Supporting Information

Unprecedented *ortho*-acylation of azoxybenzenes with αoxocarboxylic acids by Pd-catalyzed C–H activation and decarboxylation

Hongji Li,^[a] Pinhua Li,^[a] Qiong Zhao,^[a] and Lei Wang*^{[a],[b]}

^[a] Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P R China.Tel: + 86-561-3802-069
Fax: + 86-561-3090-518 E-mail: leiwang@chnu.edu.cn
^[b] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of

Sciences, Shanghai 200032, P R China

1.	General considerations	2
2.	Typical procedure for the acylation of azoxybenzenes	2
3.	Optimization of the catalyst and oxidant	3
4.	Effect of solvent on the acylation reaction	4
5.	Typical procedure for the transformation of acylated azoxybenzenes into indazoles	4
6.	Characterization data for the products	6
7.	¹ H and ¹³ C NMR spectra of the products	14
8.	References	42

1. General considerations

All ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometers (400 MHz or 100 MHz, respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). High resolution mass spectroscopy data of the product were collected on a Waters Micromass GCT instrument. Azoxybenzenes (**1c**–**g**) were prepared from arylamines, according to the literature.^[11] The α -oxocarboxylic acids were prepared according to the reported procedure.^[2] The chemicals and solvents were purchased from commercial suppliers either from Aldrich, USA or Shanghai Chemical Company, China. All the solvents were freshly distilled prior to use. Products were purified through flash chromatography on 200–300 mesh silica gels, SiO₂.

2. Typical procedure for the acylation of azobenzenes

In air, a 10.0 mL of sealed tube was charged with $Pd(OAc)_2$ (2.3 mg, 0.01 mmol), $K_2S_2O_8$ (81.1 mg, 0.30 mmol), azoxybenzene (**1a**, 39.6 mg, 0.20 mmol), 2-oxo-2-phenylacetic acid (**2a**, 45.0 mg, 0.30 mmol) and 1,2-dichloroethane (1.0 mL) at 60 °C for 24 h. After complete reaction, 20.0 mL of H₂O was added into the resulted solution and extracted with dichloromethane (3×5.0 mL). Then the organic layers were combined, dried over Na₂SO₄, and concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, ethyl acetate/petroleum ether 1:9–1:15, v/v), affording the desired product **3a** as a yellow viscous liquid (43.5 mg, 72%).

3. Optimization of the catalyst and oxidant (Table S1)

	Physical Hereits (Physical Hereits) (Physical Herei	Pd-catal.	N N N N N N N N N N N N N N N N N N N
	1a2a	Pr	n 3a
Entry	Pd source	Oxidant	$\operatorname{Yield}(\%)^{b}$
1	$Pd(OAc)_2$	$(NH_4)_2S_2O_8$	16
2	$Pd(OAc)_2$	$K_2S_2O_8$	72
3	$Pd(OAc)_2$	Cu(OAc) ₂	5
4	$Pd(OAc)_2$	AgOAc	0
5	$Pd(OAc)_2$	Mn(OAc) ₃	0
6	$Pd(OAc)_2$	TBHP	0
7	$Pd(OAc)_2$	DTBP	0
8	$Pd(OAc)_2$	O_2	30^c
9	$Pd(TFA)_2$	$K_2S_2O_8$	66
10	$Pd(PPh_3)_2Cl_2$	$K_2S_2O_8$	40
11	Pd(CH ₃ CN) ₂ Cl ₂	$K_2S_2O_8$	53
12	PdCl ₂	$K_2S_2O_8$	20
13	$Pd(OAc)_2$	$K_2S_2O_8$	70^d
14	$Pd(OAc)_2$	$K_2S_2O_8$	32^e
15	$Pd(OAc)_2$	$K_2S_2O_8$	67^{f}
16	$Pd(OAc)_2$	$K_2S_2O_8$	72^g

Table S1. Optimization of the catalyst and oxidant on the acylation of azoxybenzene (1a) with 2-oxo-2-phenylacetic acid $(2a)^a$

^{*a*} Reaction conditions: azoxybenzene (**1a**, 0.20 mmol), 2-oxo-2- phenylacetic acid (**2a**, 0.30 mmol), Pd catalyst (5.0 mol%), $K_2S_2O_8$ (0.30 mmol) in DCE (1.0 mL) at 60 °C under air for 24 h. ^{*b*} Isolated yields. ^{*c*} 1.0 atm. ^{*d*} Ag₂O (1.0 equiv). ^{*e*} PivOH (1.0 equiv). ^{*f*} 36 h. ^{*g*} 48 h.

4. Effect of solvent on the acylation reaction (Table S2)

Table S2. Effect of the solvent on the acylation of azoxybenzene (1a) with 2-oxo-2-phenylacetic acid $(2a)^a$

• • • • • • • • • • • • • • • • • • •	O Ph O O Za	$\frac{Pd(OAc)_2 (5.0 \text{ mol }\%)}{K_2S_2O_8, \text{ solvent}}$	
Entry		Solvent	Yield $(\%)^b$
1		toluene	22
2		DMSO	0
3		DMF	0
4		DCE	72
5		NMP	trace
6		diglyme	30
7		HOAc	0
8		PivOH	0

^{*a*} Reaction conditions: azoxybenzene (**1a**, 0.20 mmol), 2-oxo-2-phenylacetic acid (**2a**, 0.30 mmol), Pd(OAc)₂ (5.0 mol %), K₂S₂O₈ (0.30 mmol) at 60 °C under air and stirred for 24 h. ^{*b*} Isolated yields.

5. Typical procedure for the transformation of acylated azoxybenzenes into indazoles

A 5.0 mL of Schlenk tube was charged with Pd/C (10.0 mg, 5 wt. % loading, 0.0047 mmol of Pd), EtOH (0.50 mL), **3a** (60.4 mg, 0.20 mmol). The reaction mixture was stirred under 1.0 atm of hydrogen atmosphere at room temperature for 2 h. After yellow colour completely disappeared, the resulting mixture was filtrated and the filtrate was washed with EtOH (3×5.0 mL). The combined filter liquor was then evaporated under reduced pressure and the residue was purified by flash chromatography (silica gel, ethyl acetate/petroleum ether 1:3–1:5, v/v) with **4a** as a white solid in nearly quantitative yield (51.8 mg, 96%).

6. Characterization data for the products

3a: ¹H NMR (400 MHz, CDCl₃): δ 8.25–8.23 (m, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.71–7.66 (m, 4H), 7.55–7.52 (m, 1H), 7.50–7.48 (m, 1H), 7.37 (t, J = 8.0 Hz, 2H), 7.33–7.28 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.96, 143.12, 136.90, 134.75, 133.04, 131.32, 130.49, 129.88, 128.85, 128.79, 128.48, 128.46, 124.94, 123.32. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₅N₂O₂: 303.1134, Found: 303.1135.

3b: ¹H NMR (400 MHz, CDCl₃): δ 8.24–8.21(m, 1H), 7.76 (d, *J* = 8.8 Hz, 4H), 7.65–7.63 (m, 2H), 7.51–7.48 (m, 1H), 7.35–7.29 (m, 3H), 6.85 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.82, 163.53, 143.25, 135.09, 131.24, 131.18, 130.19, 129.98, 129.84, 128.73, 128.48, 125.03, 123.37, 113.77, 55.43. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₁₇N₂O₃: 333.1239, Found: 333.1238.

3c: ¹H NMR (400 MHz, CDCl₃): δ 8.23–8.20 (m, 1H), 7.71 (d, J = 8.8 Hz, 2H), 7.67–7.64 (m, 4H), 7.56–7.54 (m, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.30–7.28 (m, 3H), 1.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 193.64, 156.78, 143.21, 134.90, 134.29, 131.20, 130.39, 129.64, 128.93, 128.74, 128.73, 128.35, 125.39, 124.77, 123.25, 35.01, 30.96, 26.86. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₂₃N₂O₂: 359.1760, Found: 359.1758.

3d: ¹H NMR (400 MHz, CDCl₃): δ 8.24–8.22 (m, 1H), 7.74–7.72 (m, 2H), 7.68–7.63 (m, 4H), 7.51–7.50 (m, 1H), 7.33–7.27 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.73, 143.92, 143.20, 135.01, 134.45, 131.22, 130.30, 129.82, 129.19, 129.02, 128.78, 128.44, 125.00, 123.32, 21.61. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₁₇N₂O₂: 317.1290, Found: 317.1287.

3e: ¹H NMR (400 MHz, CDCl₃): δ 8.28–8.25 (m, 1H), 7.76 (dd, *J* = 8.0 Hz, *J* = 2.0 Hz, 2H), 7.70–7.68 (m, 2H), 7.65–7.63 (m, 2H), 7.53–7.50 (m, 3H), 7.38–7.32 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.94, 143.07, 135.80, 134.24, 131.83, 131.43, 130.70, 130.22, 130.15, 128.71, 128.59, 128.19, 125.02, 123.42. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₄BrN₂O₂: 381.0239, Found: 381.0238.

3f: ¹H NMR (400 MHz, CDCl₃): δ 8.28–8.25 (m, 1H), 7.76 (dd, J = 8.0 Hz, J = 2.0 Hz, 2H), 7.72–7.68 (m, 4H), 7.53–7.50 (m, 1H), 7.37–7.32 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 192.77, 143.08, 139.47, 135.39, 134.30, 131.44, 130.68, 130.14, 130.12, 128.85, 128.72, 128.59, 125.03, 123.43. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₄ClN₂O₂: 337.0744, Found: 337.0743.

3g: ¹H NMR (400 MHz, CDCl₃): δ 8.25–8.23 (m, 1H), 7.81–7.74 (m, 4H), 7.68–7.66 (m, 2H), 7.52–7.50 (m, 1H), 7.35–7.30 (m, 3H), 7.04 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 192.47, 165.62 (d, *J* = 253.6 Hz), 133.42 (d, *J* = 3.0 Hz), 131.42, 131.37, 131.33, 130.59, 130.08, 128.70, 128.55, 124.99, 123.41, 115.66 (d, *J* = 21.9 Hz). HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₄FN₂O₂: 321.1039, Found: 321.1038.

3h: ¹H NMR (400 MHz, CDCl₃): δ 8.28–8.26 (m, 1H), 7.95–7.94 (m, 1H), 7.79–7.76 (m, 2H), 7.71–7.69 (m, 2H), 7.65–7.59 (m, 2H), 7.53–7.51 (m, 1H), 7.37–7.32 (m, 3H) 7.27–7.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 192.52, 143.04, 138.77, 135.82, 134.03, 131.56, 131.46, 130.81, 130.16, 130.03, 128.75, 128.59, 127.28, 125.04, 123.46, 122.84. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₄BrN₂O₂: 381.0239, Found: 381.0238.

3i: ¹H NMR (400 MHz, CDCl₃): δ 8.22 (dd, *J* = 6.0 Hz, *J* = 4.0 Hz,1H), 7.86–7.80 (m, 3H), 7.67–7.63 (m, 2H), 7.55–7.52 (m, 1H), 7.46–7.41 (m, 1H), 7.37–7.31 (m, 3H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.01–6.97 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 190.29 (d, *J* = 1.1 Hz), 161.51 (d, *J* = 256.4 Hz), 143.13, 136.30 (d, *J* = 1.1 Hz), 134.60 (d, *J* = 8.8 Hz), 131.28, 130.77 (d, *J* = 1.4 Hz), 130.51, 129.94, 128.48, 128.09 (d, *J* = 1.1 Hz), 125.07, 124.10 (d, *J* = 3.9 Hz), 123.18, 116.65 (d, *J* = 22.3 Hz). HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₄FN₂O₂: 321.1039, Found: 321.1038.

3j: ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 8.0 Hz, 1H), 7.75–7.61 (m, 6H), 7.56–7.49 (m, 3H), 7.36–7.26 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.23, 148.65, 143.38, 136.75 (q, *J*_{C-F} = 1.8 Hz), 133.47,

132.13, 131.30, 131.22 (q, $J_{C-F} = 1.1$ Hz), 130.65, 130.59, 130.08, 129.95, 128.83 (q, $J_{C-F} = 32.5$ Hz), 128.45, 127.24 (q, $J_{C-F} = 5.4$ Hz), 124.98, 123.86, 123.32 (q, $J_{C-F} = 272.4$ Hz). HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₁₄F₃N₂O₂: 371.1007, Found: 371.1004.

3k: ¹H NMR (400 MHz, CDCl₃): δ 8.08–8.06 (m, 1H), 7.67–7.63 (m, 3H), 7.59–7.56 (m, 2H), 7.34–7.28 (m, 5H), 7.17–7.09 (m, 2H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.36, 143.32, 139.82, 136.23, 135.74, 131.85, 131.76, 131.04, 130.88, 130.27, 129.60, 129.01, 128.36, 128.20, 125.27, 124.68, 123.39, 21.18. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₁₇N₂O₂: 317.1290, Found: 317.1287.

31: ¹H NMR (400 MHz, CDCl₃): δ 8.08–8.06 (m, 1H), 7.84–7.82 (m, 2H), 7.70–7.64 (m, 3H), 7.53 (s, 1H), 7.40–7.35 (m, 3H), 7.24 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 190.87, 143.19, 137.08, 134.07, 132.64, 132.30, 132.10, 131.74, 131.34, 131.18, 130.99, 130.18, 129.58, 128.53, 125.12, 123.53. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₃Cl₂N₂O₂: 371.0354, Found: 371.0352.

3m: ¹H NMR (400 MHz, CDCl₃): δ 8.33–8.29 (m, 2H), 7.87 (d, J = 1.6 Hz, 1H), 7.86–7.81 (m, 2H), 7.73–7.71 (m, 2H), 7.54–7.52 (m, 1H), 7.37–7.33 (m, 4H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.57, 149.24, 142.99, 138.29, 136.26, 133.57, 133.12, 132.17, 131.63, 131.06, 130.36, 128.63, 125.13, 124.74, 123.58, 20.52. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₁₆N₃O₄: 362.1141, Found: 362.1139.

3n: ¹H NMR (400 MHz, CDCl₃): δ 8.97 (d, *J* = 8.8 Hz, 1H), 8.12–8.10 (m, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.74–7.68 (m, 3H), 7.60–7.47 (m, 3H), 7.44–7.42 (m, 2H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.15–7.11 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 195.24, 143.09, 136.01, 133.99, 133.82, 133.44, 131.00, 130.98, 130.77, 130.19, 129.89, 129.46, 128.15, 128.13, 126.48, 126.29, 124.68, 123.91, 123.52. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₁₇N₂O₂: 353.1290, Found: 353.1291.

30: ¹H NMR (400 MHz, CDCl₃): δ 8.23–8.21 (m, 1H), 7.84 (d, *J* = 7.2 Hz, 2H), 7.67–7.57 (m, 4H), 7.31–7.37 (m, 4H), 7.02–6.99 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 186.29, 144.16, 143.22, 134.39, 134.21, 133.34, 131.21, 130.72, 130.01, 128.73, 128.54, 128.04, 125.10, 123.62. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₁₃N₂O₂S: 309.0698, Found: 309.0697.

3p: ¹H NMR (400 MHz, CDCl₃): δ 8.15–8.09 (m, 3H), 7.60 (dd, J = 5.6 Hz, J = 3.2 Hz, 2H), 7.52–7.48 (m, 3H), 7.45–7.43 (m, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.12, 143.51, 136.66, 131.26, 130.60, 130.34, 128.84, 127.38, 125.43, 123.54, 30.27. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₁₃N₂O₂: 241.0977, Found: 241.0975.

3q: ¹H NMR (400 MHz, CDCl₃): δ 8.21(d, *J* = 9.2 Hz, 1H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.48–7.44 (m, 1H), 7.37–7.33 (m, 2H), 7.11 (dd, *J* = 9.2 Hz, *J* = 2.4 Hz, 1H), 6.94 (d, *J* = 2.4 Hz, 1H), 6.78 (d, *J* = 8.8 Hz, 2H), 3.90 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.81, 161.46, 160.38, 137.08, 136.90, 136.20, 133.70, 132.94, 130.16, 128.70, 128.45, 127.28, 124.81, 115.57, 113.50, 113.14, 55.91, 55.36. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₁₉N₂O₄: 363.1345, Found: 363.1346.

3r: ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 7.6 Hz, 2H), 7.53–7.47 (m, 2H), 7.40–7.35 (m, 3H), 7.16 (d, J = 8.0 Hz, 2H), 3.07–3.03 (m, 1H), 2.30–2.86 (m, 1H), 1.33 (s, 3H), 1.31 (s, 3H), 1.22 (s, 3H), 1.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.47, 152.73, 151.11, 141.23, 137.08, 134.65, 132.91, 128.81, 128.44, 128.39, 126.67, 126.42, 125.14, 123.25, 34.07, 34.00, 23.67. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₅H₂₇N₂O₂: 387.2073, Found: 387.2072.

3s: ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 7.2 Hz, 2H), 7.49–7.46 (m, 2H), 7.39–7.32 (m, 3H), 7.13 (d, *J* = 8.4 Hz, 2H), 2.79 (q, *J* = 8.0 Hz, 2H), 2.62 (q, *J* = 8.0 Hz, 2H), 1.31 (t, *J* = 8.0 Hz, 3H), 1.20 (t, *J* = 7.2 Hz, 3H),; ¹³C NMR (100 MHz, CDCl₃): δ 194.39, 148.14, 146.59, 141.13, 137.06, 134.65, 132.90, 129.75, 128.77, 128.43, 127.97, 127.84, 125.15, 123.21, 28.79, 28.53, 15.16, 15.07. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₂₃N₂O₂: 359.1760, Found: 359.1758.

3t: ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 7.6 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.47–7.44 (m, 2H), 7.38–7.34 (m, 2H), 7.30 (s, 1H), 7.10 (d, *J* = 8.4 Hz, 2H), 2.49 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.29, 142.03, 140.93, 140.39, 137.03, 134.56, 132.90, 130.91, 129.09, 129.05, 128.73, 128.43, 125.07, 123.11, 21.50, 21.24. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₁₉N₂O₂: 331.1447, Found: 331.1443.

3u: ¹H NMR (400 MHz, CDCl₃): δ 8.27 (dd, J = 8.8 Hz, J = 4.4 Hz, 1H), 7.82–7.75 (m, 4H), 7.52–7.49 (m, 1H), 7.41–7.28 (m, 3H), 7.21 (dd, J = 7.6 Hz, J = 2.4 Hz, 1H), 6.98 (t, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 192.28 (d, J = 1.2 Hz), 163.69 (d, J = 254.3 Hz), 162.67 (d, J = 251.8 Hz), 139.39 (d, J = 3.4 Hz), 137.04 (d, J = 7.3 Hz), 136.24, 133.41, 130.54, 130.06, 128.75, 128.64, 127.47 (d, J = 8.6 Hz), 125.75 (d, J = 9.0 Hz), 117.27 (d, J = 23.1 Hz), 115.91 (d, J = 24.6 Hz), 115.50 (d, J = 22.6 Hz). HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₃F₂N₂O₂: 339.0945, Found: 339.0944.

3v: ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.55–7.50 (m, 3H), 7.48–7.37 (m, 3H), 7.21–7.15 (m, 2H), 7.09 (t, *J* = 8.0 Hz, 1H), 2.55 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.11, 142.06, 136.53, 135.07, 134.06, 133.82, 133.29, 131.93, 130.50, 130.06, 129.70, 129.10, 128.90, 128.30, 127.26, 125.63, 121.11, 18.29, 18.06. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₁₉N₂O₂: 331.1447, Found: 331.1446.

4a:^{[3] 1}H NMR (CDCl₃, 400 MHz): δ 7.86 (d, J = 8.8 Hz, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.49–7.45 (m, 2H), 7.41–7.34 (m, 9H), 7.17–7.14 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 148.86, 140.08, 135.22, 129.74, 129.51, 128.81, 128.60, 128.15, 128.08, 126.85, 125.85, 122.37, 121.62, 120.36, 117.61.

4b:^{[3] 1}H NMR (CDCl₃, 400 MHz): δ 7.81 (d, J = 8.8 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 7.47–7.45 (m, 2H), 7.41–7.34 (m, 4H), 7.29–7.28 (m, 2H), 7.14–7.10 (m, 1H), 6.93–6.91 (m, 2H), 3.82 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.50, 148.87, 140.24, 135.27, 130.84, 128.86, 128.04, 126.84, 125.90, 122.11, 122.06, 121.51, 120.52, 117.58, 114.20, 55.16.

4c: ¹H NMR (CDCl₃, 400 MHz): δ 7.80 (d, *J* = 8.4 Hz, 1H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.48–7.46 (m, 2H), 7.41–7.36 (m, 6H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.16–7.12 (m, 1H), 1.35 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 151.38, 148.99, 140.39, 135.55, 129.26, 128.93, 128.16, 126.91, 126.85, 126.06, 125.67, 122.23, 121.70, 120.76, 117.67, 34.71, 31.23. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₂₃N₂: 327.1861, Found: 327.1859.

4d:^{[3] 1}H NMR (CDCl₃, 400 MHz): δ 7.86 (d, J = 8.8 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.51–7.49 (m, 2H), 7.44–7.38 (m, 4H), 7.31–7.28 (m, 2H), 7.24–7.22 (m, 2H), 7.18–7.14 (m, 1H), 2.41 (s, 3H); ¹³C

NMR (CDCl₃, 100 MHz): δ 149.02, 140.37, 138.27, 135.55, 129.53, 129.50, 128.93, 128.15, 126.97, 126.93, 126.02, 122.31, 121.72, 120.63, 117.72, 21.30.

4e:^{[3] 1}H NMR (CDCl₃, 400 MHz): δ 7.83 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.53–7.50 (m, 2H), 7.45–7.36 (m, 6H), 7.23–7.21 (m, 2H), 7.15 (dd, *J* = 8.0 Hz, *J* = 6.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 148.93, 139.88, 133.92, 131.93, 130.97, 129.01, 128.74, 128.35, 126.96, 125.89, 122.78, 122.55, 121.58, 119.97, 117.82.

4f:^{[3] 1}H NMR (CDCl₃, 400 MHz): δ 7.83 (d, J = 8.8 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.46–7.38 (m, 8H), 7.33–7.28 (m, 2H), 7.20–7.16 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 149.02, 140.02, 134.46, 134.07, 130.84, 129.12, 129.10, 128.46, 128.41, 127.05, 126.01, 122.84, 121.72, 120.09, 117.92.

1.626

0 PPM

1.625

--0.004

8. References

- [1] G. Christin, P. Beate, I. Elisabeth and R.-B. Karola, Synthesis, 2008, 1889–1894.
- [2] (a) K. Wadhwa, C. X. Yang, P. R. West, K. C. Deming, S. R. Chemburkar and R. E. Reddy, Synth. Commun., 2008, 38, 4434–4444; (b) P. Fang, M. Li and H. Ge, J. Am. Chem. Soc., 2010, 132, 11898–11899; (c) L.Yu, P. Li and L. Wang, Chem. Commun., 2013, 49, 2368–2370.
- [3] (a) S. A. Ohnmacht, A. J. Culshaw and M. F. Greaney, Org. Lett., 2010, 12, 224–226; (b) H. Li, P. Li and L. Wang, Org. Lett., 2013, 15, 620–623.