Supporting Information

A novel reaction of gem-difluorocyclopropyl ketones with nitriles leading to 2-fluoropyrroles

Tang-Po Yang, Jin-Hong Lin, Qing-Yun Chen and Ji-Chang Xiao*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China

E-mail: jchxiao@sioc.ac.cn

Table of Contents

General Methods	
General Procedure A (methenylation reactions of Aryl	ketones) S1
General Procedure B (The Reaction of Difluorocyclo	propyl Ketones
with Nitriles)	S5
NMR spectra of the new products	

General Methods

All reactions were carried out under nitrogen atmosphere. All the reagents used were purchased from commercial sources and used without further purification. m-xylene and CH₃CN were freshly distilled from CaH₂. ¹H, ¹³C NMR spectra were recorded in CDCl₃ on a spectrometer operating at 300 and 100 MHz, respectively. Chemical shifts are reported in parts per million relative to the appropriate standard: TMS for ¹H and ¹³C NMR spectra. High Resolution Mass spectra were recorded on a Waters Micromass GCT instrument. The IR spectra were recorded on a Shimadzu IR-440 spectrometer. Column chromatography was carried out on silica gel (300-400 mm).

General Procedure A (methenylation reactions of Aryl ketones)

Into an oven dried Schlenk tube was weighed aryl vinyl ketones (20 mmol), anhydrous sodium fluoride (2 mmol). m-xylene (1 mL) were added to the mixture under the atmosphere of nitrogen. The mixture was heated to 110° C and stirred for 5 min. Then, TFDA (FSO₂CF₂CO₂SiMe₃, 40 mmol) was added dropwise in 30 min. Then the mixture was stirred for further 30 min at 110° C after addition of TFDA. When the substrate was completely transformed via TLC, the mixture was cooled to room temperature. After removal of the solvent under reduced pressure the crude product was purified by column chromatography (Hexane : Et₂O = 20 : 1).

Phenyl 2,2-Difluorocyclopropyl Ketone

Coloress liquid (77%). ¹H NMR (300 MHz, CDCl₃): δ 8.01 (d, *J* = 7.3 Hz, 2 H), 7.63 (t, *J* = 7.3 Hz, 1 H), 7.52 (t, *J* = 7.3 Hz, 2 H), 3.39 (m, 1 H), 2.43 (m, 1 H), 1.81 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ : -124.16 (dtd, *J* = 149.0, 13.0, 6.0 Hz, 1 F), -140.04 (ddd, *J* = 149.0, 12.2, 4.8 Hz, 1 F) ppm;

4-methylphenyl 2,2-Difluorocyclopropyl Ketone

White solid (38%) ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, *J* = 8.0 Hz, 2 H), 7.31 (d, *J* = 8.1 Hz, 2 H), 3.37 (m, 1 H), 2.41 (m, 1 H), 2.44 (s, 3 H), 1.78 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -124.18 (dtd, *J* = 149.0, 12.4, 5.9 Hz 1 F), -140.13 (ddd, *J* = 148.7, 12.1, 4.7 Hz, 1 F) ppm

4-methoxyphenyl 2,2-Difluorocyclopropyl Ketone

Faint yellow liquid (41%) ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, J = 8.7 Hz, 2 H), 6.98 (d, J = 8.7 Hz, 2 H), 3.89 (s, 3 H), 3.34 (m, 1 H), 2.40 (m, 1 H), 1.77 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -124.39 (dtd, J = 149.0, 13.0, 5.8 Hz, 1 F), -140.35 (ddd, J = 149.0, 12.2, 4.6 Hz, 1 F) ppm

4-Chlorophenyl 2,2-Difluorocyclopropyl Ketone

Faint yellow solid (22%) ¹H NMR (300 MHz, CDCl₃): δ 7.95 (d, J = 8.4 Hz, 2 H), 7.49 (d, J = 8.4 Hz, 2 H), 3.34(m, 1 H), 2.43 (m, 1 H), 1.82 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -124.07 (dtd, J = 148.7, 12.3, 5.7 Hz, 1 F), -139.90 (ddd, J =148.7, 12.2, 4.9 Hz, 1 F) ppm;

4-Bromophenyl 2,2-Difluorocyclopropyl Ketone

White solid (m.p. 67-69°C, 32%) ¹H NMR (300 MHz, CDCl₃): δ 7.87 (d, *J* = 8.8 Hz, 2 H), 7.66 (d, *J* = 8.8 Hz, 2 H), 3.35 (m, 1 H), 2.43 (m, 1 H), 1.84 (m, 1 H) ppm; ¹⁹F

NMR (282 MHz, CDCl₃): δ -124.56 (dtd, J = 148.3, 12.3, 5.9 Hz, 1 F), -140.36 (ddd, J = 148.3, 12.1, 4.7 Hz, 1 F) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 189.5, 135.7, 132.3, 129.9, 129.1, 111.5 (t, J = 287.6 Hz), 29.7 (dd, J = 11.7, 9.6 Hz), 15.8 (dd, J = 11.0, 8.8 Hz) ppm; EI-MS (m/z, %): 183 (100), 185 (92.6), 76 (54.0), 155 (50.2), 157 (49.6), 75 (47.3), 50 (44.1), 133 (39.2). IR (KBr): 3117, 3095, 3075, 3060, 1671, 1582, 1453, 1400, 1381, 1319, 1247, 1180, 1008, 846, 703, 658, 515, 479cm⁻¹.

HRMS for C₁₀H₇OF₂Br: 259.9648; Found: 259.9649.

4-fluorophenyl 2,2-Difluorocyclopropyl Ketone

Coloress liquid (28%) ¹H NMR (300 MHz, CDCl₃): δ 8.08-8.02 (m, 2 H), 7.23-7.16 (m, 2 H), 3.35 (m, 1 H), 2.43 (m, 1 H), 1.82 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -103.89 (m, 1 F), -124.28 (dtd, *J* = 148.5, 12.7, 5.9 Hz, 1 F), -140.07 (ddm, *J* = 149.2, 12.0 Hz, 1 F) ppm

4-nitrophenyl 2,2-Difluorocyclopropyl Ketone

White solid (m.p. 62-64°C,44%) ¹H NMR (300 MHz, CDCl₃): δ 8.38 (d, J = 8.5 Hz, 2 H), 8.18 (d, J = 8.5 Hz, 2 H), 3.44 (m, 1 H), 2.50 (m, 1 H), 1.94 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -123.66 (dtd, J = 148.1, 12.2, 6.0 Hz, 1 F), -139.32 (ddd, J = 148.1, 12.0, 4.7 Hz, 1 F) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 189.3, 150.7, 141.3, 129.4, 124.1, 123.8, 111.4 (t, J = 288.5 Hz), 30.2 (dd, J = 11.8, 10.3 Hz), 16.3 (dd, J = 11.4, 9.1Hz) ppm; EI-MS (m/z, %): 150 (100), 104 (58.4), 76 (54.2), 133 (41.3), 50 (37.8), 51 (26.3), 75 (25.6), 77 (25.5). IR (KBr): 3113, 3087, 3052, 1677, 1607, 1451, 1413, 1321, 1298, 1208, 1052, 963, 923, 856, 729, 703, 685, 479cm⁻¹. HRMS for C₁₀H₇NO₃F₂: 227.0394; Found: 227.0397

3-methoxyphenyl 2,2-Difluorocyclopropyl Ketone

Coloress liquid (71%) ¹H NMR (300 MHz, CDCl₃): δ 7.60 (d, *J* = 7.9 Hz, 1 H), 7.52 (s, 1 H), 7.43 (t, *J* = 7.9 Hz, 1 H), 7.17 (dd, *J* = 7.9, 2.6 Hz, 1 H), 3.87 (s, 3 H), 3.38 (m, 1 H), 2.43 (m, 1 H), 1.81 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -124.73 (dm, J = 148.0 Hz, 1 F), -140.65 (dm, J = 148.0 Hz, 1 F) ppm

3-Bromophenyl 2,2-Difluorocyclopropyl Ketone

White solid (62%) ¹H NMR (300 MHz, CDCl₃): δ 8.12 (s, 1 H), 7.93 (d, J = 7.9 Hz, 1 H), 7.75 (d, J = 7.9 Hz, 1 H), 7.41 (t, J = 7.9 Hz, 1 H), 3.37 (m, 1 H), 2.44 (m, 1 H), 1.85 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -124.48 (dtd, J = 148.5, 12.2, 6.0 Hz, 1 F), -140.28 (ddd, J = 148.5, 12.1, 4.8 Hz, 1 F) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 189.3, 138.7, 136.6, 131.4, 130.4, 127.0, 123.2, 111.5 (dd, J = 288.4, 286.9 Hz), 29.8 (dd, J = 11.7, 10.3 Hz), 15.9 (dd, J = 11.0, 8.8 Hz) ppm; EI-MS (m/z, %): 183 (100), 185 (99), 155 (48.6), 157 (47.7), 133 (28.6), 76 (28.0), 181 (26.6), 75 (22.9). IR (KBr): 3116, 3062, 3026, 1669, 1566, 1459, 1374, 1316, 1247, 1203, 1055, 1008, 929, 919, 908, 817, 773, 704, 679, 667, 478 cm⁻¹. HRMS for C₁₀H₇OF₂Br: 259.9648; Found: 259.9651.

3-Chlorophenyl 2,2-Difluorocyclopropyl Ketone

White solid (70%) ¹H NMR (300 MHz, CDCl₃): δ 7.97 (t, J = 1.8 Hz, 1 H), 7.89 (dt, J = 7.9, 1.8 Hz, 1 H), 7.60 (ddd, J = 7.9, 1.8, 1.1 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1 H), 3.36 (m, 1 H), 2.45 (m, 1 H), 1.84 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -124.52$ (dm, J = 148.1 Hz, 1 F), -140.36 (dm, J = 148.1 Hz, 1 F) ppm

Naphthalen-2-yl 2,2-difluorocyclopropyl ketone

White solid (m.p. 91-93 °C, 57%) ¹H NMR (300 MHz, CDCl₃): δ 8.52 (s, 1 H), 8.07-7.98 (m, 2 H), 7.91 (t, J = 8.8 Hz, 2 H), 7.65-7.55 (m, 2 H), 3.56 (m, 1 H), 2.49 (m, 1 H), 1.86 (m, 1 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -124.51 (dtd, J = 147.9, 12.5, 5.9 Hz, 1 F), -140.43 (ddd, J = 147.9, 12.3, 5.1 Hz, 1 F) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 190.4, 135.9, 134.5, 132.5, 130.5, 129.7, 128.9, 128.8, 127.9, 127.1, 123.8, 111.7 (dd, J = 288.1, 286.6 Hz), 29.84 (dd, J = 11.8, 9.6 Hz), 15.76 (dd, J = 11.0, 9.0 Hz) ppm; EI-MS (m/z, %): 127 (100), 155 (75.2), 232 (46.3), 128 (24.8), 126 (24.1), 183 (21.0), 77 (18.6), 51 (14.4). IR (KBr): 3113, 3053, 3021, 1676, 1624, 1453, 1373, 1237,1061, 1043, 1008, 925, 768, 744, 690, 484, 478cm⁻¹. HRMS for C₁₄H₁₀OF₂: 232.0700; Found: 232.0702.

General Procedure B (The Reaction of Difluorocyclopropyl Ketones with Nitriles)

Under nitrogen, aryl difluorocyclopropyl ketones (0.2 mmol), triflic acid (0.4 mmol) was added into acetonitrile (1 mL). And the mixture was stirred for 0.5 h at room temperature. When TLC showed the complete transformation of the substrate, the mixture

was quenched at -20° C with triethylamine carefully. After removal of the solvent under reduced pressure the crude product was purified by column chromatography (Hexane : EtOAc = 8 : 1).

(5-fluoro-2-methyl-1H-pyrrol-3-yl) (phenyl) methanone

White solid (m.p. 120-122 °C, 64 %) ¹H NMR (300 MHz, CDCl₃): δ 8.61 (br, 1 H), 7.77 (d, J = 7.0 Hz, 2 H),7.52 (t, J = 7.0 Hz, 1 H), 7.44 (t, J = 7.0 Hz, 2 H), 5.68 (t, J = 3.2 Hz, 1 H), 2.47 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -141.02 (s, 1 F) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 192.7 (d, J = 15.4 Hz), 145.1 (dd, J = 260.1, 5.9 Hz), 140.1, 131.5, 128.9, 128.6 (d, J = 14.7 Hz), 128.2, 117.2 (t, J = 3.6 Hz), 87.64 (d, J = 8.8 Hz), 13.3 ppm; EI-MS (m/z, %): 203 (100), 202 (85.3), 126 (78.1), 182 (42.1), 77 (38.1), 51 (32.3), 57 (27.0), 71 (18.2). IR (KBr): 3211, 1625, 1600, 1574, 1530, 1448, 1430, 1371, 1252, 762, 721, 694, 675, 606 cm⁻¹. HRMS for C₁₂H₁₀NOF: 203.0746; Found: 203.0749.

(5-fluoro-2-methyl-1H-pyrrol-3-yl)(p-tolyl) methanone

White solid (m.p. 149-151°C, 49 %) ¹H NMR (400 MHz, CDCl₃): δ 8.99 (br, 1 H), 7.68 (d, J = 7.8 Hz, 2 H), 7.23 (d, J = 7.8 Hz, 2 H), 5.67 (s, 1 H), 2.43 (s, 3 H), 2.41 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -140.87 (s, 1 F) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 192.3 (d, J = 2.9 Hz), 145.0 (d, J = 260.0 Hz), 142.1, 137.4, 129.2, 128.8, 128.0, 117.4 (d, J = 2.9 Hz), 87.6 (d, J = 8.8 Hz), 21.6, 13.2 ppm; EI-MS (m/z, %): 217 (100), 202 (83.7), 216 (60.0), 126 (55.3), 196 (36.9), 91 (26.7), 182 (19.1), 218 (15.6). IR (KBr): 3176, 1633, 1533, 1427, 1371, 1178, 911, 836, 795, 755, 605. HRMS for C₁₃H₁₂NOF: 217.0903; Found: 217.0901. (5-fluoro-2-methyl-1H-pyrrol-3-yl) (4-methoxyphenyl) methanone

White solid (m.p. 126-128 °C, 54 %) ¹H NMR (300 MHz, CDCl₃): δ 8.98 (br, 1 H), 7.81 (d, J = 8.7 Hz, 2 H), 6.94 (d, J = 8.7 Hz, 2 H), 5.68 (s, 1 H), 3.87 (s, 3 H), 2.44 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -141.05 (s, 1 F) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 191.4 (d, J = 3.0 Hz), 162.5, 145.0 (d, J = 259.9 Hz), 132.6, 131.4, 127.7 (d, J = 1.5 Hz), 117.4 (d, J = 2.9 Hz), 113.4, 87.5 (d, J = 8.8 Hz), 55.4, 13.1 ppm; EI-MS (m/z, %): 233 (100), 232 (65.9), 126 (57.5), 202 (39.1), 135 (31.4), 212 (27.0), 77 (19.4), 92 (15.9). IR (KBr): 3207, 1623, 1537, 1433, 1371, 1249, 1170, 1032, 915, 834, 761, 619 cm⁻¹. HRMS for C₁₃H₁₂NO₂F: 233.0852; Found: 233.0854.

(4-chlorophenyl) (5-fluoro-2-methyl-1H-pyrrol-3-yl) methanone

White solid (m.p. 138-140 °C, 57 %) ¹H NMR (300 MHz, CDCl₃): δ 8.40 (br, 1 H), 7.72 (d, *J* = 8.5 Hz, 2 H), 7.42 (d, *J* = 8.5 Hz, 2 H), 5.65 (t, *J* = 3.1 Hz, 1 H), 2.48 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ = -140.91 (s, 1 F) ppm; ¹³C NMR (100 MHz, CD₃COCD₃): δ 189.3 (d, *J* = 3.7 Hz), 145.4 (d, *J* = 255.8 Hz), 139.2, 136.6, 130.3, 128.4, 128.3, 116.5 (d, J = 3.0 Hz), 86.6 (d, *J* = 9.5 Hz), 12.2 ppm; EI-MS (m/z, %): 126 (100), 237 (81.0), 202 (67.4), 201 (53.8), 236 (46.9), 238 (32.2), 111 (31.0), 182 (26.9). IR (KBr): 3251, 1629, 1587, 1530, 1433, 1371, 1253, 1091, 1015, 914, 844, 765, 764, 606 cm⁻¹. HRMS for C₁₂H₉NOFCI: 237.0357; Found: 237.0357.

(4-bromophenyl) (5-fluoro-2-methyl-1H-pyrrol-3-yl) methanone

White solid (m.p. 141-143 °C, 65 %) ¹H NMR (300 MHz, CD₃Cl₃): δ 8.22 (br, 1 H), 7.65 (d, *J* = 8.4 Hz, 2 H), 7.58 (d, *J* = 8.4 Hz, 2 H) 5.65 (t, *J* = 2.8 Hz, 1 H), 2.49 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CD₃COCD₃): δ -143.11 (s, 1 F) ppm; ¹³C NMR (100 MHz, CD₃COCD₃): δ 189.4 (d, *J* = 2.9 Hz), 145.4 (d, *J* = 256.3 Hz), 139.6, 131.3, 130.5, 128.4, 125.1, 116.5 (d, *J* = 2.9 Hz), 86.6 (d, *J* = 9.5 Hz), 12.2 ppm; EI-MS (m/z, %): 126 (100), 201 (54.8), 202 (53.2), 283 (51.7), 281 (49.4), 282 (31.8), 182 (28.3), 280 (25.5). HRMS for C₁₂H₉NOFBr: 280.9852; Found: 280.9849.

(5-fluoro-2-methyl-1H-pyrrol-3-yl) (4-fluorophenyl) methanone

White solid (m.p. 144-145 °C, 60 %) ¹H NMR (300 MHz, CD₃COCD₃): δ 11.03 (br, 1 H), 7.83 (dd, J = 8.6, 5.6 Hz, 2 H), 7.25 (t, J = 8.6 Hz, 2 H), 5.68 (d, J = 2.6 Hz, 1 H), 2.43 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CD₃COCD₃): $\delta = -110.97$ (m, 1 F), -144.10 (s, 1F) ppm; ¹³C NMR (100 MHz, CD₃COCD₃) δ 189.1 (d, J = 2.9 Hz), 164.5 (d, J = 249.1 Hz), 145.3 (d, J = 255.6 Hz), 137.0 (d, J = 2.9 Hz), 131.2 (d, J = 9.5 Hz), 128.1, 116.6, 114.9 (d, J = 21.9 Hz), 86.6 (d, J = 9.5 Hz), 12.2 ppm; EI-MS (m/z, %): 221 (100), 126 (78.0), 220 (59.4), 200 (31.4), 95 (27.4), 123 (19.6), 98 (15.0), 222 (14.3). IR (KBr): 3187, 1625, 1529, 1429, 1257, 1244, 848, 757 cm⁻¹. HRMS for C₁₂H₉NOF₂: 221.0652; Found: 221.0648

(5-fluoro-2-methyl-1H-pyrrol-3-yl) (4-nitrophenyl) methanone

White solid (m.p. 193-195 °C, 61 %) ¹H NMR (400 MHz, CD₃COCD₃): $\delta = 11.10$ (br, 1 H), 8.34 (d, J = 8.8 Hz, 2 H), 7.94 (d, J = 8.8 Hz, 2 H), 5.67 (d, J = 3.5 Hz, 1 H), 2.45 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CD₃COCD₃): $\delta = -141.79$ (s, 1 F) ppm; ¹³C NMR (100 MHz, CD₃COCD₃): $\delta 188.9$ (d, J = 2.9 Hz), 149.2, 146.0, 145.5 (d, J = 257.0 Hz), 129.5, 129.4, 123.4, 116.2 (d, J = 3.7 Hz), 86.6 (d, J = 10.2 Hz), 12.4 ppm; EI-MS (m/z, %): 126 (100), 248 (61.0), 201 (51.6), 231 (30.8), 247 (21.7), 172 (16.1), 98 (16.0), 71 (15.1). IR (KBr): 3284, 1637, 1515, 1426, 1349, 1244, 868, 852, 771, 728 cm⁻¹. HRMS for C₁₂H₉N₂O₃F: 248.0597; Found: 248.0595.

(5-fluoro-2-methyl-1H-pyrrol-3-yl) (3-methoxyphenyl) methanone

White solid (m.p. 130-132 °C, 74 %) ¹H NMR (300 MHz, CDCl₃): δ 9.48 (br, 1H), 7.28-7.22 (m, 3 H), 7.01-6.97 (m, 1 H), 5.61 (t, *J* = 2.9 Hz, 1 H), 3.77 (s, 3 H), 2.37 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -140.79 (s, 1 F) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 192.4 (d, *J* = 2.6 Hz), 159.5, 145.1 (d, *J* = 260.2 Hz), 141.5, 129.2, 128.7, 121.6, 117.8, 117.2, 113.6, 87.6 (d, *J* = 8.8 Hz), 55.4, 13.3 ppm; EI-MS (m/z, %): 233 (100), 126 (94.2), 232 (58.9), 212 (22.6), 202 (20.1), 71 (18.6), 77 (18.0), 97 (16.2). IR (KBr): 3242, 1625, 1582, 1484, 1432, 1372, 1267, 1045, 864, 818, 753 cm⁻¹. HRMS for C₁₃H₁₂NO₂F: 233.0852; Found: 233.0853.

(3-bromophenyl) (5-fluoro-2-methyl-1H-pyrrol-3-yl) methanone

White solid (m.p. 191-193 °C, 79 %) ¹H NMR (400 MHz, CD₃COCD₃): δ 11.02 (br, 1 H), 7.87 (s, 1 H), 7.75 (d, J = 7.8 Hz, 2 H), 7.48 (t, J = 7.8 Hz, 1 H), 5.69 (d, J = 3.1 Hz, 1 H), 2.46 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CD₃COCD₃): δ -143.85 (s, 1 F) ppm; ¹³C NMR (100 MHz, CD₃COCD₃) δ 188.9 (d, J = 3.0 Hz), 145.4 (d, J = 257.2 Hz), 142.7, 133.8, 131.2, 130.2, 128.7, 127.4, 121.8, 116.3 (d, J = 3.7 Hz), 86.6 (d, J = 9.5 Hz), 12.2 ppm; EI-MS (m/z, %): 126 (100), 201 (39.1), 281 (38.7), 283 (38.3), 282 (27.5), 280 (23.2), 202 (19.0), 182 (17.0). IR (KBr): 3180, 1623, 1561, 1530, 1247, 793, 709, 686 cm⁻¹. HRMS for C₁₂H₉NOBrF: 280.9852; Found: 280.9855.

(3-chlorophenyl)(5-fluoro-2-methyl-1H-pyrrol-3-yl)methanone

White solid (m.p. 197-200 °C, 66 %) ¹H NMR (300 MHz, CD₃COCD₃): δ 11.13 (br, 1 H), 7.69-7.67 (m, 2 H), 7.58-7.52 (m, 2 H), 5.68 (d, J = 2.6 Hz), 2.43 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CD₃COCD₃): δ -143.00 (s, 1 F) ppm; ¹³C NMR (100 MHz, CD₃COCD₃) δ 189.0 (d, J = 3.2 Hz), 145.4 (d, J = 257.1 Hz), 142.5, 133.8, 130.8, 130.0, 128.7, 128.2, 127.0, 116.4 (d, J = 3.2 Hz), 86.6 (d, J = 9.6 Hz), 11.8 ppm; EI-MS (m/z, %): 126 (100), 237 (63.8), 236 (39.2), 201 (29.4), 239 (22.8), 238 (22.1), 200(19.6), 111 (16.4). IR (KBr): 3177, 1622, 1530, 1249, 756, 724, 686cm⁻¹. HRMS for C₁₂H₉NOClF: 237.0357; Found: 237.0360

(5-fluoro-2-methyl-1H-pyrrol-3-yl)(naphthalen-2-yl)methanone

White solid (m.p. 202-204 °C, 52 %) ¹H NMR (300 MHz, CDCl₃): δ 8.28 (s, 1 H), 8.13 (br, 1 H), 7.95-7.89 (m, 4 H), 7.60-7.52 (m ,2 H), 5.76 (m, 1 H), 2.51 (s, 3 H) ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -140.42 (s, 1 F) ppm; ¹³C NMR (100 MHz, CD₃COCD₃,): δ 190.5 (d, J = 2.8 Hz), 145.3 (d, J = 256.4 Hz), 137.8, 134.7, 132.6, 129.3, 129.1, 127.9, 127.9, 127.7, 127.6, 126.6, 125.3, 117.0 (d, J = 3.1 Hz), 86.8 (d, J = 9.2 Hz), 12.2 ppm; EI-MS (m/z, %): 254 (100), 253 (64.0), 126 (54.9), 44 (48.7), 127 (34.0), 237 (26.7), 234 (20.5), 232 (20.1). IR (KBr): 3197, 1622, 1528, 1429, 1377, 1255, 907, 780, 751, 608, 479 cm⁻¹. HRMS for C₁₆H₁₂NOF: 253.0903; Found: 253.0908.

(5-fluoro-2-phenyl-1H-pyrrol-3-yl) (phenyl) methanone

White solid (m.p. 166-169 °C, 45 %) ¹H NMR (300 MHz, CDCl₃): δ : 8.81 (br, 1H), 7.71 (d, *J* = 7.2 Hz, 2 H), 7.39 (t, *J* = 7.2 Hz, 1 H), 7.31-7.25 (m, 4 H), 7.19-7.18 (m, 3H), 5.87 (t, *J* = 3.0 Hz, 1H);¹⁹F NMR (282 MHz, CDCl₃): δ -138.8 (s, 1 F) ppm;¹³C NMR (100 MHz, CDCl₃): δ 192.3 (d, *J* = 2.2 Hz), 146.9 (d, *J* = 262.6 Hz), 139.0, 131.8, 131.2, 129.6, 128.8, 128.5, 128.4, 128.1, 128.0, 118.2 (d, *J* = 2.2 Hz), 89.42 (d, *J* = 9.5 Hz); EI-MS (m/z, %): 265 (100), 188 (94.9), 264 (57.2), 77 (29.4), 133 (23.9), 266 (17.4), 105 (14.4), 189 (14.0); IR (KBr): 3162, 3025, 1609, 1594, 1574, 1528, 1485, 1452, 1428, 1340, 1286, 1271, 1232, 1159, 1123, 911, 901, 802, 772, 733, 693, 672, 648 cm⁻¹; HRMS for C₁₇H₁₂NOF: 265.0903; Found: 265.0905;

NMR spectra of the new products ¹H NMR of **1e** 7.887 7.858 7.672 7.644 7.270 1.07 1.08 12 10 PPM $\overline{19}$ F NMR of **1e** 124.233 124.264 124.264 124.264 124.265 124.365 124.365 124.365 124.365 124.365 124.365 124.365 124.365 124.365 124.86 -100 -50 PPM -150 ¹³C NMR of **1e** 135.749 132.191 129.894 129.063 114.334 - 189.544 - 77.360 - 77.046 - 76.726 5.879 5.792 5.770 5.683 150 100 50 200 ·--

PPM

S21

