Matrix Isolation and Spectroscopic Properties of the Methylsulfinyl Radical CH₃(O)S[•]

Hans Peter Reisenauer,*^[a] Jaroslaw Romanski,^[b] Grzegorz Mloston,*^[b] Peter R. Schreiner^[a]

^[a] Justus-Liebig University, Institute of Organic Chemistry, Heinrich-Buff-Ring 58, D-35392 Giessen, Fax: (+49) 641-99-34209; E-mail: Hans.P.Reisenauer@org.chemie.uni-giessen.de
^[b] University of Lodz, Section of Heteroorganic Compounds, Tamka 12, PL-91-403 Lodz, Fax: (+48) (42) 665 51 62; E-mail: gmloston@uni.lodz.pl

Supplementary Information

Table S1. Experimental (Ar, 10 K) and computed (AE-CCSD(T)/cc-pVTZ, harmonic approximation, no scaling) the IR spectra of 3.

		3		¹³ C- 3		D3 -3	
Sym.	Approx.	Band Position	^a (Intensity) ^b	Band Position	^a (Intensity) ^b	Band Position	^a (Intensity) ^b
	Mode	Computation	Experiment	Computation	Experiment	Computation	Experiment
a''	CH str.	3151.3 (2.1)	2995.4	3139.3 (2.1)	n.o.	2336.4 (1.2)	2247.2
a'	CH str.	3149.3 (4.1)	(vw)	3137.5 (4.0)	n.o.	2334.5 (2.2)	(vw)
a'	CH str.	3065.6 (4.3)	2919.4 (vw)	3062.7 (4.5)	n.o.	2194.2 (1.4)	2095.5 (vw)
a'	CH ₃ def.	1477.4 (6.5)	1417.1 (w)	1474.8 (6.6)	1414.6 (w)	1062.8 (17.3)	1028.7 (s)
a''	CH ₃ def.	1464.4 (7.8)	1405.2 (w)	1461.7 (7.8)	1401.4 (w)	1058.5 (3.7)	1025.6 (w)
a'	CH ₃ def.	1324.7 (1.0)	1288.7 (w)	1316.2 (0.8)	1283.8 (w)	1024.8 (2.3)	1000.7 (w)
a'	SO str.	1077.8 (33.7)	1068.2 (vs)	1077.8 (33.8)	1067.9 (vs)	1082.5 (20.4)	1069.5 (vs)
a'	CH ₃ rock.	944.7 (9.3)	926.6 (m)	936.5 (9.0)	918.9 (m)	765.5 (12.6)	751.6 (w)
a''	CH ₃ rock.	888.8 (1.1)	868.2 (vw)	883.7 (1.2)	863.5 (vw)	671.8 (0.3)	659.2 (vw)
a'	CS str.	690.9 (11.9)	669.9 (w)	676.8 (11.9)	656.0 (m)	630.7 (5.9)	614.2, 618.8 (w)
a'	CSO def.	328.5 (7.1)	340.8 (w)	326.3 (7.)	n.o.	298.8 (6.6)	n.o.
a''	CH ₃ twist.	134.0 (0.8)	n. o.	134.0 (0.8)	n.o.	103.1 (1.3)	n.o.

^a in cm⁻¹; ^b in km mol⁻¹ (computation), vw: very weak, w: weak, m: middle, s: strong, vs: very strong, n.o.: not observed (experiment)

Experimental

Preparation of allylmethyl sulfoxide (**4a**) and its labelled derivatives **4b** and **4c** was based on the known protocols.¹ A solution of ally1 bromide (1.94 g, 0.016 mol) and thiourea (1.0 g, 0.016 mol) in methanol (20 mL) was heated under reflux for 1 h and then after addition of a methanolic NaOH (1.28 g in 15 mL) solution heating was continued for additional 1 h. Next, the solution was cooled to -10 °C and MeI (2.28 g, 0.016 mol) was added in small portions. The solution obtained thereby was refluxed for 0.5 h. After this time the mixture was distilled and the product **9** was collected as an azeotrope with methanol (bp 62–64 °C). To this solution 30% H₂O₂ (1.27 g, 0.012 mol) was added dropwise and the reaction mixture was stirred for 6 h at rt. The solvents were evaporated and the liquid residue was distilled to yield allylmethyl sulfoxide (**4a**), bp 48–50 °C/0.25 Torr. The crude distillate contained traces of allylmethyl sulfone and was directly used for the matrix experiments.used. *Note:* The same procedure was applied for the synthesis of **4b** and **4c** using CD₃I and ¹³CH₃I, respectively.

Matrix isolation experiments: The cryostat used for the matrix isolation studies was an APD Cryogenics HC-2 closed-cycle refrigerator system fitted with CsI windows for IR and BaF2 windows for UV/Vis measurements. The IR spectra were recorded with a Bruker IFS 55 FTIR spectrometer (4500–300 cm⁻¹, resolution 0.7 cm⁻¹), the UV/Vis spectra with a JASCO V-670 spectrophotometer (spectral range: 190-2500 nm, resolution: >= 0.1 nm). For the combination of high-vacuum flash pyrolysis (HVFP) with matrix isolation a small home built water-cooled oven directly connected to the vacuum shroud of the cryostat was used. The pyrolysis zone consisted of a completely empty quartz tube (inner diameter 8 mm, length of heating zone 50 mm) resistively heated by a coax heating wire. The temperature was controlled by a Ni/CrNi thermocouple. The precursors were evaporated from a cooled storage bulb allylmethyl sulfoxide (4a) at -30 °C (dimethyl sulfoxide (8) at -23 °C) into the quartz pyrolysis tube. Immediately after leaving the tube, at a distance of ca. 50 mm, the pyrolysis products were co-condensed with a large excess of argon on the surface of the 10 K cold matrix window during a time of 2–4 hours. Pyrolysis temperatures were varied between 500 and 900 °C, the optima with respect to the yields of methylsulfinyl radical (3) was found at 600 °C for precursor 4a and 800 °C for 8. For irradiations a mercury high-pressure lamp (Osram, HBO 200 in connection with long-pass glass

filters or a Bausch & Lomb monochromator (slits set to a spectral half-width of $\Delta \lambda = 10$ nm), a mercury low pressure lamp (Gräntzel, with vycor filter ($\lambda > 210$ nm, main line: $\lambda = 254$ nm)), or a KrF excimer laser (Lambda Physik LPX 100, ($\lambda = 248$ nm) was used. An unspecific photodegradation of **3** to COS, CS, CO, H₂S, H₂O was observed using $\lambda = 248$ and 254 nm (80 min or 16 h irradiation time for complete conversion), but not with visible light ($\lambda > 475$ nm). Subtraction of the respective spectra before and after photodegradation were made to discern the IR and UV/Vis spectra of **3** more clearly. The same procedure was applied for the D_3 - and ^{13}C -isotopologues **4b** and **4c**.

Computational methods: The electronic structure computations employed the correlationconsistent triple- ξ atomic-orbital basis set cc-pVTZ.² Geometry optimizations and evaluations of the analytical harmonic vibrational frequencies were performed with single-reference all-electron coupled-cluster theory, incorporating all single and double excitations, and with perturbative inclusion of connected triple excitations AE-CCSD(T).³ For energy evaluation of all other structures Gaussian-4 theory (G4) was employed.^{4,5} All stationary structures were characterized as minima or transition structures by computing analytical harmonic vibrational frequencies. For computations of electronic excitations within the adiabatic approximation of time dependent density functional theory (TD-DFT)⁶ with the B3LYP functional and a large basis set including polarization and diffuse functions (6-311+G(3df,3pd) was employed.⁵

References:

(1) (a) Prabhuswamy, B.; Ambekar, S. Y. *Synth. Comm.* **1999**, *29*, 3477. (b) Kline, M. L.; Beutow, N.; Kim, J. K.; Caserio, M. C. J. Org. Chem. **1979**, *44*, 1904. (c) O'Connor, D. E.; Lyness, W. I. J. *Am. Chem. Soc.* **1964**, *86*, 3840.

(2) Dunning Jr., T. H. J. Chem. Phys. 1989, 90, 1007.

(3) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay P. G. with contributions from Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.; Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T.-C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale, W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O'Neill, D. P.; Price, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach, W.; Stopkowicz, S.; Tajti, Vázquez, A.; Wang, F.; Watts J. D. and the integral packages *MOLECULE* (Almlöf, J.; Taylor, P. R.), *PROPS* (Taylor, P. R.), *ABACUS* (Helgaker, T.; Jensen, H. J. Aa.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V.; van Wüllen, C. For the current version, see http://www.cfour.de.

(4) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem. Phys., 2007, 126, 084108.

(5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G. B.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.

(6) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett., 1996, 256, 454.

1. Spectroscopic Data

Figure S1. The IR spectrum of matrix isolated pyrolysis products of precursor **4a** (after 1 h pyrolysis at 600 °C, argon matrix, 10 K); bands of **3** and **7** are labelled.

Figure S2. Long wavelength part of the UV/Vis absorption spectrum of the matrix isolated (Ar, 10 K) pyrolysis products of precursor **4a** (2 h pyrolsis at 660 °C), recorded with 0.2 nm resolution, after baseline correction. Spectrum shows the electronic excitation band of allyl radical and $n \rightarrow \pi^*$ transition of methylsulfinyl radical **3**.

Figure S3. IR spectrum of matrix isolated pyrolysis products of dimethyl sulfoxide (bands marked with •) (pyrolysis temperature 800 °C, argon matrix, 10 K); bands of methylsulfinyl radical marked with **3**, bands of methyl radical are marked with *****, bands of sulfine (**4**) marked \circ

Figure S4. Computed first three electron transitions of methylsulfinyl radical (**3**) at TD-UB3LYP/6-311+G(3df,3pd) level of theory and orbitals involved.

Figure S5. Computed charges and spin densities for 3 for the two lowest lying doublet states.

(σ-radical) UB3LYP/6-311+G(3df,3pd)

²Aʻ

+44.0 kcal/Mol

Mulliken charges (green) and spin densities (red) with hydrogens summed into heavy atoms.

2. Computational Results (optimized geometry, energies, cartesian coordinates, and vibrational harmonic frequencies of optimized geometries)

2.1 UCCSD(T)-AE/cc-pVTZ level of theory

```
Methylsulfinyl radical (3)
```


Symmetry: Cs, State = ${}^{2}A''$ CCSD(T) = -512.717177032 Hartree, ZPVE = 25.2991 kcal/mol

Cartesian coordinates (x, y, z, in Å):

0	-1.181270821	0.583232398	0.00000000
S	-0.122737959	-0.490472754	0.00000000
С	1.457670195	0.389252783	0.00000000
Н	2.256349040	-0.348236477	0.00000000
Н	1.514382465	1.008411771	0.890072942
Н	1.514382465	1.008411771	-0.890072942

2.2 Gaussian-4 level of theory

Allylmethyl sulfoxide (4a)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Symmetry: C1, State = ${}^{1}A$

Temperature= 1.000000 E(ZPE)= 0.118864 E(CCSD(T))= -0.125046 DE(Plus)= -0.269920 E(Delta-G3XP)= -0.034158 G4(0 K)= -630.323053 G4 Enthalpy= -630.363059 298.150000 Pressure= 0.111034 E(Thermal)= -629.328231 E(Empiric)= -0.023447 DE(2DF)= -0.661115 DE(HF)= -630.330883 G4 Energy= -630.322109 G4 Free Energy=

Cartesian coordinates (x, y, z, in Å):

С	-0.863724000	1.583718000	-0.196135000
S	-1.160583000	-0.134240000	0.349079000
С	0.584668000	-0.510006000	0.889472000
С	1.550467000	-0.472745000	-0.245493000
С	2.647528000	0.279772000	-0.284717000
0	-1.416304000	-0.952545000	-0.872477000
Н	-0.058776000	1.606391000	-0.932809000
Н	-1.798721000	1.926770000	-0.642391000
Н	-0.617868000	2.201235000	0.672014000
Н	0.489949000	-1.518526000	1.306689000
Н	0.837758000	0.182036000	1.698704000
Н	1.287632000	-1.107985000	-1.087537000
Н	2.932102000	0.925543000	0.541645000
Н	3.314059000	0.268308000	-1.140522000

Vibrations (cm⁻¹, km mol⁻¹):

84.415	3.2197
95.1745	1.8944
193.8585	0.9578
199.5775	3.4514
270.6059	0.7752
313.6631	5.3194
386.2907	4.2203
439.595	3.5752
563.3678	13.0386
649.0763	15.2419
709.1242	4.7028
855.4565	0.9829
935.9768	3.2253
940.153	4.1733
954.8002	34.3626
976.3041	26.266
1041.7767	11.5147
1084.2992	34.2245
1120.2403	87.3898
1207.815	4.9109
1235.1742	0.5086
1320.5963	2.1939
1322.4313	1.3265
1437.3429	2.1037
1449.353	4.4802
1462.0097	3.3402
1465.9531	10.3572
1706.484	5.0531
3042.9472	9.3129
3047.2608	4.7232
3102.2864	6.0327
3141.538	5.8635
3146.6951	5.239
3160.3949	0.7194
3172.0433	2.653
3226.5443	11.5876

Methylsulfinyl radical (3)

Symmetry: Cs, State = ${}^{2}A''$

Temperature=		298.150000	Pressure=
1.000000			
E(ZPE) =		0.039386	E(Thermal)=
0.043602			
E(CCSD(T)) =		-512.401727	E(Empiric)=
-0.066593			
DE(Plus) =		-0.014153	DE(2DF) =
-0.153432			
E(Delta-G3XP)=		-0.486020	DE(HF) =
-0.023075			
G4(0 K)=		-513.105613	G4 Energy=
-513.101397			
G4 Enthalpy=		-513.100453	G4 Free Energy=
-513.132634			
Cartesian coordinates	(x,	y, z, in Å)	:
C –1 409066000		0 300190000	0 00000100

С	-1.409066000	0.300190000	0.000001000
S	0.227625000	-0.500556000	0.00002000
Η	-1.510642000	0.919390000	-0.894096000
Η	-2.165681000	-0.489386000	-0.001569000
Н	-1.511849000	0.916979000	0.895627000
0	1.250070000	0.607597000	0.00000000

Vibrations (cm⁻¹, km mol⁻¹):

126.9414	0.3487
322.4073	5.6456

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

663.4729	11.1357
882.6132	1.9912
941.4786	10.5653
1057.3296	29.1236
1318.6987	0.1128
1445.2338	6.7194
1460.1082	6.0305
3041.8055	3.2254
3140.955	4.4548
3143.672	2.4449

Propene

Symmetry: Cs, State = ${}^{1}A'$

Temperature=	298.150000	Pressure=
1.000000		
E(ZPE) =	0.077966	E(Thermal)=
0.081538		
E(CCSD(T)) =	-117.504799	E(Empiric)=
-0.062523		
DE(Plus)=	-0.007466	DE(2DF) =
-0.116275		
E(Delta-G3XP)=	-0.175908	DE(HF) =
-0.012217		
G4(0K)=	-117.801222	G4 Energy=
-117.797650		
G4 Enthalpy=	-117.796706	G4 Free Energy=
-117.825820		

Cartesian coordinates (x, y, z, in Å):

C 0.00000000 0.478765000 0.0	000000000
C -1.290517000 0.159938000 0.0	0000000000
Н 2.109806000 -0.009160000 0.0	000000000
Н 1.106344000 -1.162702000 0.8	881069000
Н 0.276788000 1.531421000 0.0	000000000
Н -1.627934000 -0.873555000 0.0	0000000000
Н -2.066088000 0.918344000 0.0	000000000

Vibrations (cm⁻¹, km mol⁻¹):

-220.654	0.4961
413.8005	0.4674
594.1011	9.8896
919.72	0.8018
942.5992	25.7029
971.6212	0.6248
1024.838	13.1401
1060.4803	1.3461
1171.273	6.2487
1335.0748	0.6781
1404.3952	1.1363
1453.2739	2.0289
1490.3693	4.2047
1492.4111	4.6249
1715.156	9.0195
3034.0927	20.0146
3086.9376	17.8618
3112.4561	12.5234
3137.8122	18.9183
3147.844	11.0411
3221.9823	18.1404

Allyl radical (7)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Symmetry: C2v, State= ${}^{2}A_{2}$

298.150000 Pressure= Temperature= 1.000000 E(ZPE) = $0.065064 \, \text{E(Thermal)} =$ 0.068919 E(CCSD(T)) =-116.869727 E(Empiric) = -0.059465 DE(Plus) = -0.009191 DE(2DF) = -0.106573 E(Delta-G3XP) =-0.173819 DE(HF)= -0.012064 G4(0 K) =-117.165775 G4 Energy= -117.161920 -117.160976 G4 Free Energy= G4 Enthalpy= -117.190276

Cartesian coordinates (x, y, z, in Å):

С	0.000000000	1.227567000	-0.195103000
С	0.000000000	0.000000000	0.440771000
С	0.000000000	-1.227567000	-0.195103000
Н	0.000000000	1.297226000	-1.278294000
H	0.000000000	2.156677000	0.361628000
Н	0.000000000	0.000000000	1.529935000
Н	0.000000000	-1.297226000	-1.278294000
Н	0.00000000	-2.156677000	0.361628000

Vibrations $(cm^{-1}, km mol^{-1})$:

422.2656	0.1136
537.0353	10.6503

556.2108	0
784.2134	0
807.6833	59.9847
932.3853	0.0097
1022.7048	12.0494
1041.0988	0.0001
1219.5843	0.0552
1270.7411	1.0472
1421.2495	4.8139
1508.6997	0.287
1519.1119	2.0376
3139.34	14.6531
3148.7362	6.7351
3155.1567	3.6059
3247.0858	4.5363
3249.8513	17.1187

Thioformaldehye S-oxide (5)

Symmetry: Cs, State=¹A'

Temperature=	298.150000	Pressure=
1.000000		
E(ZPE) =	0.028574	E(Thermal) =
0.032084		
E(CCSD(T))=	-511.799053	E(Empiric)=
-0.062523		
DE(Plus) =	-0.015207	DE(2DF) =
-0.147969		
E(Delta-G3XP)=	-0.487131	DE(HF) =
-0.022518		
G4(0 K)=	-512.505826	G4 Energy=
-512.502317		

G4 Enthalpy= -512.501373 G4 Free Energy= -512.531070 Cartesian coordinates (x, y, z, in Å): 1.236160000 -0.607317000 0.00000000 С S 0.00000000 0.431235000 0.000000000 -1.685120000 1.115318000 0.00000000 Η Η 2.225938000 -0.163449000 0.00000000 -0.175911000 0.00000000 Ο -1.344777000 Vibrations $(cm^{-1}, km mol^{-1})$: 7.4542 389.3915 646.1358 0.0086 794.3802 73.6949 875.1003 3.9127 1004.3269 5.0278

10010200	0.02/0
1196.1814	108.4968
1404.3663	19.5828
3147.9822	3.251
3270.6959	1.2693

Allylmethyl sulfide (6)

Symmetry: C1, State = ${}^{1}A^{\circ}$

Temperature= 298.150000 Pressure= 1.000000 E(ZPE)= 0.107453 E(Thermal)= 0.114494 E(CCSD(T))= -554.332056 E(Empiric)= -0.104205

-0.011693 DE(2DF)=
-0.575716 DE(HF)=
-555.149448 G4 Energy=
-555.141463 G4 Free Energy=

Cartesian coordinates (x, y, z, in Å):

С	-2.408715000	0.420925000	-0.046492000
S	-0.929559000	-0.638804000	-0.088774000
С	0.375093000	0.639299000	0.145400000
С	1.682819000	-0.021167000	0.453384000
С	2.749908000	0.017032000	-0.338619000
Η	-2.399228000	1.148835000	-0.861781000
Н	-3.271333000	-0.236739000	-0.172104000
Η	-2.496156000	0.939513000	0.911914000
Η	0.058260000	1.275698000	0.979748000
Η	0.448096000	1.255807000	-0.755234000
Η	1.721985000	-0.569849000	1.392240000
Н	2.738955000	0.547253000	-1.286744000
Н	3.677735000	-0.476184000	-0.069691000

Vibrations (cm⁻¹, km mol⁻¹):

62.8045	0.8085
90.4136	0.324
175.5097	0.3427
200.6462	0.6835
305.7867	1.1343
411.4539	1.0448
591.2364	2.0873
714.5258	2.1961
772.228	9.9644
887.6105	4.2358
936.9748	0.2142
956.5036	29.6298
967.9475	3.239

993.0401	3.5904
1036.2592	9.977
1085.3946	3.0622
1214.8779	0.4638
1251.079	31.0259
1326.6274	0.27
1351.3954	7.9342
1448.2478	2.535
1467.0127	6.9644
1479.7073	4.4572
1483.5088	5.0968
1713.5355	5.9346
3028.1965	24.562
3039.0146	26.0196
3085.8668	12.4658
3118.8776	11.9091
3139.1327	6.3469
3143.875	9.0515
3156.5512	6.0174
3229.4629	13.5106

```
Thiomethoxy radical (2)
```


Symmetry: C1, State = ${}^{2}A$

Temperature=	298.150000 Pressure=
1.000000	
E(ZPE) =	0.034939 E(Thermal)=
0.038152	
E(CCSD(T)) =	-437.369373 E(Empiric)=
-0.045209	
DE(Plus) =	-0.003236 DE(2DF)=
-0.095534	
E(Delta-G3XP)=	-0.401012 DE(HF)=
-0.013257	
G4(0 K)=	-437.892682 G4 Energy=
-437.889469	
G4 Enthalpy=	-437.888524 G4 Free Energy=
-437.916968	

Cartesian coordinates (x, y, z, in Å):

С	-1.109349000	0.000071000	-0.008750000
S	0.693857000	0.000013000	-0.002020000
Н	-1.511198000	-0.898385000	-0.482152000
Н	-1.422854000	-0.003550000	1.043450000
Н	-1.511564000	0.901295000	-0.476482000

```
Vibrations (cm<sup>-1</sup>, km mol<sup>-1</sup>):
```

577.5586	42.0096
714.9217	0.6738
859.4931	1.3257
1329.2073	4.1741

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

1372.2927	8.2758
1469.9259	13.6709
3020.9961	4.02
3096.7506	14.222
3122.5268	1.5575

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Thioformaldehyde

Symmetry: C2v, State = ${}^{1}A_{1}$

Temperature=	298.150000 Pressure=
1.000000	
E(ZPE) =	0.024320 E(Thermal)=
0.027260	
E(CCSD(T))=	-436.790864 E(Empiric)=
-0.041682	
DE(Plus) =	-0.003969 DE(2DF)=
-0.086789	
E(Delta-G3XP)=	-0.400797 DE(HF)=
-0.012674	
G4(0 K)=	-437.312457 G4 Energy=
-437.309517	
G4 Enthalpy=	-437.308573 G4 Free Energy=
-437.334776	

Cartesian coordinates (x, y, z, in Å):

С	0.00000000	0.00000000	-1.025250000
S	0.00000000	0.000000000	0.585517000
Н	0.00000000	0.922513000	-1.608389000
Н	0.00000000	-0.922513000	-1.608389000

Vibrations (cm⁻¹, km mol⁻¹):

995.5959	3.0648
1032.2275	35.6151
1089.9195	15.5959

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

1488.2234	7.866
3071.2351	27.523
3156.0161	6.4824

Symmetry: C1, State = ${}^{1}A$

Temperature=	298.150000 Pressure=
1.000000	
E(ZPE) =	0.102657 E(Thermal)=
0.108668	
E(CCSD(T)) =	-554.260310 E(Empiric)=
-0.104205	
DE(Plus)=	-0.012483 DE(2DF)=
-0.211954	
E(Delta-G3XP)=	-0.577194 DE(HF)=
-0.024616	
G4(0 K)=	-555.088105 G4 Energy=
-555.082094	
G4 Enthalpy=	-555.081150 G4 Free Energy=
-555.117578	

Cartesian coordinates (x, y, z, in Å):

С	-1.109211000	1.209569000	0.076992000
S	-1.364235000	-0.444385000	-0.103776000
С	0.821254000	-1.288517000	0.338742000
С	1.523895000	-0.343731000	-0.376986000
С	1.605162000	0.993334000	0.093152000
Н	0.353604000	1.315020000	0.006441000
Н	-1.301022000	1.854873000	-0.779953000
Н	-1.272731000	1.676510000	1.048378000
Н	0.674777000	-2.288206000	-0.054473000
Н	0.713222000	-1.191130000	1.412824000
Н	1.724248000	-0.535965000	-1.427996000

Н	1.7323	38000	1.137378000	1.166848000
Н	2.1567	18000	1.717758000	-0.503049000
Vibrat	cions (cm ⁻	¹ , km mol ⁻	⁻¹):	
077 0	222		121	
-9//.3	5/32	33.1 6 02	434	
120.48		6.02	43	
237.90	120	9.60	90 F F	
328.01	106	1./4	20 2	
120.24	106	0.83		
436.97	10	0.10	25	
499./3	319	1.3/	95	
208.02	279	3.09	16	
141.38	316	23.4	244	
813.45	0∠4	1.//	38	
944.34	±⊥	5.46	55	
949.60)/4	1.63		
969.48	397	14.5	63/	
986.32		11.9	10	
998.00)5	6./3	13	
1011.6	5184	12.8	236	
1039.3	3034	0.37	19	
1196.3	332	5.14	59	
1290.6	5104	3.90	14	
1301.1	181	3.66	29	
1344.1	299	6.55	8	
1413.3	3109	1.92	01	
1449.9	9561	3.77	85	
1477.0	0618	3.58	45	
1511.2	2563	4.48	36	
1619.6	5076	3.15		
3076.7	7669	19.9	423	
3100.7	746	8.01	7	
3158.4	1774	2.54	13	
3163.2	2532	3.75	09	
3164.9	922	6.38	66	
3185.2	2307	10.4	149	
3246.4	1538	2.95	31	

Transition state propene elimination from allylmethyl sulfoxide (4a)

Symmetry: C1, State = ${}^{1}A$ Temperature= 298.150000 Pressure= 1.000000 E(ZPE) =0.105396 E(Thermal) = 0.112589 E(CCSD(T)) =-629.260566 E(Empiric) = -0.125046 DE(Plus) = -0.024908 DE(2DF) = -0.271466 -0.662129 DE(HF)= E(Delta-G3XP) =-0.034124 G4(0 K)= -630.272843 G4 Energy= -630.265650 -630.264706 G4 Free Energy=

G4 Enthalpy= -630.304043

Cartesian coordinates (x, y, z, in Å):

С	0.541144000	1.464029000	-0.252608000
S	1.206518000	-0.095405000	-0.367079000
С	-1.060518000	-1.245589000	-0.642973000
С	-1.655569000	-0.592473000	0.404637000
С	-2.033990000	0.771639000	0.316418000
0	1.713475000	-0.546593000	0.956577000
Н	-0.781714000	1.290853000	0.162303000

Н	0.928642000	2.063205000	0.569104000
H	0.454076000	1.966028000	-1.215052000
H	-0.692840000	-2.259893000	-0.539680000
Н	-1.174924000	-0.883308000	-1.660557000
Н	-1.568434000	-1.034205000	1.394809000
H	-2.443587000	1.124523000	-0.630310000
Η	-2.479695000	1.246383000	1.187200000

Vibrations (cm⁻¹, km mol⁻¹):

-1206.5672	3.7054
101.3354	3.0677
140.2234	0.6426
219.7983	4.5807
324.118	3.6862
358.4869	4.0921
401.8244	3.4218
436.6861	1.3705
480.4385	5.3272
543.8581	4.9266
723.9255	13.9605
797.1494	0.5198
839.188	13.1969
925.7085	25.3513
942.3853	3.5685
960.4357	24.5445
960.9566	0.9849
1011.933	23.8093
1041.6708	1.7171
1132.7824	135.6195
1147.5321	21.3225
1266.529	2.4961
1301.462	2.2337
1357.7559	3.7416
1384.9111	6.8443
1416.5983	2.0495
1452.2393	3.1522
1508.319	3.6741
1610.7109	9.2507
3105.369	7.8207
3105.9493	0.9727

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

3146.3429	4.7341
3156.9906	3.6617
3193.2813	8.9602
3213.2027	0.9094
3238.7345	4.2637