7.4.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Fig. S11 Calorimetric titration of Cu²⁺ to hCTR1_*N* variants. *Top*, raw data; *Bottom*, plots of integrated heat versus the Cu/protein ratio. The solid line represents the best fit with single binding site model (A) 90 μ M MutC titrated with 2 mM CuSO₄ (B) 45 μ M His-modified ⁵ MutC titrated with 2 mM CuSO₄. All experiments were carried out in 50 mM ACES buffer, pH 7.4, at 25 °C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Fig. S12 Transfer of Cu^{2+} from HSA to hCTR1_*N*. apo- hCTR1_*N* was incubated with 1 equiv $(Cu^{2+})_2$ -HSA for 1 h before analysis by gel filtration on a Superdex 75 column. The concentration of Cu^{2+} was determined by ICP-MS.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

5

Table S1 Best-fit thermodynamic parameters of metal ions binding to hCTR1_N and its variants obtained from ITC measurements.

		N_{ITC}	K_{ITC}	ΔH_{ITC}	ΔS_{ITC}	K
			(×10 ⁴)	[kcal mol ⁻¹] [cal mol ⁻¹ K]		(×10 ⁹)
Ag^+	WT	2.9±0.1	1.8±0.1	-19.3±0.1	-38.5	
	MutA	2.0 ± 0.1	47.6±18.1	-23.1±1.1	-57.7	
	MutB	1.2 ± 0.1	21.3±2.7	-7.6 ± 0.1	-4.06	
Cu ²⁺	WT	1	25.8 ± 5.9	-13.5±1.3	-20.5	3.7±0.9
		1	1.7±0.5	51.3±6.7	191	0.26 ± 0.08
	MutC	1	13.9±1.6	-21.2±0.5	-47.5	2.0 ± 0.2
	Muic	1	0.3±0.1	17.1±6.9	73.4	0.04 ± 0.01