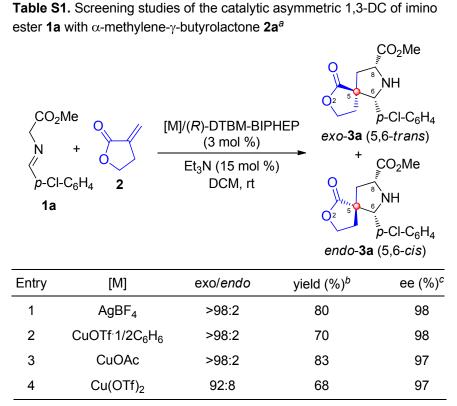
Supporting Information for

# *exo*-Selective Construction of Spiro-[butyrolactone-pyrrolidine] *via* 1,3-Dipolar Cycloaddition of Azomethine Ylides with α-Methylene-γ Butyrolactone Catalyzed by Cu(I)/DTBM-BIPHEP

Qing-Hua Li, Tang-Lin Liu, Liang Wei, Xiang Zhou, Hai-Yan Tao, and Chun-Jiang Wang\*

#### Table of Contents


| I.    | General Remarks                                                                                              |
|-------|--------------------------------------------------------------------------------------------------------------|
| II.   | Metal salt Screening for Asymmetric 1,3-Dipolar Cycloaddition of Azomethine                                  |
|       | Ylides with $\alpha$ -methylene- $\gamma$ -butyrolactone                                                     |
| III.  | General Procedure for Racemic 1,3-Dipolar Cycloaddition of $\alpha$ -Methylene- $\gamma$ -                   |
|       | butyrolatone                                                                                                 |
| IV.   | General Procedure for Asymmetric 1,3-Dipolar Cycloaddition of Imino Esters                                   |
|       | with $\alpha$ -Methylene- $\gamma$ -butyrolatone                                                             |
| V.    | Proposed Transition States of the exo-Selectivity for Asymmetric 1,3-Dipolar                                 |
|       | Cycloaddition of Imino Esters with $\alpha$ -Methylene- $\gamma$ -butyrolactone                              |
| VI.   | <sup>31</sup> P NMR Spectra of ( <i>R</i> )-DTBM-BIPHEP /Cu(MeCN) <sub>4</sub> BF <sub>4</sub> complexS21-23 |
| VII.  | References                                                                                                   |
| VIII. | <sup>1</sup> H NMR and <sup>13</sup> C NMR Spectra                                                           |
| IX.   | HPLC Chromatograms                                                                                           |

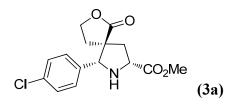
#### I. General Remarks

<sup>1</sup>H NMR spectra were recorded on a VARIAN Mercury 300 MHz spectrometer in CDCl<sub>3</sub>. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as (s = single, d = double, t = triple, q = quartet, m = multiple or unresolved, and brs = broad single). <sup>13</sup>C NMR spectra were recorded on a Bruker 75 MHz or 100 MHz spectrometer in CDCl<sub>3</sub>. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. Commercially available reagents were used without further purification. All reactions were monitored by TLC with silica gel-coated plates. Diastereomeric ratios were determined from crude <sup>1</sup>H NMR or HPLC analysis. Enantiomeric ratios were determined by HPLC, using a chiralpak AD-H column, a chiralpak AS-H column or a chiralcel OD-H column with hexane and *i*-PrOH as solvents.  $\alpha$ -methylene- $\gamma$ butyrolactone was prepared according to the literature procedure.<sup>1</sup> The racemic adducts were obtained by using AgOAc/BINAP as the catalyst. The absolute configuration of **5a** was determined unequivocally according to the X-ray diffraction analysis, and those of other adducts were deduced on the basis of these results.

#### II. Metal salt Screening for Asymmetric 1,3-Dipolar Cycloaddition of Azomethine

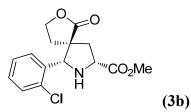
#### Ylides with $\alpha$ -methylene- $\gamma$ -butyrolactone.




<sup>a</sup> All reactions were carried out with 0.35 mmol of **1a** and 0.23 mmol of **2** in 2 mL solvent for 1-2 h. <sup>b</sup> Isolated yields of *exo*-**3a** and *endo*-**3a**. <sup>c</sup> Ee of *exo*-**3a** was determined by HPLC analysis.

#### III. General Procedure for Asymmetric 1,3-Dipolar Cycloaddition of Imino Esters with α-Methylene-γ-butyrolatone

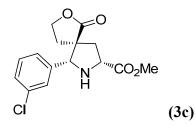
Under argon atmosphere, *rac*-BINAP (4.7 mg, 0.0076 mmol) and AgOAc (1.1 mg, 0.0069 mmol) were dissolved in 2 mL of DCM, and stirred at room temperature for about 0.5 h. Then, imine substrate (0.35 mmol), Et<sub>3</sub>N (0.03 mmol) and  $\alpha$ -Methylenebutyrolatone (0.23 mmol) were added sequentially. Once starting material was consumed (monitored by TLC), the organic solvent was removed and the residue was purified by column chromatography.


# IV. General Procedure for Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with α-Methylenebutyrolatone.

Under argon atmosphere, (*R*)-DTBM-Biphep (L5) (8.7 mg, 0.0076 mmol) and  $Cu(CH_3CN)_4BF_4$  (2.2 mg, 0.0069 mmol) were dissolved in 2 mL of DCM, and stirred at room temperature for about 0.5 h. After imine substrate (0.35 mmol) was added. Then,  $\alpha$ -Methylenebutyrolatone (0.23 mmol) and Et<sub>3</sub>N (0.03 mmol) was added sequentially. Once starting material was consumed (monitored by TLC), the mixture was filtered through celite and the filtrate was concentrated to dryness. The residue was purified by column chromatography to give the corresponding cycloaddition product, which was then directly analyzed by HPLC analysis to determine the enantiomeric excess.



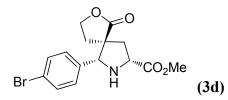
## (5*R*,6*R*,8*R*)-methyl 6-(4-chlorophenyl)-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate


The title compound was prepared according to the general procedure as described above in 87% yield;  $[\alpha]^{25}{}_{D} = +24.0$  (*c* 0.75, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.40-7.26 (m, 4H), 4.60 (s, 1H), 4.15-4.09 (m, 1H), 4.06-3.98 (m, 1H), 3.79 (s, 3H), 3.36 (dd,  $J_I = 8.1$  Hz,  $J_2 = 15.9$  Hz, 1H), 2.80-2.72 (m, 1H), 2.27-2.23 (m, 1H), 2.11-2.02 (m, 1H), 1.95-1.86 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.7, 174.0, 136.2, 134.0, 128.7, 128.2, 67.7, 65.8, 56.9, 52.3, 40.4, 30.7; IR (KBr) v 3360, 2952, 2820, 2341, 1739, 1513, 1440, 1248, 1216, 1192, 1030, 758 cm<sup>-1</sup>. HRMS: calcd. for C<sub>15</sub>H<sub>16</sub>ClNO<sub>4</sub> + H<sup>+</sup>: 310.0839, found: 310.0841. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda = 220$  nm); t<sub>r</sub> = 16.76 and 22.26 min.



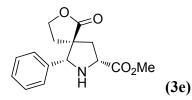
(5R,6S,8R)-methyl 6-(2-chlorophenyl)-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8-car-

#### boxylate

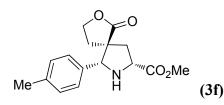

The title compound was prepared according to the general procedure as described above in 80% yield.  $[\alpha]^{25}{}_{\rm D} = -13.1$  (*c* 0.76, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.91 (d, J = 7.2 Hz, 1H), 7.36-7.21 (m, 3H), 5.12 (s, 1H), 4.22 (t, J = 8.1 Hz, 1H), 4.07 (dd,  $J_1 = 7.8$  Hz,  $J_2 = 15.6$  Hz, 1H), 3.79-3.70 (m, 4H), 2.74-2.67 (m, 1H), 2.18-2.04 (m, 2H), 1.82-1.73 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz)  $\delta$  180.2, 173.5, 137.5, 133.3, 129.4, 129.3, 129.0, 127.0, 66.0, 62.7, 57.5, 52.1, 51.1, 40.4, 32.4; IR (KBr) v 3350, 2912, 2355, 1730, 1513, 1433, 1240, 1218, 1188, 1028, 759 cm<sup>-1</sup>. HRMS: calcd. for C<sub>15</sub>H<sub>16</sub>ClNO<sub>4</sub> + H<sup>+</sup>: 310.0841, found: 310.0841. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak AD-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda = 220$  nm); t<sub>r</sub> = 8.78 and 9.78 min.



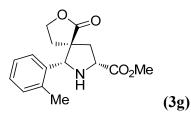
## (5*R*,6*R*,8*R*)-methyl 6-(3-chlorophenyl)-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate


The title compound was prepared according to the general procedure as described above in 72% yield.  $[\alpha]^{25}_{D} = +30.6$  (*c* 0.65, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.50 (s, 1H), 7.28 (m, 3H), 4.60 (s, 1H), 4.17-4.13 (m, 1H), 4.05-4.02 (m, 1H), 3.80 (s, 3H), 3.46-3.38 (m, 1H), 2.78-2.71 (m, 1H), 2.27 (dd,  $J_1 = 4.2$  Hz,  $J_2 = 13.2$  Hz, 1H), 2.12-1.97 (m, 1H), 1.92-1.88 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.7, 173.8, 140.0, 134.6, 129.8, 128.4, 126.9, 125.2, 67.7, 65.8, 56.9, 52.4, 52.3, 40.2, 30.8;

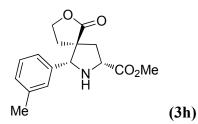
IR (KBr) v 2945, 2818, 2340, 1720, 1512, 1453, 1240, 1215, 1185, 1023, 757 cm<sup>-1</sup>. HRMS: calcd. for  $C_{15}H_{16}CINO_4 + H^+$ : 310.0828, found: 310.0841. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 17.34 and 21.35 min.



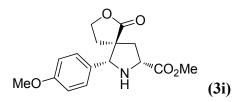

# (5*R*,6*R*,8*R*)-methyl 6-(4-bromophenyl)-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate


The title compound was prepared according to the general procedure as described above in 85% yield.  $[\alpha]^{25}{}_{\rm D}$  = +27.7 (*c* 0.95, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.47 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 4.57 (s, 1H), 4.15-4.12 (m, 1H), 4.02 (dd, *J*<sub>1</sub> = 8.4 Hz, *J*<sub>2</sub> = 14.7 Hz, 1H), 3.79 (s, 3H), 3.37 (dd, *J*<sub>1</sub> = 7.8 Hz, *J*<sub>2</sub> = 15.0 Hz, 1H), 2.75 (dd, *J*<sub>1</sub> = 10.2 Hz, *J*<sub>2</sub> = 13.2 Hz, 1H), 2.25 (dd, *J*<sub>1</sub> = 4.5 Hz, *J*<sub>2</sub> = 13.2 Hz, 1H), 2.10-2.01 (m, 1H), 1.95-1.86 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.2, 173.5, 136.3, 131.1, 128.1, 121.6, 67.3, 65.3, 56.4, 51.8, 39.8, 30.2; IR (KBr) v 3330, 2950, 2810, 2338, 1730, 1508, 1436, 1245, 1208, 1183, 1021, 759 cm<sup>-1</sup>. HRMS: calcd. for C<sub>15</sub>H<sub>16</sub>BrNO<sub>4</sub> + H<sup>+</sup>: 354.0347, found: 354.0335. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 17.82 and 22.15 min.



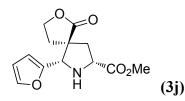

(5*R*,6*R*,8*R*)-methyl 1-oxo-6-phenyl-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate The title compound was prepared according to the general procedure as described above in 83% yield.  $[\alpha]^{25}_{D} = +14.3$  (*c* 0.40, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.44-7.33 (m, 4H), 4.60 (s, 1H), 4.14 (dd,  $J_I = 4.5$  Hz,  $J_2 = 9.9$  Hz, 1H), 3.97 (dd,  $J_I = 3.3$  Hz,  $J_2 = 8.4$  Hz, 1H), 3.80 (s, 3H), 3.19 (dd,  $J_I = 7.8$  Hz,  $J_2 = 15.9$  Hz, 1H), 2.80 (dd,  $J_I = 9.9$  Hz,  $J_2 = 16.2$  Hz, 1H), 2.23 (dd,  $J_I = 4.5$  Hz,  $J_2 = 10.2$  Hz, 1H), 2.16-2.09 (m, 1H), 1.93-1.83 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.0, 174.2, 137.4, 128.5, 128.2, 126.8, 68.6, 65.8, 57.1, 52.6, 52.3, 40.8, 31.0; IR (KBr) v 3362, 2948, 2807, 2335, 1739, 1513, 1440, 1215, 1180, 1019, 757 cm<sup>-1</sup>. HRMS: calcd. for C<sub>15</sub>H<sub>17</sub>NO<sub>4</sub> + H<sup>+</sup>: 276.1229, found: 276.1230. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda = 220$  nm); t<sub>r</sub> = 14.30 and 21.29 min.




(5*R*,6*R*,8*R*)-methyl 1-oxo-6-(p-tolyl)-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate The title compound was prepared according to the general procedure as described above in 78% yield. [α]<sup>25</sup><sub>D</sub> = +9.1 (*c* 1.25, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz) δ 7.30 (d, *J* =7.8 Hz, 2H), 7.14 (d, *J* =7.8 Hz, 2H), 4.55 (s, 1H), 4.12 (m, 1H), 3.96 (dd, *J*<sub>*I*</sub> = 8.1 Hz, *J*<sub>2</sub> = 13.2 Hz, 1H), 3.79 (s, 3H), 3.19 (dd, *J*<sub>*I*</sub> = 7.8 Hz, *J*<sub>2</sub> = 16.8 Hz, 1H), 2.83-2.76 (m, 1H), 2.34 (s, 3H), 2.24-2.10 (m, 2H), 1.91-1.82 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.1, 174.3, 138.0, 134.1, 129.1, 126.6, 68.5, 65.8, 57.0, 52.3, 40.9, 30.9, 21.0; IR (KBr) v 3350, 2928, 2841, 2341, 1752, 1516, 1440, 1250, 1218, 1175, 1031, 759 cm<sup>-1</sup>. HRMS: calcd. for C<sub>16</sub>H<sub>19</sub>NO<sub>4</sub> + H<sup>+</sup>: 290.1388, found: 290.1387. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 12.74 and 21.00 min.



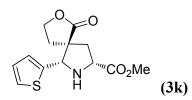
# (5*R*,6*R*,8*R*)-methyl 1-oxo-6-(o-tolyl)-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate The title compound was prepared according to the general procedure as described above in 70% yield. $[\alpha]^{25}{}_{\rm D}$ = +11.5 (*c* 0.78, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz) δ 7.78 (d, *J* = 6.6 Hz, 1H), 7.27-7.14 (m, 3H), 4.90 (s, 1H), 4.13 (m, 1H), 4.01-3.94 (m, 1H), 3.80 (s, 3H), 3.26 (dd, *J*<sub>1</sub> = 7.5 Hz, *J*<sub>2</sub> = 16.2 Hz, 1H), 2.86-2.79 (m, 1H), 2.29 (s, 3H), 2.25-2.14 (m, 2H), 1.92-1.82 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.6, 173.9, 136.3, 136.1, 130.7, 127.8, 127.3, 125.9, 66.1, 63.6, 57.3, 52.2, 41.3, 32.4, 19.4; IR (KBr) v 3340, 2950, 2825, 2341, 1737, 1512, 1444, 1245, 1210, 1189, 1031, 758 cm<sup>-1</sup>. HRMS: calcd. for C<sub>16</sub>H<sub>19</sub>NO<sub>4</sub> + H<sup>+</sup>: 290.1389, found: 290.1387. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak OD-H, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda$ = 220 nm); t<sub>r</sub> = 14.99 and 25.31 min.




(*SR*,6*R*,8*R*)-methyl 1-oxo-6-(m-tolyl)-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate The title compound was prepared according to the general procedure as described above in 75% yield.  $[α]^{25}_{D}$  = +14.9 (*c* 0.62, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz) δ 7.29-7.13 (m, 4H), 4.54 (s, 1H), 4.15-4.12 (m, 1H), 3.97 (dd,  $J_I$  = 8.7 Hz,  $J_2$  = 13.8 Hz, 1H), 3.80(s, 3H), 3.22 (dd,  $J_I$  = 8.1 Hz,  $J_2$  = 16.2 Hz, 1H), 2.83-2.75 (m, 1H), 2.55 (brs, 1H), 2.34 (s, 3H), 2.24-2.10 (m, 2H), 1.92-1.85 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.0, 174.2, 138.2, 137.2, 128.9, 128.3, 127.3, 123.8, 68.6, 65.8, 57.0, 52.5, 52.2, 40.9, 31.0, 21.3; IR (KBr) v 3351, 2970, 2817, 2340, 1735, 1516, 1236, 1211, 1185, 1025, 759 cm<sup>-1</sup>. HRMS: calcd. for C<sub>16</sub>H<sub>19</sub>NO<sub>4</sub> + H<sup>+</sup>: 290.1386, found: 290.1387. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 12.43 and 16.80 min.

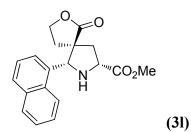


### (5*R*,6*R*,8*R*)-methyl 6-(4-methoxyphenyl)-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8carboxylate


The title compound was prepared according to the general procedure as described above in 80% yield.  $[\alpha]^{25}{}_{\rm D}$  = -19.0 (*c* 1.09, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.34 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 4.53 (s, 1H), 4.12 (dd, *J<sub>I</sub>* = 4.5 Hz, *J<sub>2</sub>* = 10.2 Hz, 1H), 4.01-3.94 (m, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.21 (dd, *J<sub>I</sub>* = 8.1 Hz, *J<sub>2</sub>* = 16.5 Hz, 1H), 2.78 (dd, *J<sub>I</sub>* = 10.2 Hz, *J<sub>2</sub>* = 13.2 Hz, 1H), 2.24-2.11 (m, 2H), 1.92-1.83 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.0, 174.2, 159.4, 129.1, 127.8, 113.8, 68.2, 65.7, 56.9, 55.1, 52.5, 52.2, 40.7, 30.9; IR (KBr) v 3330, 2935, 2818, 2348, 1725, 1518, 1447, 1236, 1214, 1183, 1017, 759 cm<sup>-1</sup>. HRMS: calcd. for C<sub>16</sub>H<sub>19</sub>NO<sub>5</sub> + H<sup>+</sup>: 306.1339, found: 306.1336. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 23.50 and 28.21 min.



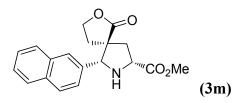
#### (5*R*,6*S*,8*R*)-methyl 6-(furan-2-yl)-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate


The title compound was prepared according to the general procedure as described above in 74% yield.  $[\alpha]^{25}{}_{\rm D}$  = +67.3 (*c* 0.42, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.40 (s, 1H), 6.37 (s, 2H), 4.50 (s, 1H), 4.14-4.10 (m, 2H), 3.79 (s, 3H), 3.54

(dd,  $J_1$  = 7.8 Hz,  $J_2$  = 15.9 Hz, 1H), 2.77 (dd,  $J_1$  = 9.6 Hz,  $J_2$  = 13.5 Hz, 1H), 2.29-2.16 (m, 2H), 1.95-1.85 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.2, 174.1, 151.0, 142.4, 110.5, 108.1, 65.6, 63.3, 57.7, 52.7, 52.4, 41.0, 31.2; IR (KBr) v 3352, 2950, 2816, 2335, 1730, 1514, 1445, 1236, 1215, 1175, 1050, 769 cm<sup>-1</sup>. HRMS: calcd. for C<sub>13</sub>H<sub>15</sub>NO<sub>5</sub> + H<sup>+</sup>: 266.1023, found: 266.1023. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 19.39 and 25.99 min.



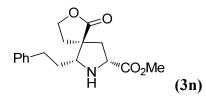
#### (5*R*,6*S*,8*R*)-methyl 1-oxo-6-(thiophen-2-yl)-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate


The title compound was prepared according to the general procedure as described above in 84% yield.  $[\alpha]^{25}{}_{D} = +43.3$  (*c* 0.88, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.29-7.25 (m, 1H), 7.02-6.98 (m, 2H), 4.84 (s, 1H), 4.12-4.06 (m, 2H), 3.79 (s, 3H), 3.53 (dd,  $J_I = 7.8$  Hz,  $J_2 = 16.6$  Hz, 1H), 2.76-2.69 (m, 2H), 2.30-2.25 (m, 2H), 2.00-1.90 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.4, 173.6, 141.4, 127.0, 124.9, 124.7, 65.9, 64.7, 56.9, 52.8, 52.3, 39.9, 31.0; IR (KBr) v 2952, 2819, 2345, 1735, 1517, 1449, 1240, 1213, 1185, 1016, 759 cm<sup>-1</sup>. HRMS: calcd. for C<sub>13</sub>H<sub>15</sub>NO<sub>4</sub>S + H<sup>+</sup>: 282.0792, found: 282.0795. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda = 220$  nm); t<sub>r</sub> = 19.43 and 26.17 min.



(5R,6R,8R)-methyl 6-(naphthalen-1-yl)-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8-car-

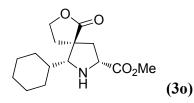
#### boxylate


The title compound was prepared according to the general procedure as described above in 83% yield.  $[\alpha]^{25}{}_{\rm D}$  = -54.3 (*c* 1.04, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  8.07-8.03 (m, 2H), 7.87-7.80 (m, 2H), 7.52-7.48 (m, 3H), 5.49 (s, 1H), 4.26-4.21 (m, 1H), 3.89-3.82 (m, 4H), 3.03 (dd,  $J_I$  = 7.5 Hz,  $J_2$  = 15.9 Hz, 1H), 2.89 (dd,  $J_I$  = 9.0 Hz,  $J_2$  = 13.2 Hz, 1H), 2.25 (dd,  $J_I$  = 6.6 Hz,  $J_2$  = 12.9 Hz, 1H), 2.16-2.07 (m, 1H), 1.87-1.80 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.8, 173.7, 134.2, 133.6, 131.3, 128.8, 128.6, 126.7, 125.9, 125.3, 125.1, 122.8, 66.0, 62.8, 57.3, 52.3, 51.5, 41.4, 32.6 IR (KBr) v 3336, 2951, 2815, 2348, 1733, 1526, 1440, 1235, 1215, 1180, 1045, 759 cm<sup>-1</sup>. HRMS: calcd. for C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub> + H<sup>+</sup>: 326.1387, found: 326.1387. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 19.41 and 24.37 min.



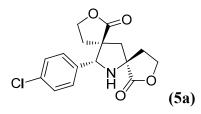
## (5*R*,6*R*,8*R*)-methyl 6-(naphthalen-2-yl)-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8carboxylate

The title compound was prepared according to the general procedure as described above in 85% yield.  $[\alpha]^{25}_{D} = +44.4$  (*c* 0.75, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.93 (s, 1H), 7.82-7.79 (m, 3H), 7.49-7.47 (m, 3H), 4.76 (s, 1H), 4.20-4.16 (m, 1H), 3.93 (dd,  $J_I = 8.4$  Hz,  $J_2 = 14.1$  Hz, 1H), 3.82 (s, 3H), 3.20 (dd,  $J_I = 7.8$  Hz,  $J_2 = 15.6$  Hz, 1H), 2.82 (dd,  $J_I = 10.8$  Hz,  $J_2 = 12.9$  Hz, 1H), 2.27 (dd,  $J_I = 4.8$  Hz,  $J_2 = 13.5$  Hz, 1H), 2.19-2.10 (m, 1H), 1.94-1.85 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.1, 174.1, 135.0, 133.1, 133.0, 128.2, 128.0, 127.6, 126.3, 126.1, 125.6, 124.8, 68.6, 65.8, 57.1, 52.6, 52.3, 40.8, 31.0; IR (KBr) v 3356, 2950, 2827, 2365, 1728, 1514, 1245, 1210, 1185, 1031, 756 cm<sup>-1</sup>. HRMS: calcd. for C<sub>19</sub>H<sub>19</sub>NO<sub>4</sub> + H<sup>+</sup>: 326.1389, found: 326.1387. The product was analyzed by HPLC to determine the

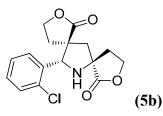

enantiomeric excess: 98% ee (Chiralpak AS-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 21.73 and 31.28 min.



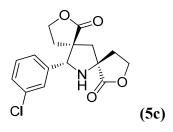
# (5*R*,6*R*,8*R*)-methyl 1-oxo-6-phenethyl-2-oxa-7-azaspiro[4.4]nonane-8-carboxy-


#### late

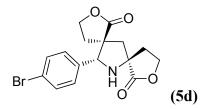
The title compound was prepared according to the general procedure as described above in 62% yield.  $[\alpha]^{25}{}_{\rm D}$  = +13.5 (*c* 0.24, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.32-7.27 (m, 2H), 7.22-7.18 (m, 3H), 4.25 (t, *J* = 7.2 Hz, 2H), 4.00 (dd, *J<sub>I</sub>* = 4.8 Hz, *J<sub>2</sub>* = 10.2 Hz, 1H), 3.77 (s, 3H), 3.38-3.34 (m, 1H), 2.88-2.81 (m, 1H), 2.69-2.59 (m, 2H), 2.42-2.32 (m, 1H), 2.09 (dd, *J<sub>I</sub>* = 4.5 Hz, *J<sub>2</sub>* = 13.5 Hz, 1H), 1.96-1.87 (m, 1H), 1.80-1.73 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.8, 174.4, 141.2, 128.4, 128.1, 126.0, 65.6, 57.8, 52.3, 51.2, 41.6, 33.4, 32.5, 29.7; IR (KBr) v 3349, 2950, 2817, 2321, 1730, 1517, 1446, 1245, 1210, 1186, 1034, 776 cm<sup>-1</sup>. HRMS: calcd. for C<sub>17</sub>H<sub>21</sub>NO<sub>4</sub> + H<sup>+</sup>: 304.1541, found: 304.1543. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 8.68 and 21.92 min.



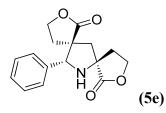

## (5*R*,6*R*,8*R*)-methyl 6-cyclohexyl-1-oxo-2-oxa-7-azaspiro[4.4]nonane-8-carboxylate


The title compound was prepared according to the general procedure as described above in 65% yield.  $[\alpha]^{25}_{D} = +16.1 (c \ 0.74, CHCl_3); {}^{1}H \ NMR \ (CDCl_3, TMS, 300 \ MHz)$  $\delta \ 4.45-4.38 \ (m, 1H), \ 4.27-4.18 \ (m, 1H), \ 3.97-3.95 \ (m, 1H), \ 3.76 \ (s, 3H), \ 3.14-3.12 \ (m, 1H), \ 2.49-2.14 \ (m, 4H), \ 1.99-1.87 \ (m, 2H), \ 1.77-1.67 \ (m, 3H), \ 1.44-1.29 \ (m, 2H),$  1.19-1.00 (m, 5H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.4, 174.4, 70.1, 65.3, 57.2, 52.3, 49.4, 41.9, 39.1, 31.1, 29.6, 28.5, 25.9, 25.6; IR (KBr) v 2972, 2816, 2337, 1725, 1510, 1436, 1215, 1196, 1035, 759 cm<sup>-1</sup>. HRMS: calcd. for  $C_{15}H_{23}NO_4 + H^+$ : 282.1699, found: 282.1700. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min,  $\lambda = 220$  nm); t<sub>r</sub> = 15.47 and 17.27 min.

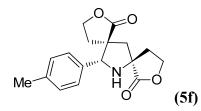



The title compound was prepared according to the general procedure as described above in 82% yield.  $[\alpha]^{25}_{D} = +27.7$  (*c* 0.48, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.35 (m, 4H), 4.70 (s, 1H), 4.41-4.28 (m, 2H), 4.03 (dd,  $J_1 = 8.1$  Hz,  $J_2 = 15.0$  Hz, 1H), 3.35 (dd,  $J_1 = 7.8$  Hz,  $J_2 = 16.2$  Hz, 1H), 2.60-2.37 (m, 5H), 2.22-2.15 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 100 MHz)  $\delta$  179.7, 179.0, 135.3, 134.5, 129.1, 128.3, 68.3, 66.3, 65.5, 63.4, 54.7, 47.2, 38.3, 30.7; IR (KBr) v 3355, 2951, 2817, 2335, 1737, 1523, 1425, 1240, 1215, 1183, 1021, 776 cm<sup>-1</sup>. HRMS: calcd. for C<sub>16</sub>H<sub>16</sub>ClNO<sub>4</sub> + H<sup>+</sup>: 322.0834, found: 322.0841. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda = 220$  nm); t<sub>r</sub> = 20.60 and 24.47 min.

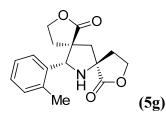



The title compound was prepared according to the general procedure as described above in 80% yield.  $[\alpha]^{25}{}_{\rm D}$  = +10.1 (*c* 0.49, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.94 (d, *J* = 7.5 Hz, 1H), 7.39-7.29 (m, 3H), 5.25 (s, 1H), 4.46-4.27 (m, 2H), 4.09-4.02 (m, 1H), 3.53 (dd, *J*<sub>1</sub> = 7.5 Hz, *J*<sub>2</sub> = 16.5 Hz, 1H), 2.80-2.64 (m, 2H), 2.48-2.25 (m, 4H); 2.05-1.93 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.1, 178.8, 136.0, 133.4, 129.5, 129.4, 129.3, 127.0, 66.1, 65.2, 63.9, 63.6, 52.2, 46.9, 36.8, 32.9; IR (KBr) v 3350, 2950, 2815, 2327, 1735, 1510, 1445, 1237, 1210, 1197, 1031, 769 cm<sup>-1</sup>. HRMS: calcd. for  $C_{16}H_{16}CINO_4 + H^+$ : 322.0844, found: 322.0841. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 17.23 and 26.81 min.

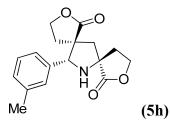



The title compound was prepared according to the general procedure as described above in 81% yield.  $[\alpha]^{25}{}_{D} = +36.4$  (*c* 0.57, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.46-7.27 (m, 4H), 4.70 (s, 1H), 4.43-4.30 (m, 2H), 4.05-4.02 (m, 1H), 3.41-3.38 (m, 1H), 2.58-2.37 (m, 5H), 2.22-2.18 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.4, 178.7, 138.9 134.6, 129.9, 128.6, 126.8, 125.1, 67.9, 66.1, 65.3, 63.0, 54.2, 46.7, 37.9, 30.5; IR (KBr) v 3348, 2951, 2816, 2336, 1730, 1511, 1445, 1242, 1220, 1191, 1033, 769 cm<sup>-1</sup>. HRMS: calcd. for C<sub>16</sub>H<sub>16</sub>ClNO<sub>4</sub> + H<sup>+</sup>: 322.0825, found: 322.0841. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 17.56 and 24.86 min.



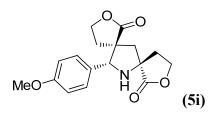

The title compound was prepared according to the general procedure as described above in 84% yield.  $[\alpha]^{25}{}_{\rm D}$  = +26.0 (*c* 1.16, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.48 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 4.68 (s, 1H), 4.43-4.30 (m, 2H), 4.06-3.98 (m, 1H), 3.35 (dd, *J*<sub>1</sub> = 7.2 Hz, *J*<sub>2</sub> = 16.2 Hz, 1H), 2.58-2.36 (m, 5H), 2.20-2.14 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.4, 178.8, 135.7, 131.8, 128.4, 122.3, 68.0, 66.0, 65.3, 63.1, 54.3, 46.9, 38.0, 30.5; IR (KBr) v 3340, 2951, 2815, 2337, 1730, 1510, 1425, 1240, 1211, 1185, 1017, 758 cm<sup>-1</sup>. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 19.63 and 23.89 min.



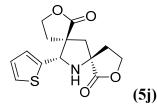

The title compound was prepared according to the general procedure as described above in 83% yield.  $[\alpha]^{25}{}_{D} = +23.1$  (*c* 0.86, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.39-7.35 (m, 5H), 4.70 (s, 1H), 4.43-4.31 (m, 2H), 4.05-3.96 (m, 1H), 3.20 (dd,  $J_1 = 7.8$  Hz,  $J_2 = 16.5$  Hz, 1H), 2.65-2.26 (m, 6H), 2.17-2.07 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.7, 179.0, 136.2, 128.5, 128.4, 126.5, 68.6, 65.9, 65.3, 63.1, 54.5, 47.2, 37.9, 30.6; IR (KBr) v 3365, 2951, 2816, 2340, 1733, 1516, 1425, 1243, 1211, 1176, 1018, 779 cm<sup>-1</sup>. HRMS: calcd. for C<sub>16</sub>H<sub>17</sub>NO<sub>4</sub> + H<sup>+</sup>: 288.1233, found: 288.1230. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 18.66 and 23.12 min.



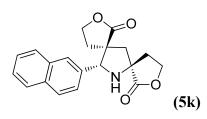
The title compound was prepared according to the general procedure as described above in 75% yield.  $[\alpha]^{25}{}_{\rm D}$  = +26.0 (*c* 0.9, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.27 (d, *J* = 7.8 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 4.64 (s, 1H), 4.44-4.39 (m, 1H), 4.35-4.27 (m, 1H), 4.01-3.94 (m, 1H), 3.20 (dd, *J*<sub>1</sub> = 7.8 Hz, *J*<sub>2</sub> = 16.8 Hz, 1H), 2.62-2.45 (m, 4H), 2.38-2.25 (m, 5H), 2.14-2.04 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.7, 179.0, 138.1, 133.0, 129.2, 126.4, 68.6, 66.0, 65.4, 63.1, 54.5, 47.3, 38.0, 30.6, 21.0; IR (KBr) v 3349, 2943, 2812, 2340, 1726, 1516, 1240, 1211, 1172, 1018, 769 cm<sup>-1</sup>. HRMS: calcd. for  $C_{17}H_{19}NO_4 + H^+$ : 302.1392, found: 302.1387. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 16.60 and 24.67 min.



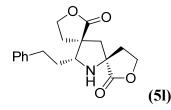

The title compound was prepared according to the general procedure as described above in 68% yield.  $[\alpha]^{25}{}_{D}$  = +28.8 (*c* 0.87, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.75-7.72 (m, 1H), 7.28-7.17 (m, 3H), 4.99 (s, 1H), 4.42-4.38 (m, 1H), 4.34-4.29 (m, 1H), 4.01-3.94 (m, 1H), 3.24-3.16 (m, 1H), 2.68-2.63 (m, 2H), 2.49-2.30 (m, 7H), 2.10-2.03 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.4, 179.0, 136.3, 134.8, 130.9, 128.0, 126.9, 126.0, 66.3, 65.3, 64.0, 63.3, 52.9, 47.6, 37.4, 32.3, 31.9, 19.4; IR (KBr) v 3362, 2950, 2825, 2331, 1731, 1517, 1420, 1241, 1210, 1182, 1016, 768 cm<sup>-1</sup>. HRMS: calcd. for C<sub>17</sub>H<sub>19</sub>NO<sub>4</sub> + H<sup>+</sup>: 302.1382, found: 302.1387. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 14.73 and 17.72 min.



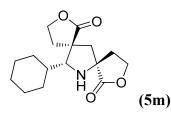

The title compound was prepared according to the general procedure as described above in 75% yield.  $[\alpha]^{25}{}_{D} = +19.0 (c \ 0.81, CHCl_3)$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.27-7.13 (m, 4H), 4.65 (s, 1H), 4.44-4.30 (m, 2H), 4.01-3.95 (m, 1H), 3.25-3.22 (m, 1H), 2.63-2.45 (m, 4H), 2.39-2.26 (m, 5H), 2.15-2.08 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>,


TMS, 75 MHz) 179.8, 179.0, 138.3, 136.0, 129.1, 128.4, 127.1, 123.6, 68.7, 66.0, 65.4, 63.2, 54.5, 47.4, 38.0, 30.7, 21.3; IR (KBr) v 3355, 2951, 2830, 2335, 1731, 1520, 1438, 1241, 1210, 1196, 1031, 766 cm<sup>-1</sup>. HRMS: calcd. for C<sub>17</sub>H<sub>19</sub>NO<sub>4</sub> + Na<sup>+</sup>: 324.1203, found: 324.1206. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 13.18 and 18.32 min.



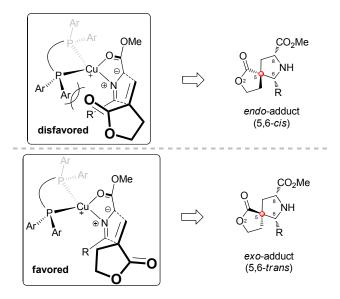

The title compound was prepared according to the general procedure as described above in 80% yield. d  $[\alpha]^{25}_{D}$  = +23.3 (*c* 0.79, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.31 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 7.8 Hz, 2H), 4.63 (s, 1H), 4.44-4.30 (m, 2H), 4.02-3.95 (m, 1H), 3.80 (s, 3H), 3.20 (dd, *J*<sub>1</sub> = 7.5 Hz, *J*<sub>2</sub> = 16.5 Hz, 1H), 2.61-2.52 (m, 4H), 2.37-2.26 (m, 2H), 2.15-2.07 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.8, 179.0, 159.5, 128.0, 127.7, 113.9, 68.4, 66.0, 65.4, 63.1, 55.2, 54.5, 47.2, 38.0, 30.6; IR (KBr) v 2953, 2821, 2351, 1734, 1503, 1429, 1238, 1211, 1190, 1033, 768 cm<sup>-1</sup>. HRMS: calcd. for C<sub>17</sub>H<sub>19</sub>NO<sub>5</sub> + Na<sup>+</sup>: 340.1163, found: 340.1155. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 34.64 and 61.59 min.




The title compound was prepared according to the general procedure as described above in 84% yield.  $[\alpha]^{25}{}_{\rm D}$  = +45.5 (*c* 0.80, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.29-7.27 (m, 1H), 7.04-7.02 (m, 2H), 4.93 (s, 1H), 4.43-4.38 (m, 1H), 4.35-4.30 (m, 1H), 4.10-4.05 (m, 1H), 3.52 (dd,  $J_1$  = 7.5 Hz,  $J_2$  = 15.9 Hz, 1H), 2.59-2.39 (m, 6H), 2.25-2.15 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.2, 178.5, 139.5, 127.2, 125.2, 125.1, 66.2, 65.4, 63.3, 55.0, 46.9, 38.1, 30.7; IR (KBr) v 3340, 2951, 2810, 2340, 1730, 1503, 1426, 1244, 1212, 1186, 1016, 778 cm<sup>-1</sup>. HRMS: calcd. for C<sub>14</sub>H<sub>15</sub>NO<sub>4</sub>S + H<sup>+</sup>: 294.0803, found: 294.0795. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak OD-H, *i*-propanol/hexane = 40/60, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 14.45 and 17.52 min.



The title compound was prepared according to the general procedure as described above in 82% yield.  $[\alpha]^{25}{}_{D} = +50.4$  (*c* 0.36, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  7.90-7.80 (m, 4H), 7.51-7.43 (m, 3H), 4.87 (s, 1H), 4.46-4.40 (m, 1H), 4.36-4.30 (m, 1H), 3.97-3.90 (m, 1H), 3.19 (dd,  $J_{I} = 8.1$  Hz,  $J_{2} = 16.8$  Hz, 1H), 2.65-2.44 (m, 4H), 2.43-2.38 (m, 1H), 2.32-2.25 (m, 1H), 2.17-2.10 (m, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.9, 179.0, 138.3, 133.8, 133.0, 128.5, 128.0, 127.6, 126.5, 126.4, 125.5, 124.5, 68.9, 66.1, 65.5, 63.3, 54.6, 47.4, 38.1, 30.7; IR (KBr) v 3350, 2950, 2819, 2340, 1735, 1506, 1428, 1238, 1205, 1179, 1026, 768 cm<sup>-1</sup>. HRMS: calcd. for C<sub>20</sub>H<sub>19</sub>NO<sub>4</sub> + H<sup>+</sup>: 338.1393, found: 338.1387. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda = 220$  nm); t<sub>r</sub> = 19.56 and 39.97 min.

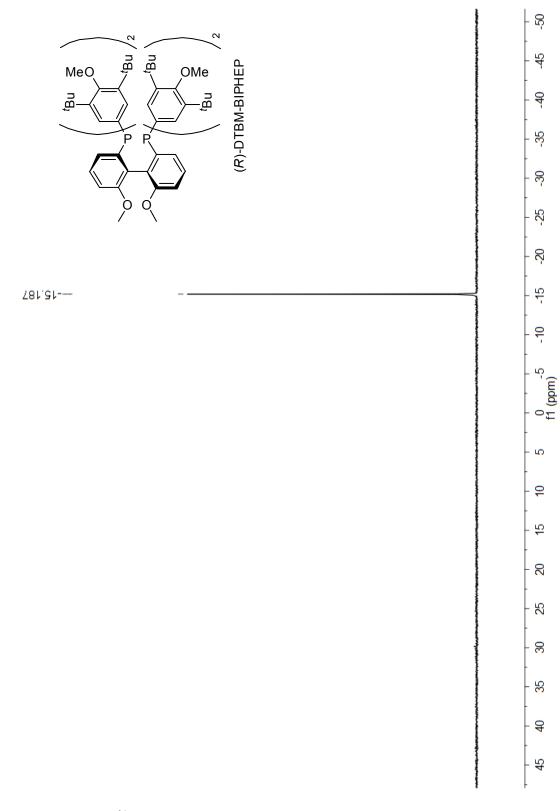


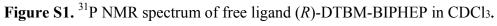

The title compound was prepared according to the general procedure as described above in 60% yield.  $[\alpha]^{25}_{D} = +53.0 \ (c \ 1.15, \text{CHCl}_3); ^1\text{H NMR} \ (\text{CDCl}_3, \text{TMS}, 300 \text{ MHz})$  $\delta \ 7.31-7.17 \ (\text{m}, 5\text{H}), 4.44-4.37 \ (\text{m}, 1\text{H}), 4.29-4.24 \ (\text{m}, 3\text{H}), 3.39 \ (\text{dd}, J_1 = 4.5 \text{ Hz}, J_2 = 9.3 \text{ Hz}, 1\text{H}), 2.85-2.80 \ (\text{m}, 1\text{H}), 2.62-2.50 \ (\text{m}, 1\text{H}), 2.45-2.34 \ (\text{m}, 5\text{H}), 2.20-2.11 \ (\text{m}, 5\text{H}), 2.20-$  2H), 1.85-1.77 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 179.9, 179.4, 141.2, 128.4, 128.3, 126.1, 74.0, 65.9, 64.5, 53.5, 47.5, 38.5, 33.4, 32.2, 29.6; IR (KBr) v 3350, 2946, 2826, 2336, 1735, 1510, 1446, 1235, 1215, 1036, 769 cm<sup>-1</sup>. HRMS: calcd. for  $C_{18}H_{21}NO_4 + H^+$ : 316.1544, found: 316.1543. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda = 220$  nm); t<sub>r</sub> = 21.36 and 25.61 min.



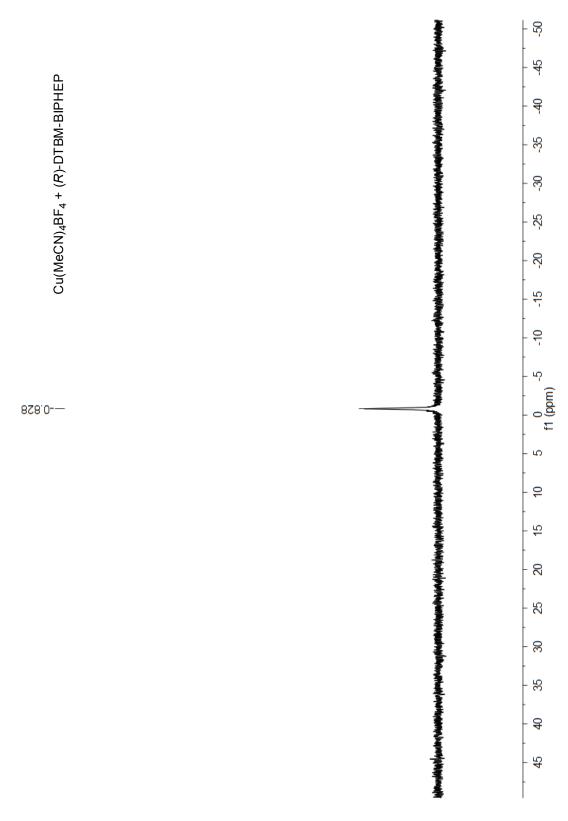
The title compound was prepared according to the general procedure as described above in 67% yield.  $[\alpha]^{25}{}_{D} = +15.3$  (*c* 0.26, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, TMS, 300 MHz)  $\delta$  4.49-4.37 (m, 2H), 4.28-4.18 (m, 2H), 3.21-3.18 (m, 1H), 2.46-2.33 (m, 4H), 2.27-2.16 (m, 2H), 2.00-1.95 (m, 2H), 1.73-1.68 (m, 3H), 1.43-1.40 (m, 2H), 1.26-1.00 (m, 5H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, TMS, 75 MHz) 180.3, 179.6, 70.6, 65.8, 65.7, 64.0, 52.2, 48.5, 39.0, 35.6, 31.5, 29.8, 28.1, 26.0, 25.7; IR (KBr) v 2951, 2823, 2335, 1737, 1445, 1228, 1219, 1190, 1035, 759 cm<sup>-1</sup>. HRMS: calcd. for C<sub>16</sub>H<sub>23</sub>NO<sub>4</sub> + H<sup>+</sup>: 294.1706, found: 294.1700. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, *i*-propanol/hexane = 50/50, flow rate 1.0 mL/min,  $\lambda$  = 220 nm); t<sub>r</sub> = 10.68 and 19.60 min.

V. Proposed Transition States of the *exo*-Selectivity for Asymmetric 1,3-Dipolar Cycloaddition of Imino Esters with α-Methylene-γ-butyrolactone.





Scheme S1. Proposed transition states.

Based on the relative and absolute configuration of cycloadduct (7R,9R,13S)-**5a**, the high *exo*-selectivity observed in the Cu(I)/(*R*)-DTBM-BIPHEP (L**5**) catalyzed asymmetric 1,3-DC reaction of imino ester with  $\alpha$ -methylene- $\gamma$ -butyrolactone can be rationalized by the proposed transition states in Scheme S1. The active species is a copper(I) complex having bulky and electron-donating bisphosphine ligand and an *in situ*-formed azomethine ylide in tetrahedral configuration. <sup>2</sup> An *exo* approach of  $\alpha$ -methylene- $\gamma$ -butyrolactone to the copper(I) complex occurred predominantly because of the disfavored steric repulsion generated in the corresponding *endo* approach between the substituents of  $\alpha$ -methylene- $\gamma$ -butyrolactone and the large bulky aryl group on the phosphorus atom of the chiral ligand.


## VI. <sup>31</sup>P NMR Spectra of (*R*)-DTBM-BIPHEP Cu(MeCN)<sub>4</sub>BF<sub>4</sub> complex

a) Free ligand (*R*)-DTBM-BIPHEP

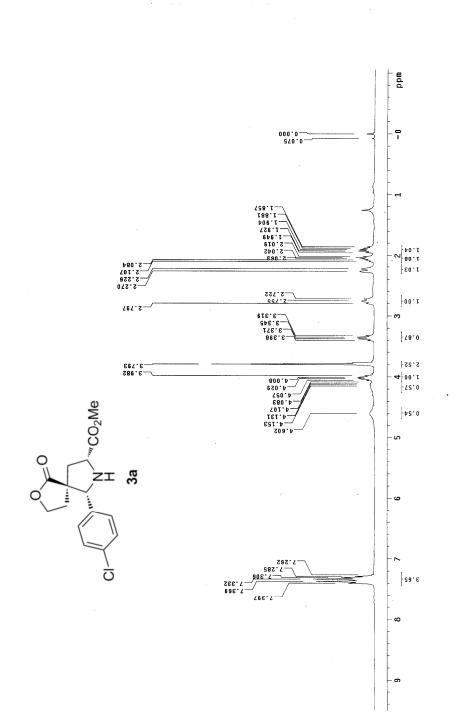




b) Cu(MeCN)4BF4:(*R*)-DTBM-BIPHEP = 1:1

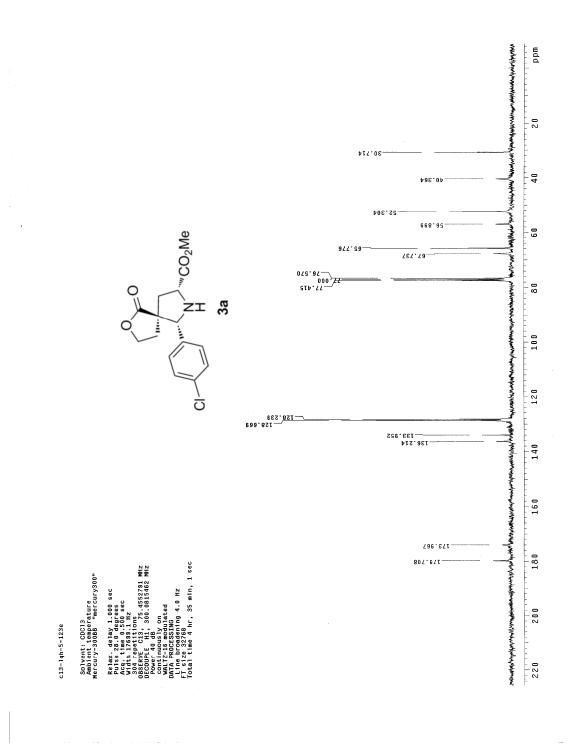


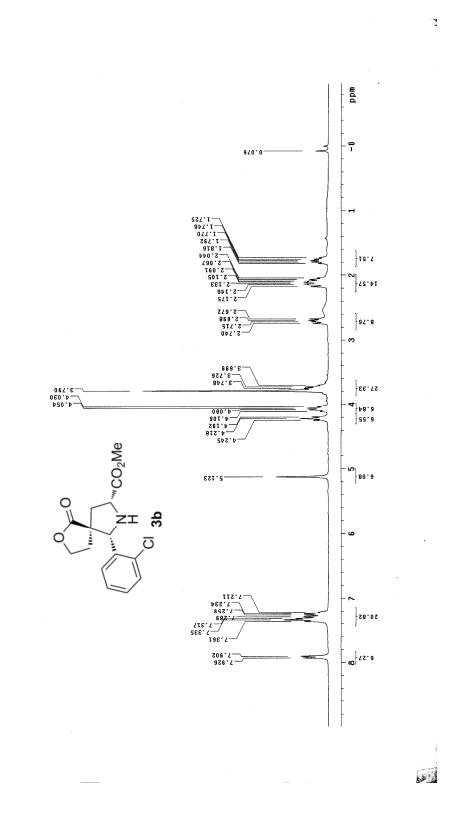
**Figure S2.** <sup>31</sup>P NMR spectrum of (*R*)-DTBM-BIPHEP/Cu(MeCN)4BF4(1:1) complex in CDCl<sub>3</sub>


The catalyst structure was examined by <sup>31</sup>P NMR study. As shown in Figure 1, <sup>31</sup>P NMR spectrum of free ligand (*R*)-DTBM-BIPHEP in CDCl<sub>3</sub> showed a singlet peak at -15.19 ppm. After addition of 1 equiv of Cu(MeCN)<sub>4</sub>BF<sub>4</sub> to the solution, a new single peak at -0.83 ppm was observed with disappearance of the free ligand peak (Figure 2). It showed that (*R*)-DTBM-BIPHEP/Cu(MeCN)<sub>4</sub>BF<sub>4</sub> complex formed.

#### **VII. References**

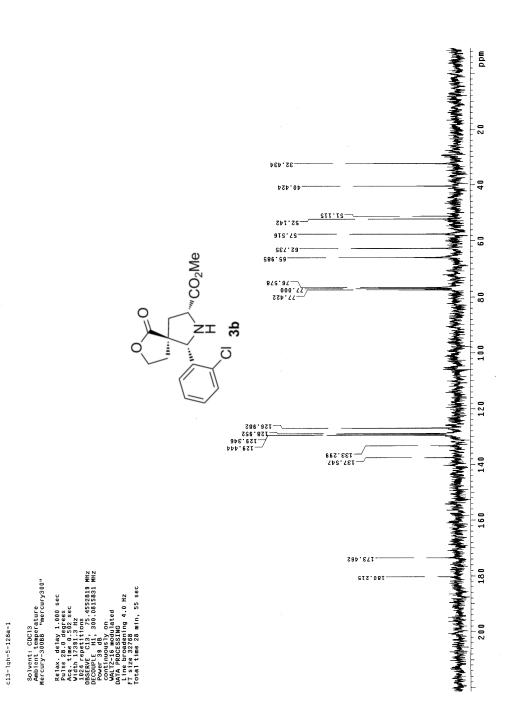
1. J. Zhou, A. M. Schmidt, H. Ritter, Macromolecules 2010, 43, 939-942.


2. Y. Oderaotoshi, W. Cheng, S. Fujitomi, Y. Kasano, S. Minakata and M. Komatsu, *Org. Lett.*, **2003**, *5*, 5043.

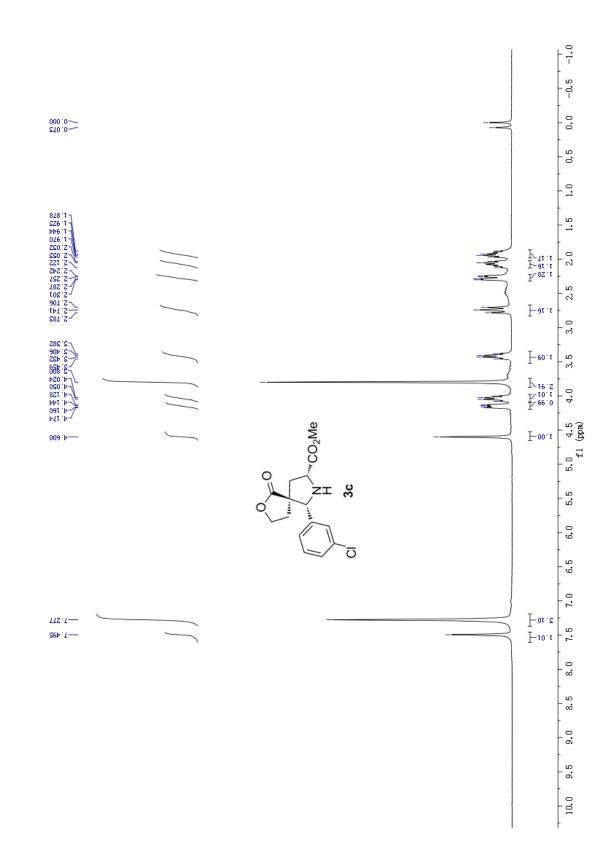

# VIII. <sup>1</sup>H NMR and <sup>13</sup>C NMR Spectra.

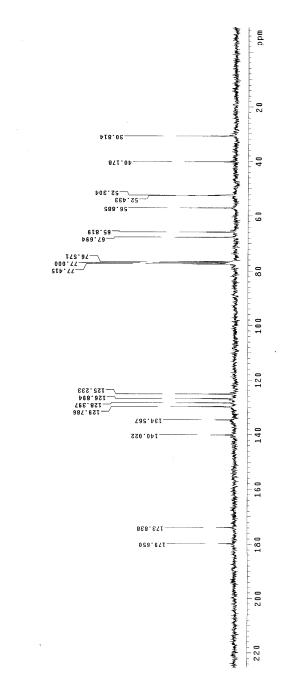


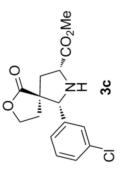
lt1-13-4a


S24

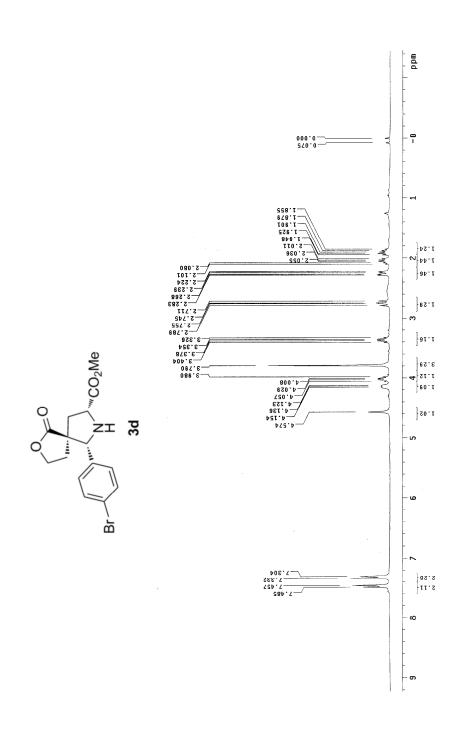






# Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013


ст Ц

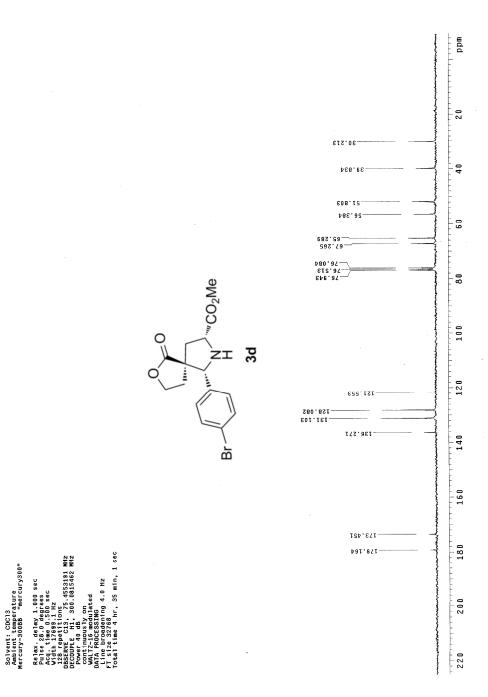



S27



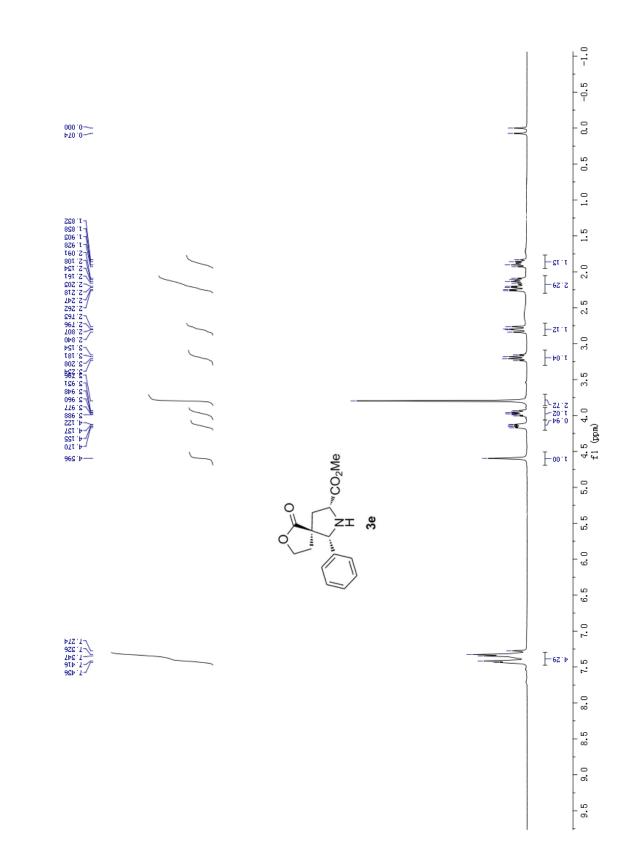





cl3-lqh-5-l21c Solvart: CDCl3 Maniart: CDCl3 Maniart: CDCl3 Mariart: 2008b "mercury300" Relax. delay 1.00 sec pulse 22.0 degres Argentipons Paras 22.0 degres Argentipons 20.455072 Mrz Descrito 11.3 75.4553072 Mrz Descrito 11.3 75.4553072 Mrz Descrito 11.3 75.4553072 Mrz Descrito 11.3 75.455302 Mrz Continuous 19.00 ArtTr-16 modulated ArtTr-16 modulated ArtTr-16 modulated ArtTr-16 modulated ArtTr-16 modulated ArtTr-18 modulated A

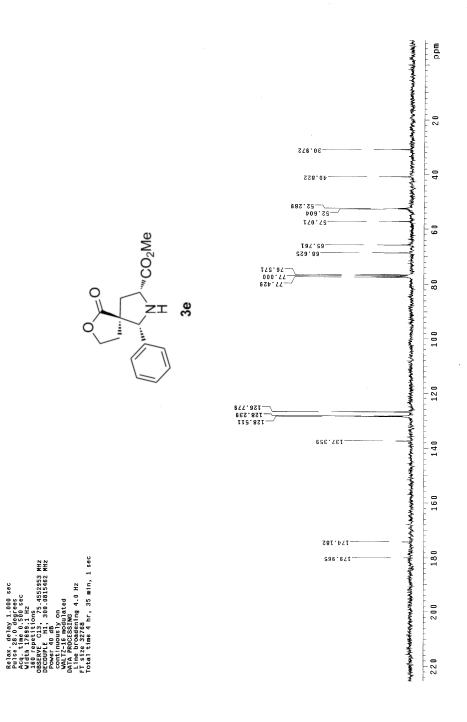


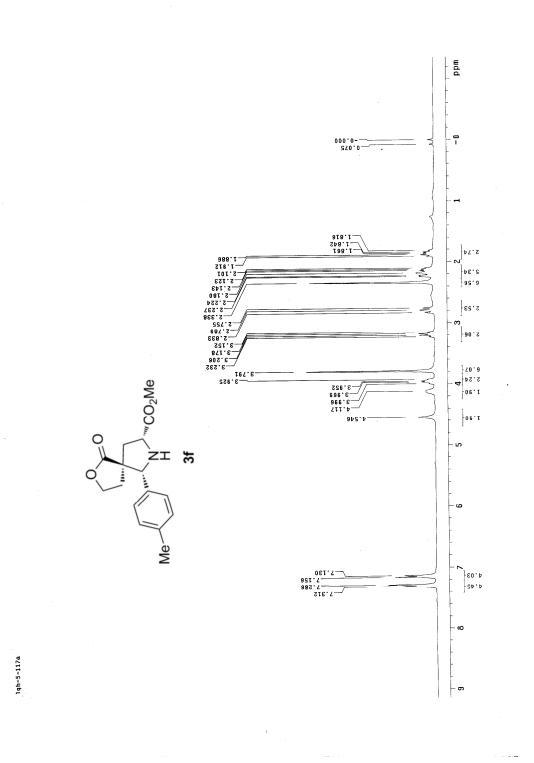
1qh-5-117c

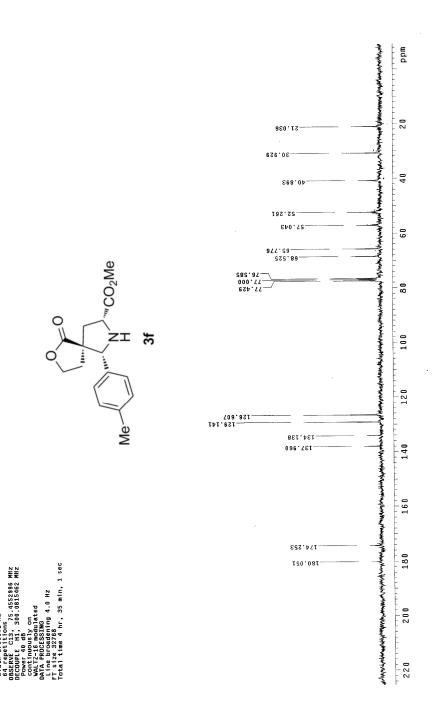

S30

----




c13-1qh-5-117c


S31



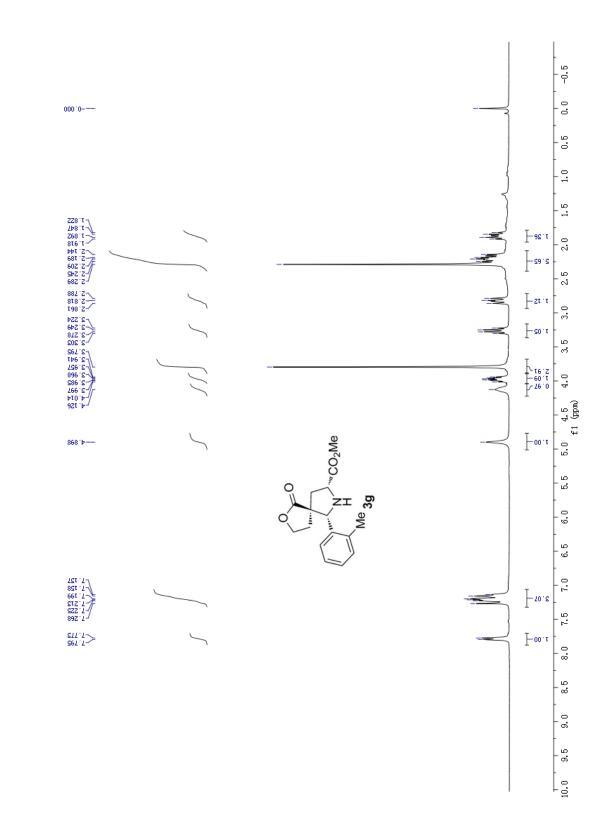

Solvent: CDC13 Ambient temperature Mercury-300BB "mercury300"

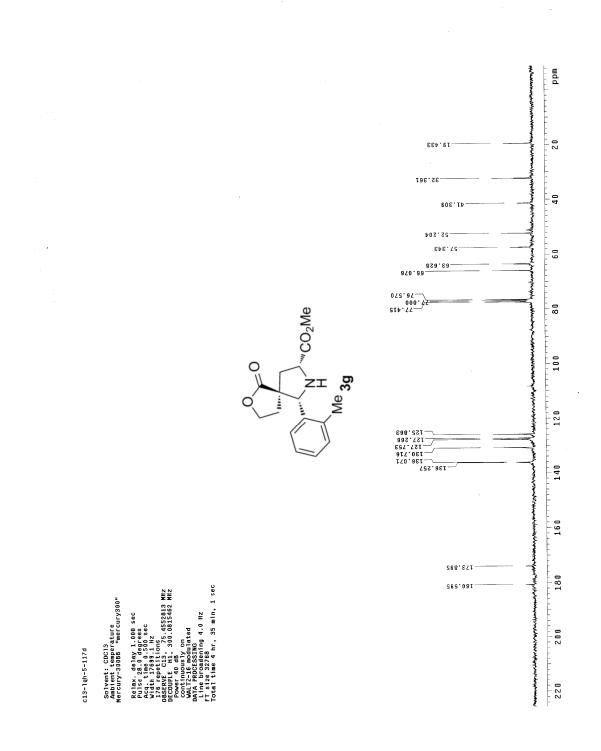
c13-1qh-5-124a

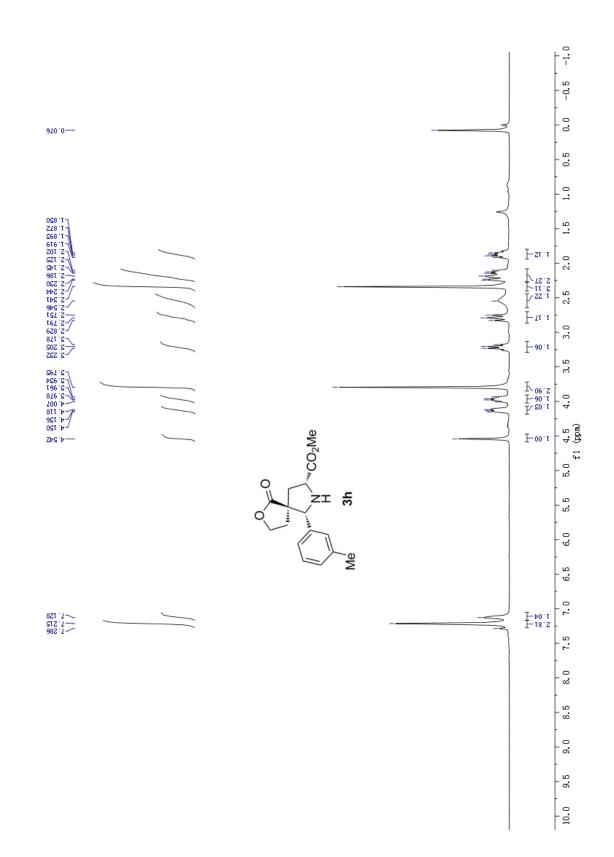


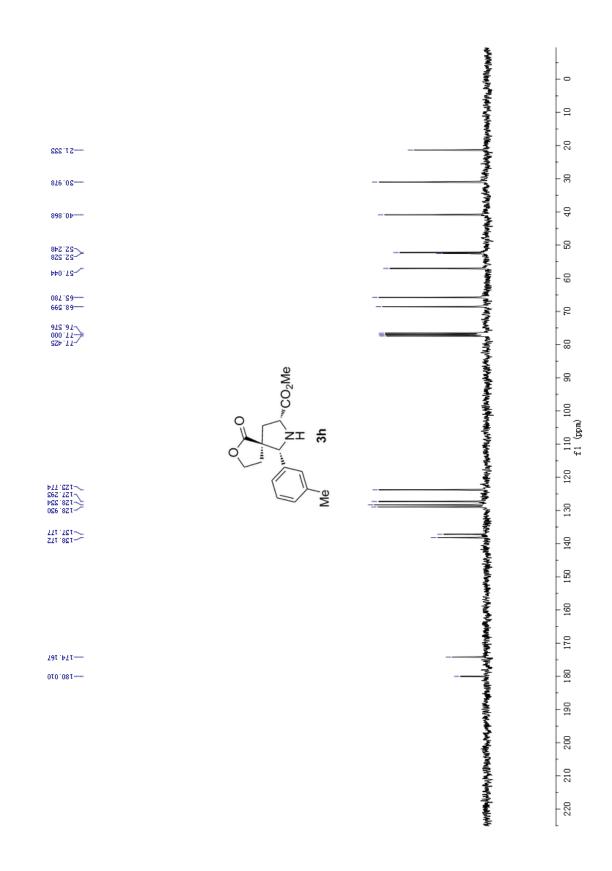


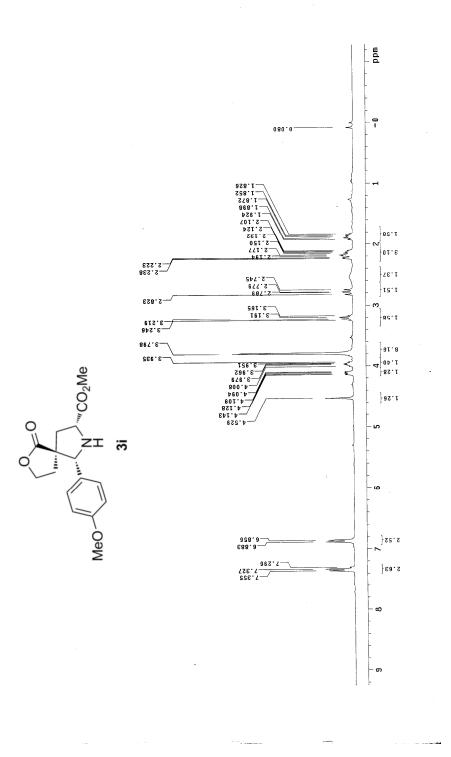



c13-1qh-5-117a


Solvent: CDC13 Ambient temperature Mercury-300BB "mercury300"

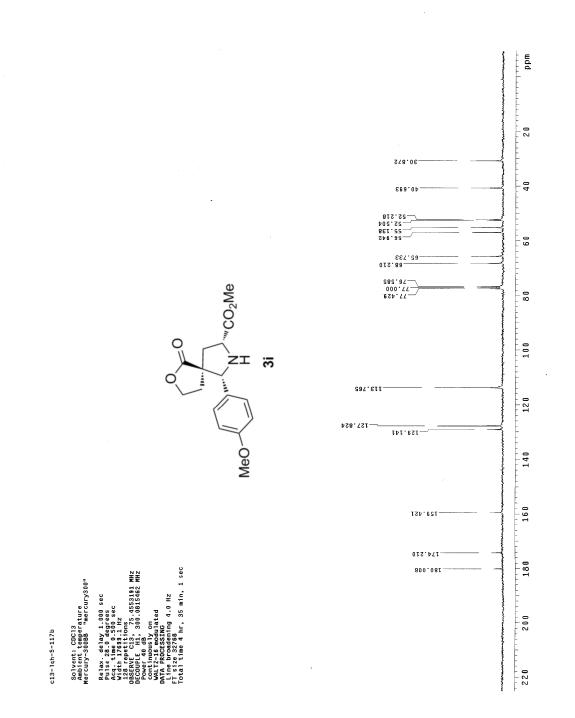

Relax. delay 1.000 sec Pulse 28.0 degrees Acq. time 0.500 sec

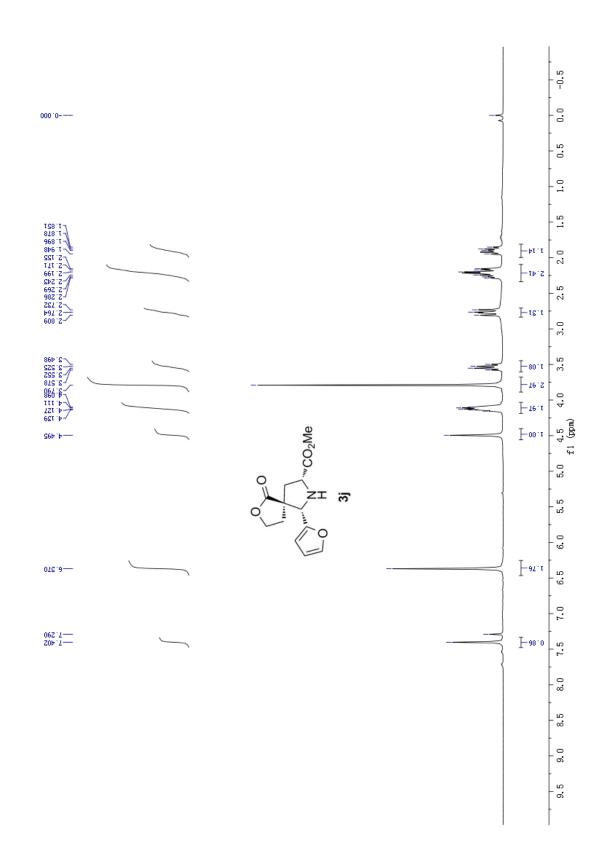

S35

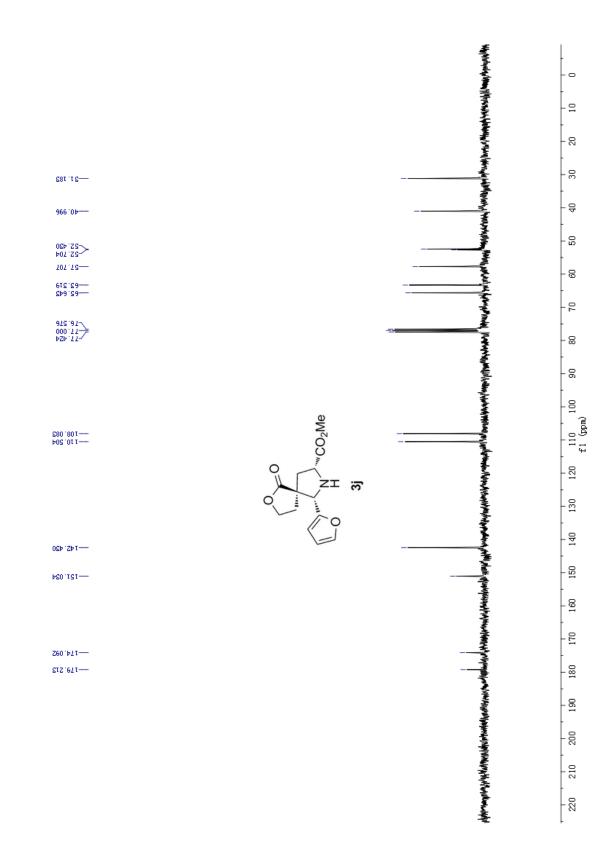

# Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

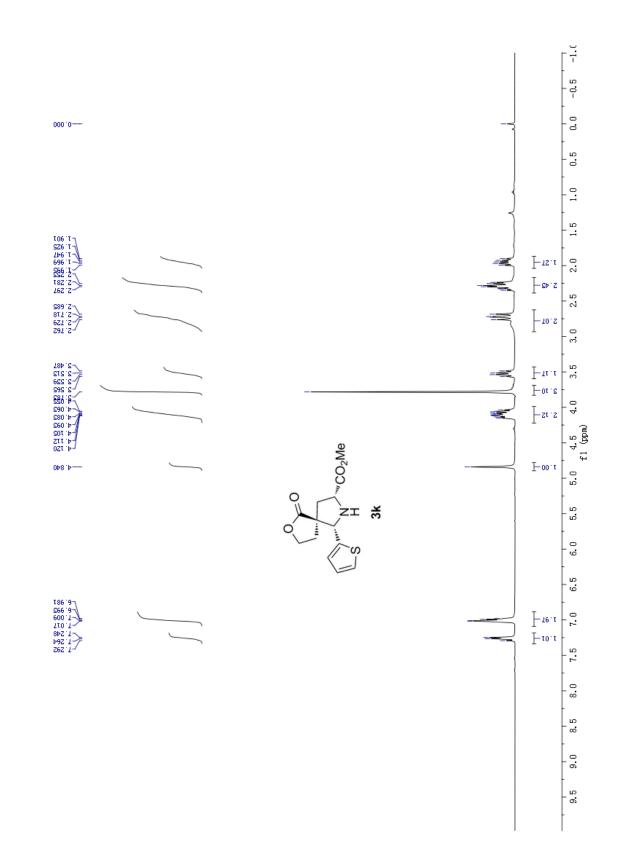


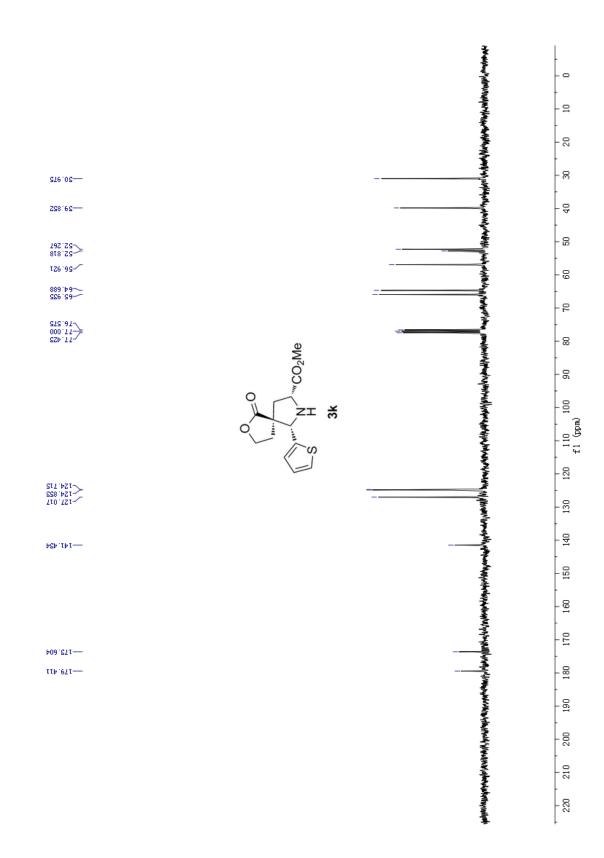


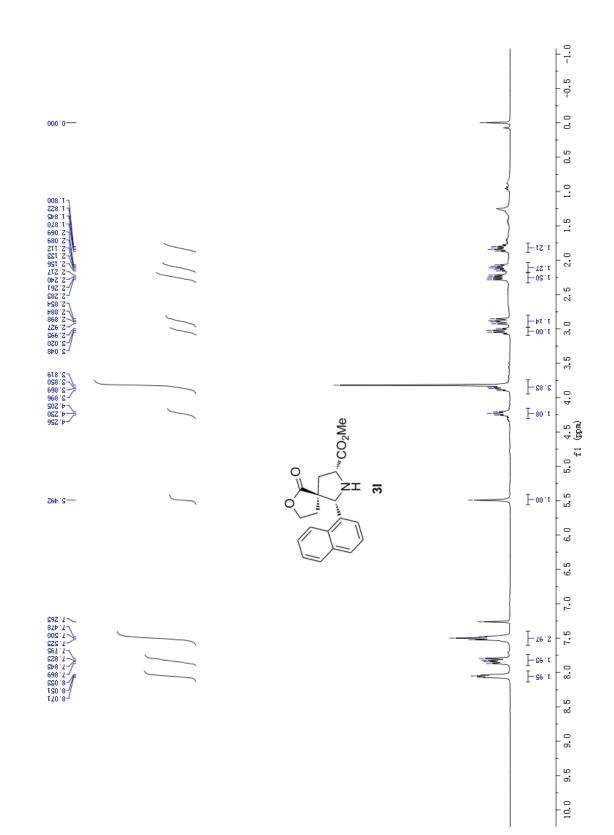


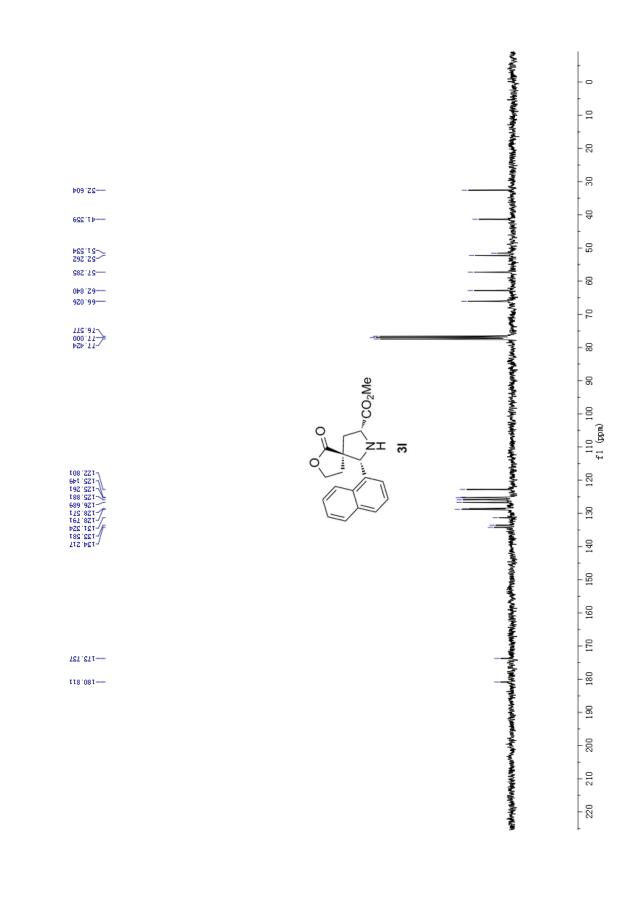



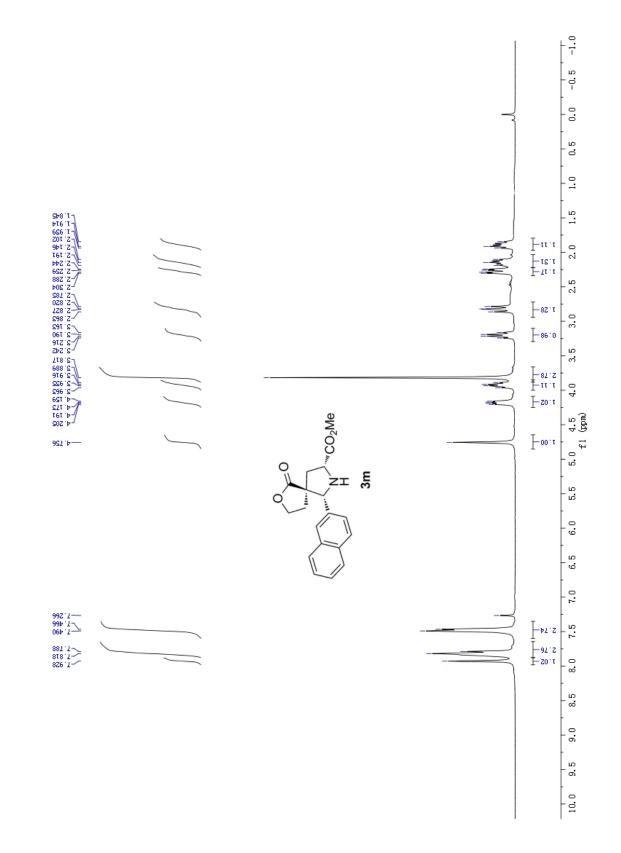



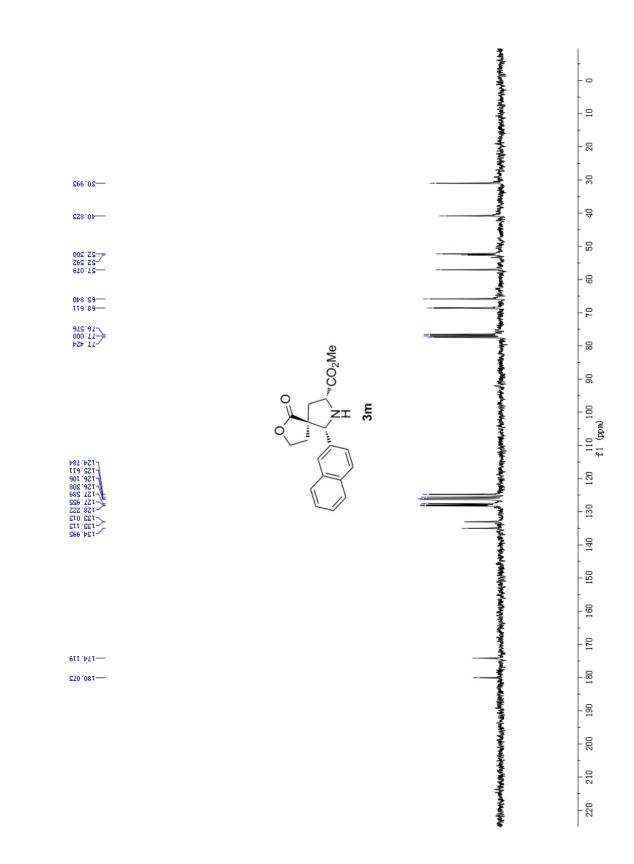


1qh-5-117b


S40

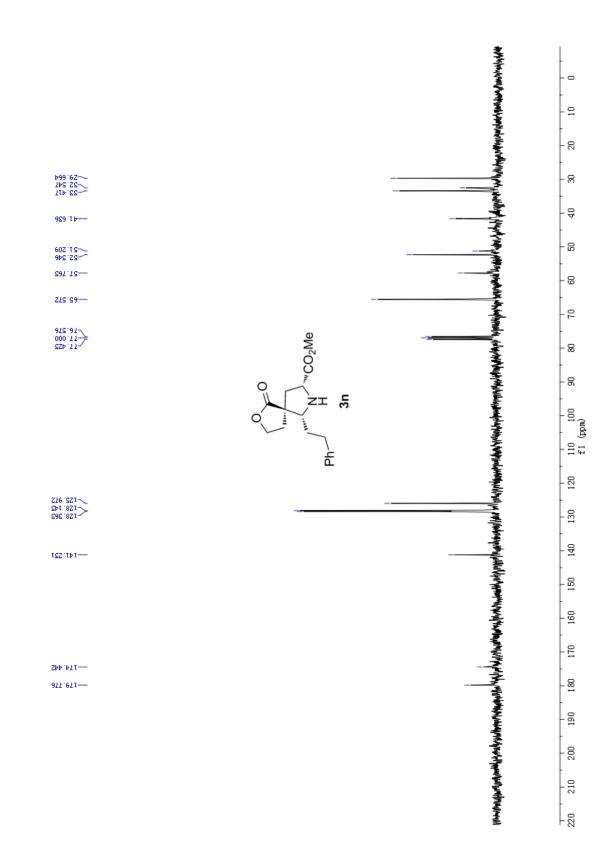


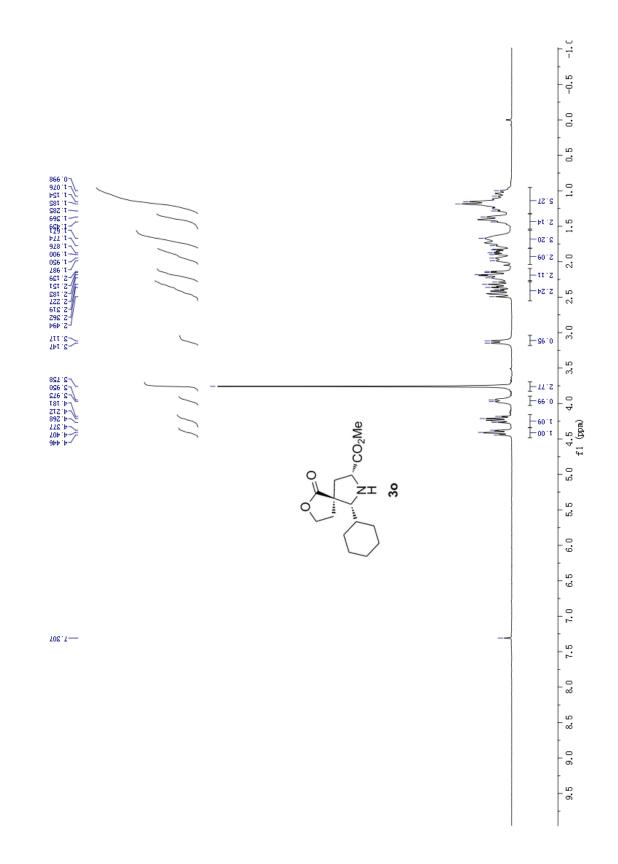



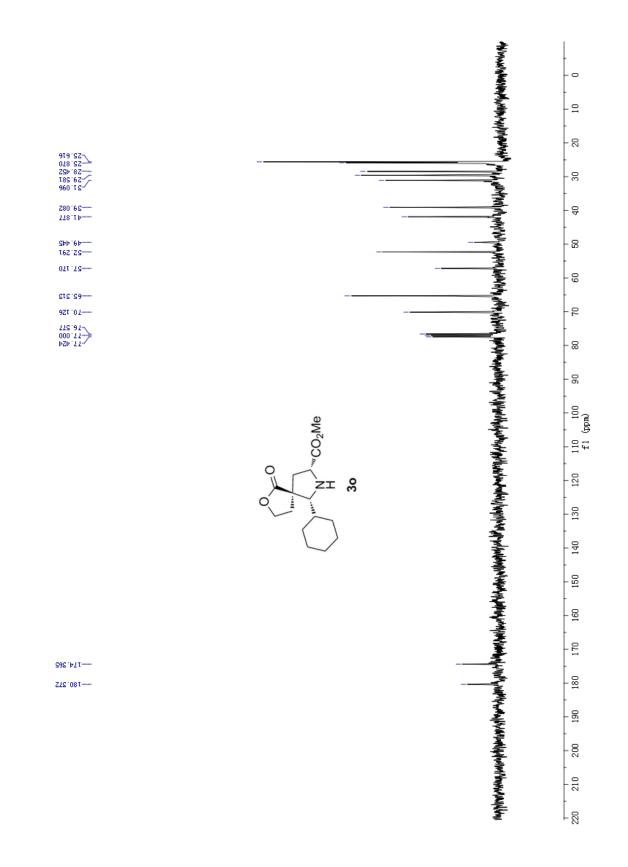



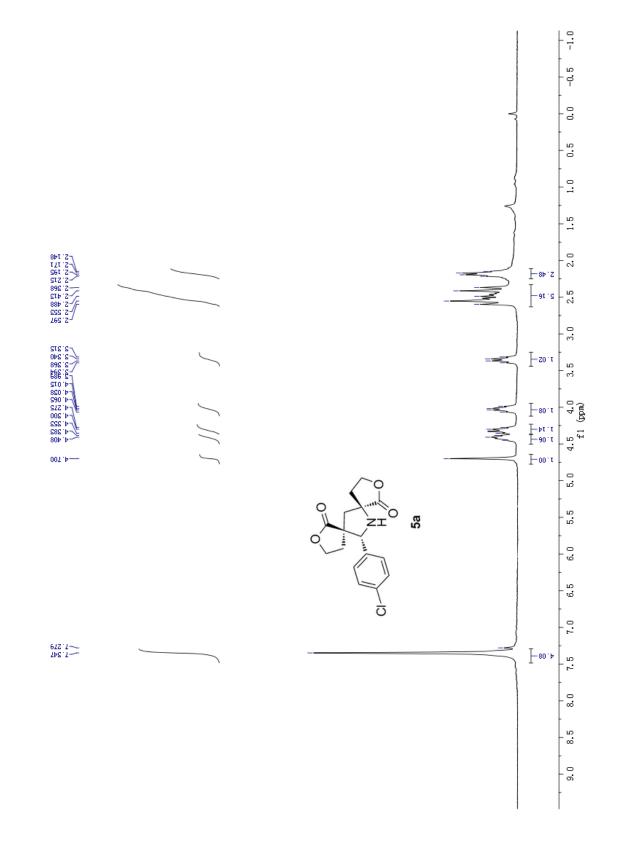



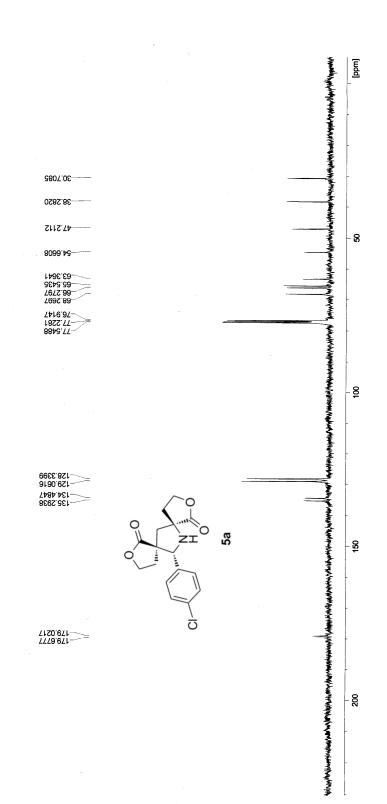


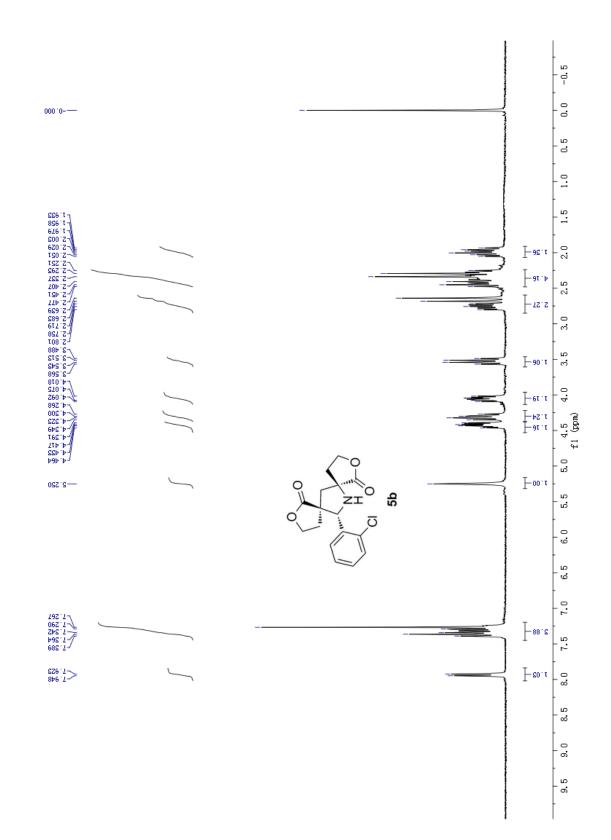



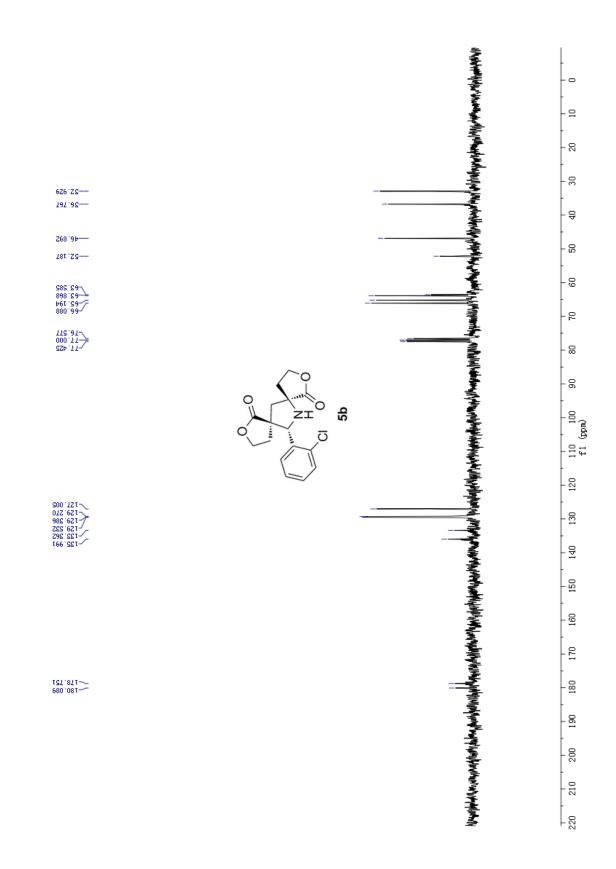



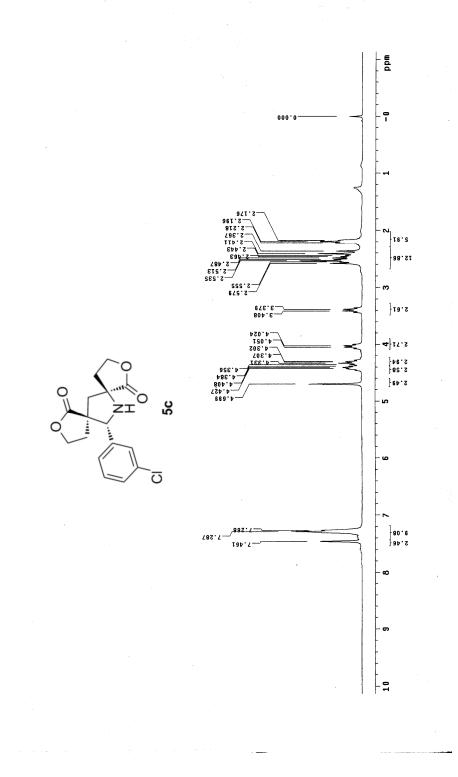



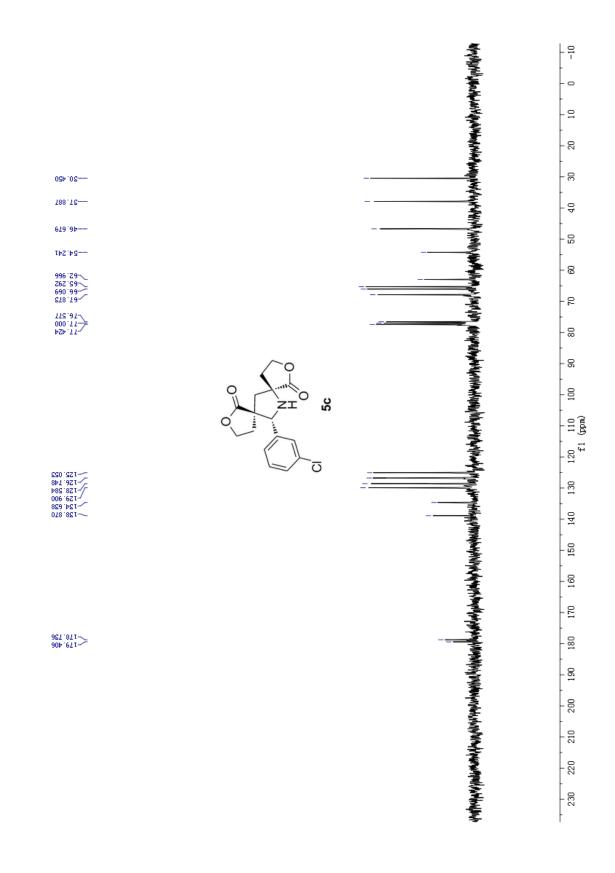



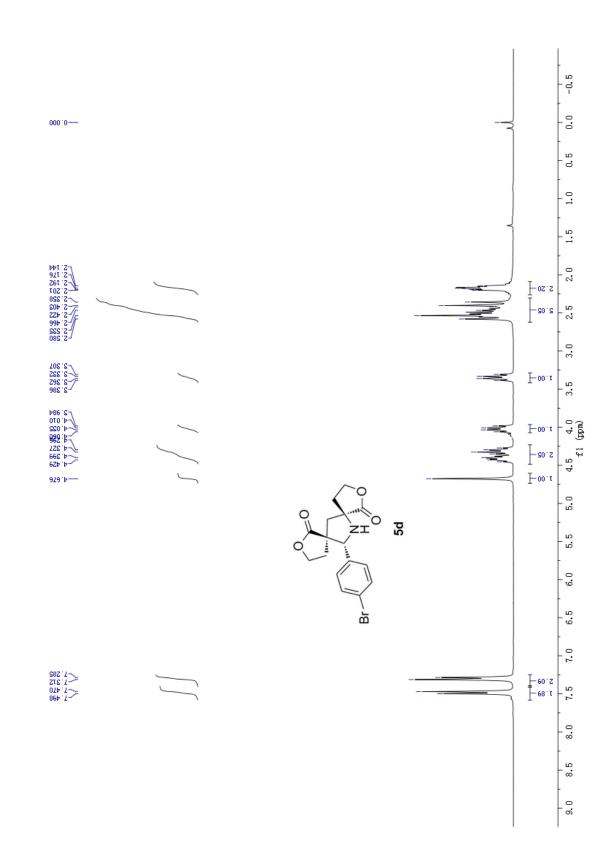



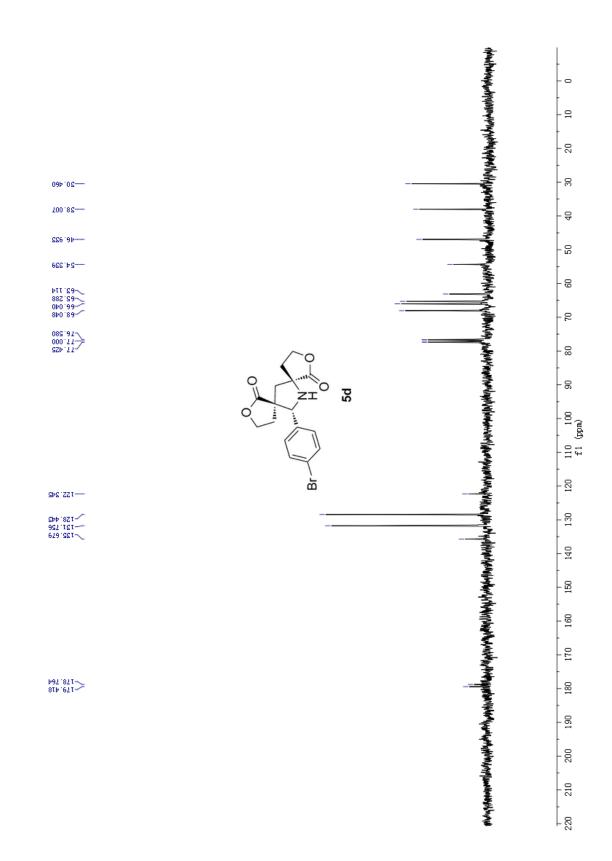



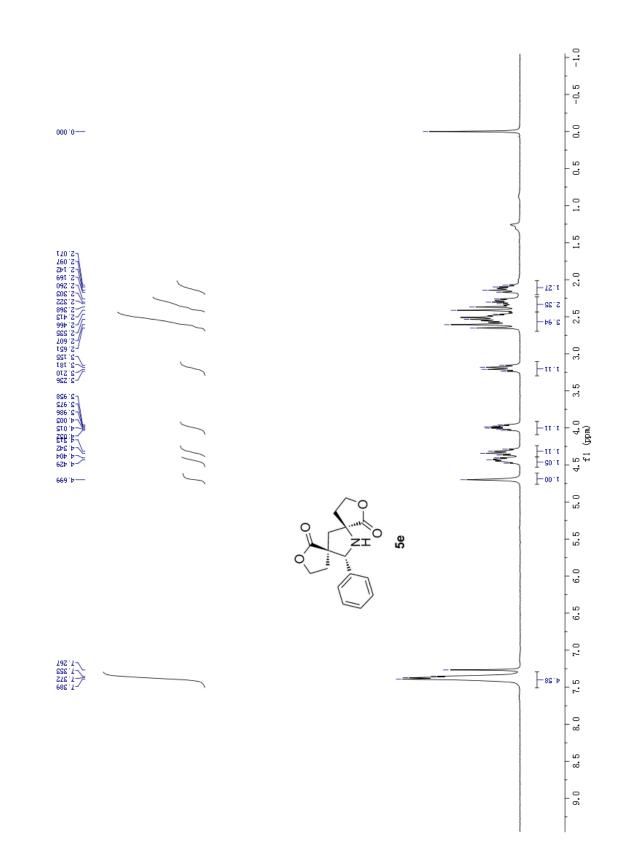



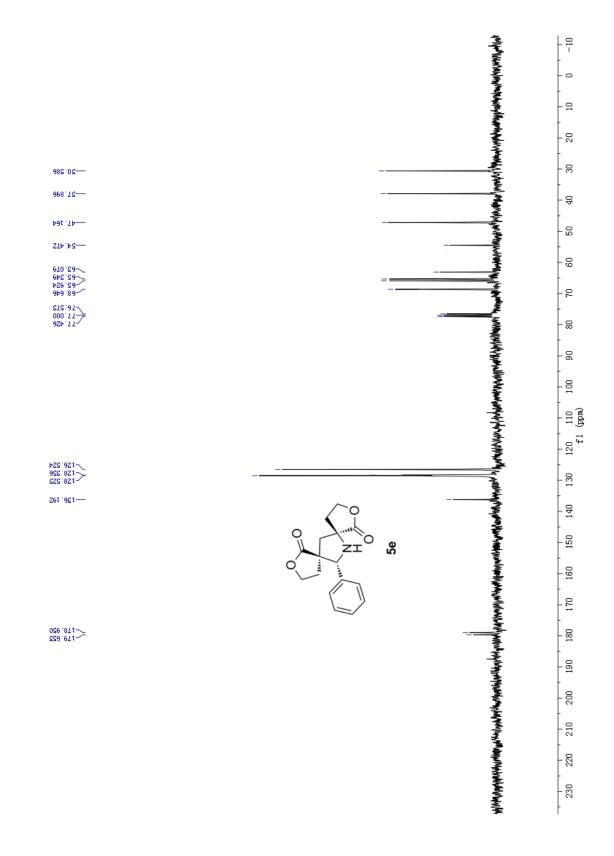



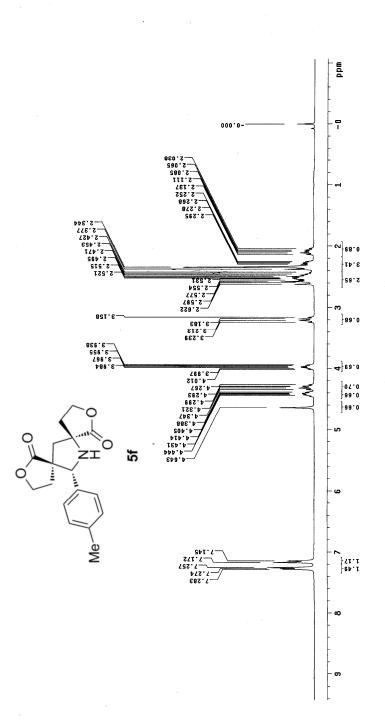



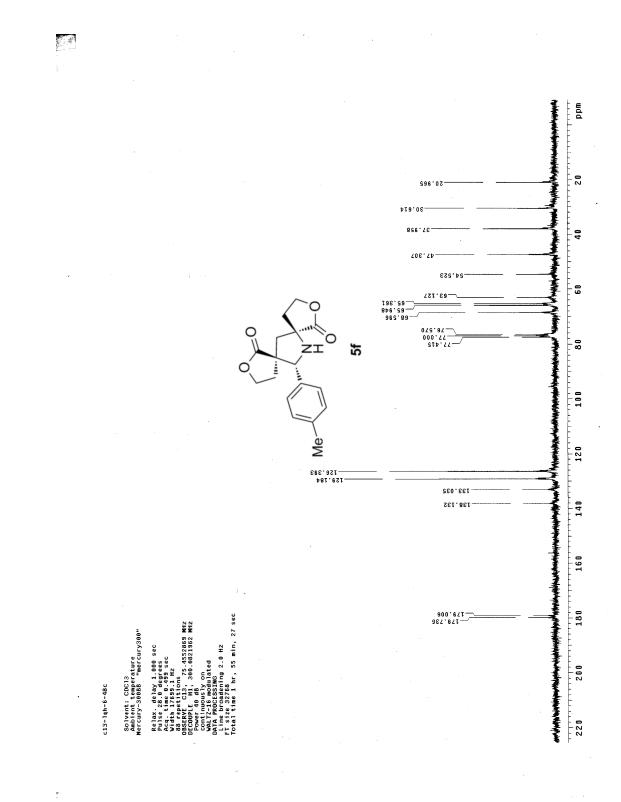



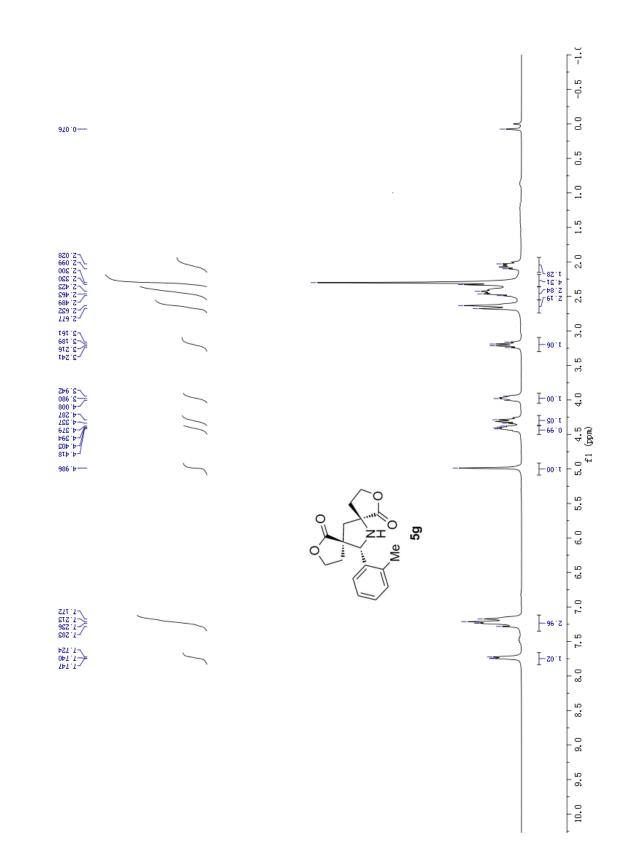



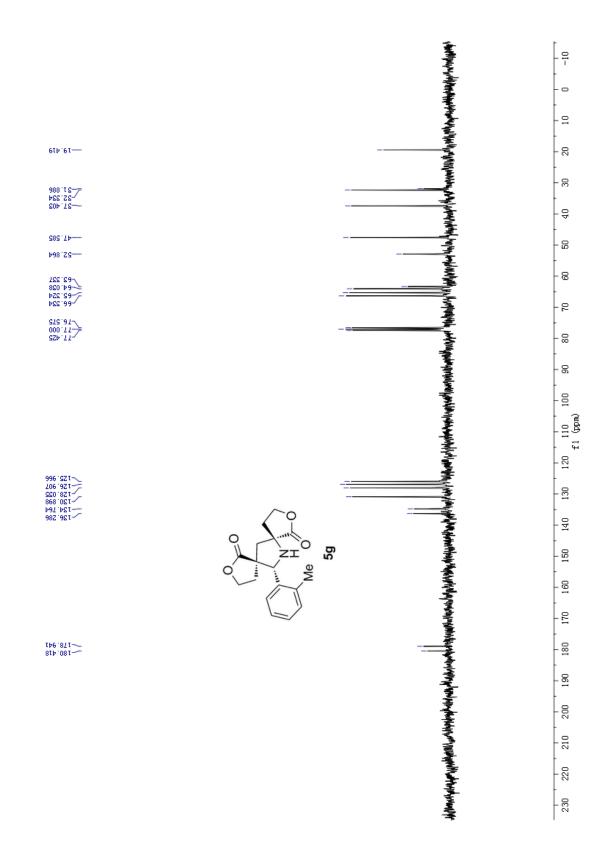



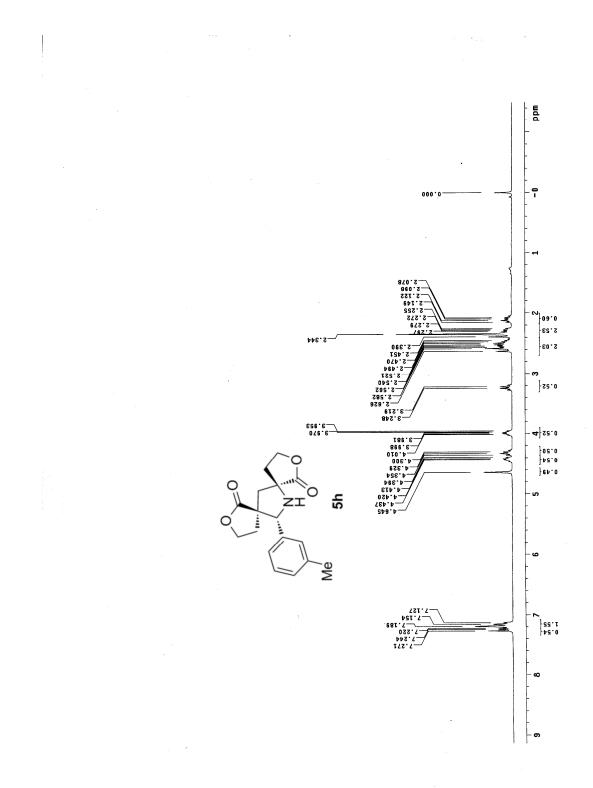



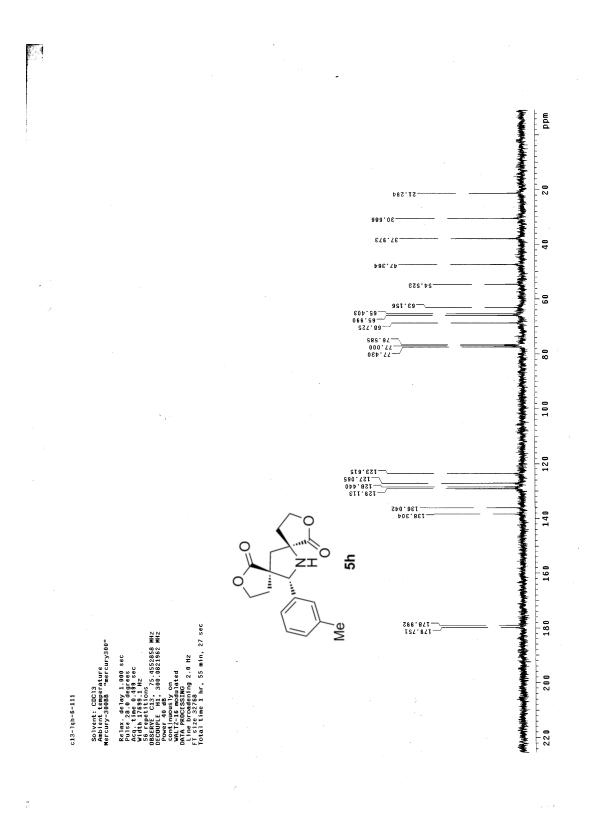



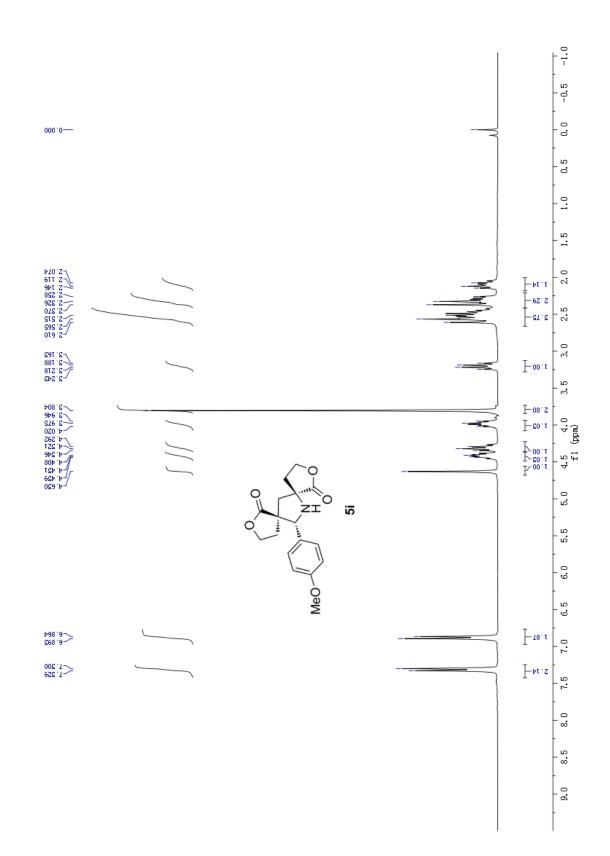



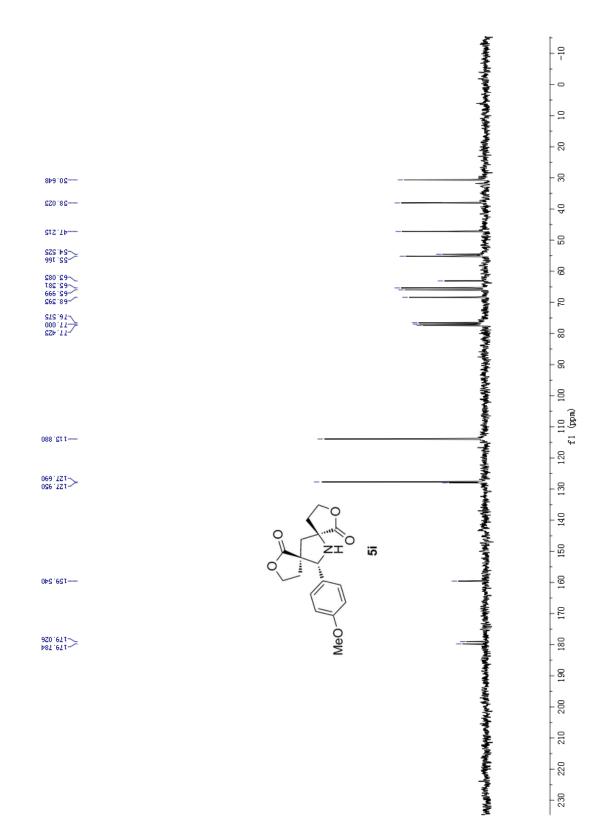



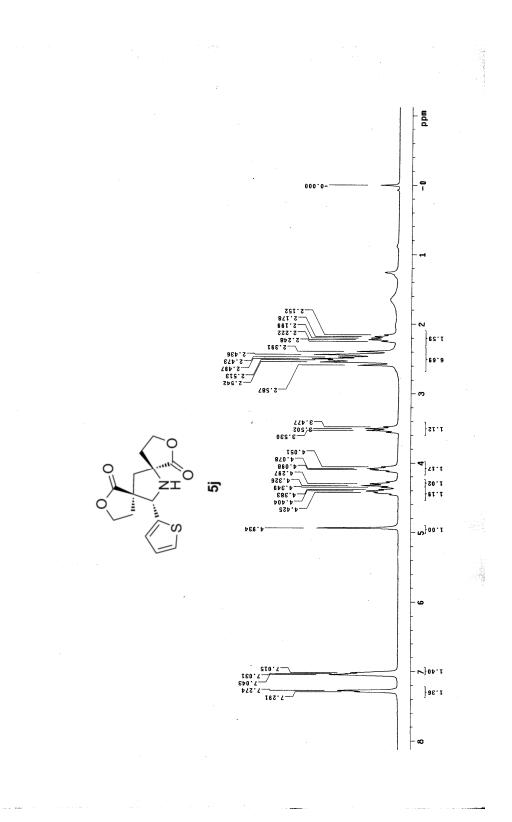



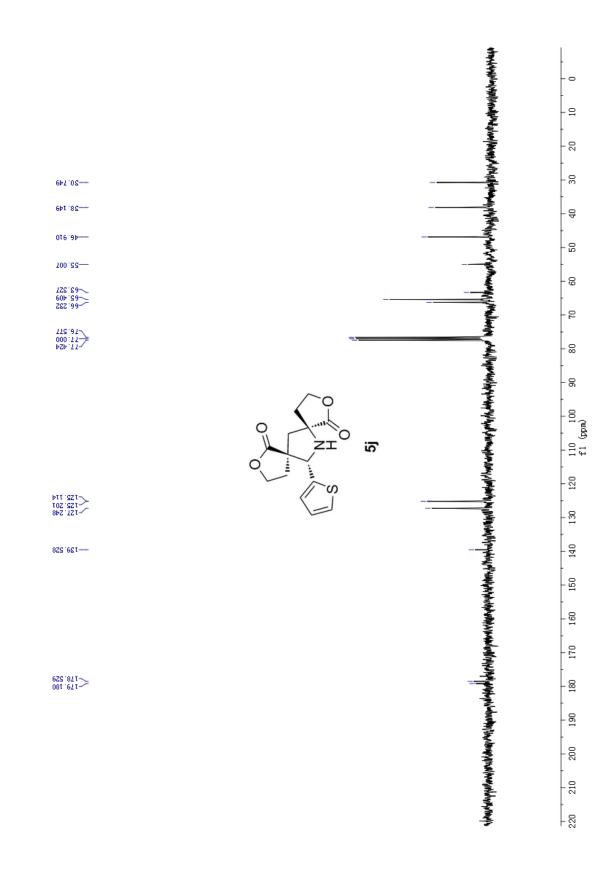



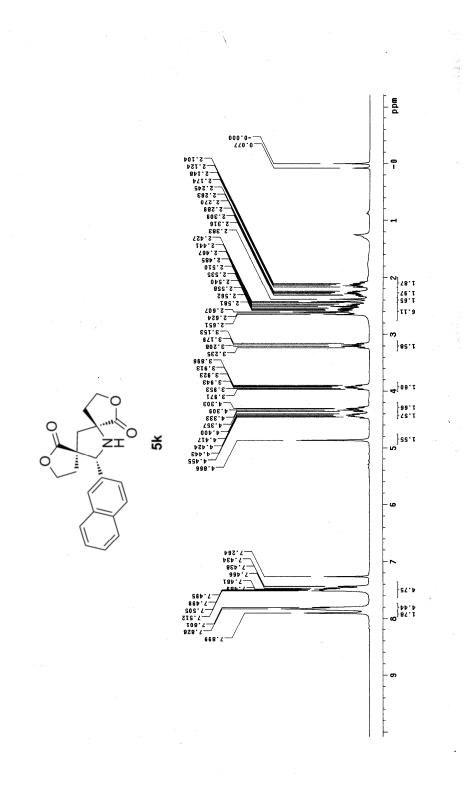



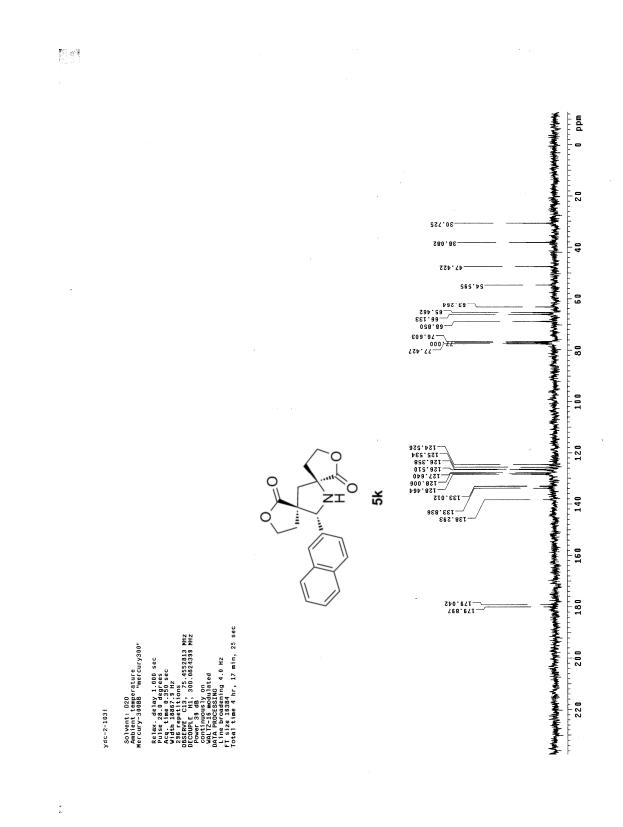



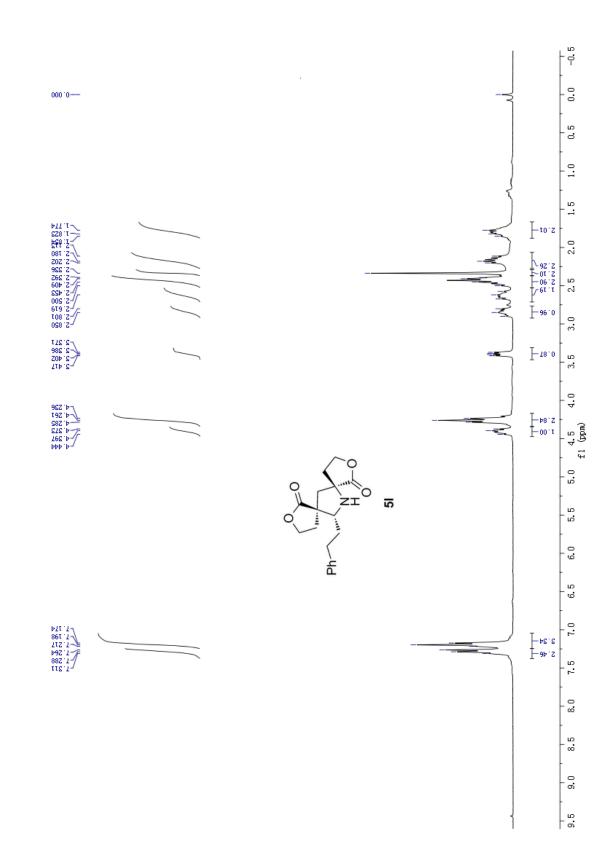



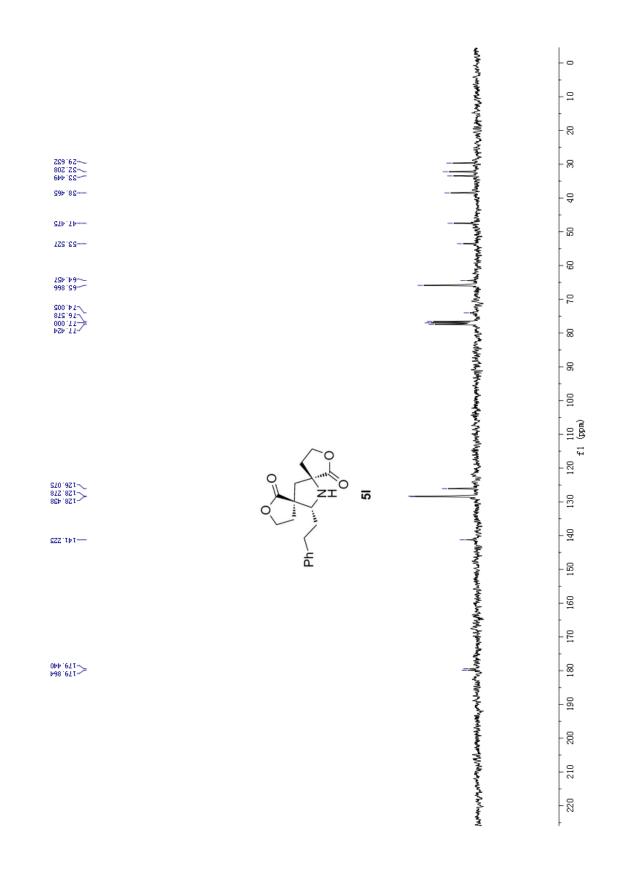





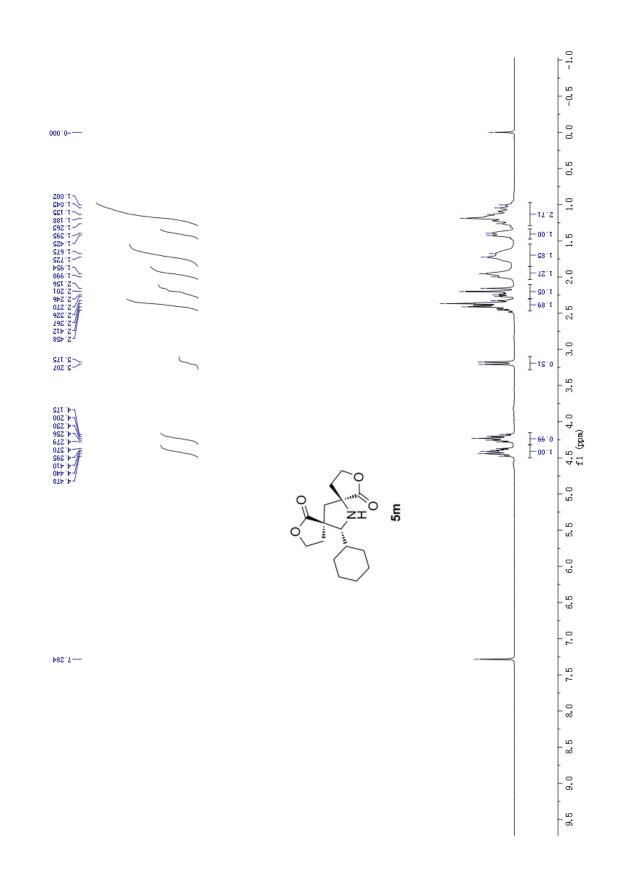



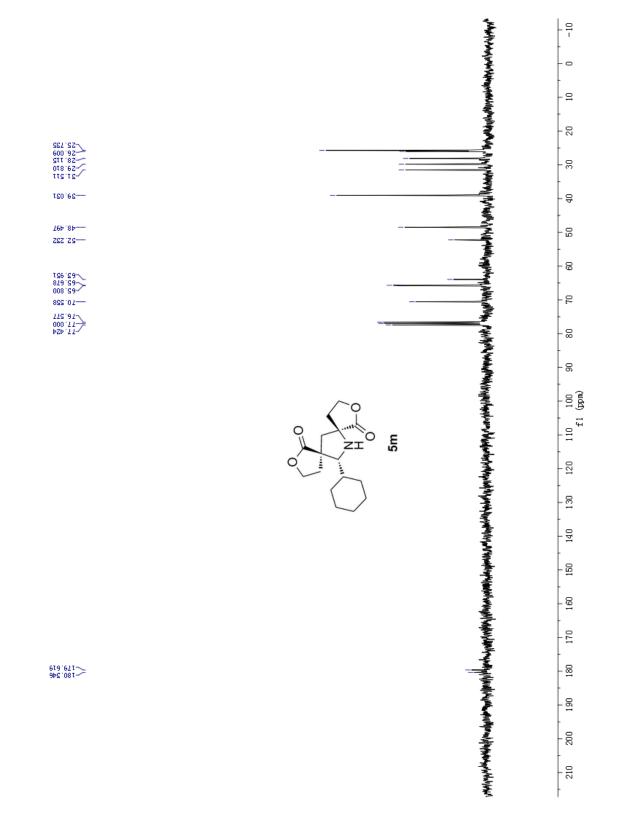



Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013





## Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013





Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013





## **IX. HPLC Chromatograms**

Data File D:\LC\201111\LTL\LTL-12-79\LTL-12-79 2011-11-15 10-02-07\064-0101.D Sample Wame: LTL-12-79

|                  | : LTL Seq. Line : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acq. Instrument  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Injection Date   | : 11/15/2011 10:03:32 AM Inj: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | Inj Volume : 5 µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Acq. Method      | : D:\LC\201111\LTL\LTL-10-79\LTL-12-79 2011-11-15 10-02-07\ASH-30-70-1ML-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 220 <b>NM.M</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Last changed     | : 11/15/2011 10:32:41 AM by LTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | (modified after loading)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Analysis Method  | : D:\LC\201111\LTL\LTL-12-79\LTL-12-79 2011-11-15 10-02-07\064-0101.D\DA.M (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | ASH-30-70-1ML-220MM.M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Last changed     | : 11/17/2011 5:03:20 PM by hzl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VI0/D1 0 305     | (modified after loading)<br>velergth=220 nm(DALC201111\LTL\LTL-12-79\LTL-12-79 2011-11-15 10-02-07\064-0101.D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | celenger=220 http://www.couprint.couprie.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-raidine.iz-rai |
| mAU ]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 300 -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 250 -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | // `````N <sup>/~~</sup> "CO <sub>2</sub> Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 200 -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| }                | 3a (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 150 -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100 ]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| }                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100 -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| }                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50 -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30 j             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| }                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0-               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14               | 16 18 20 22 24 п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | Area Percent Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sorted By        | : Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Multiplier       | : 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dilution         | : 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | : 1.0000<br>Dilution Factor with ISTDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| se aurorprier a  | BITTOTOW IGOPOL WIDH 19100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| signal I: VWDI⊅  | A, Wavelength=220 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Peak RetTime Typ | e Width Area Height Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| # [min]          | [min] mAU *s [mAU ] %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 16.718 M       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 22.621 BB      | 1.2675 1.98185e4 238.95557 49.9419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Totals :         | 3.96832e4 575.91354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IULAIS ;         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IULAIS :         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | *** End of Report ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Instrument 1 11/17/2011 5:03:25 PM hz1

Data File D:\LC\201111\LTL\LTL-13-5\LTL-13-5 2011-11-18 11-15-42\094-0101.D

Sample Name: LTL-13-5 \_\_\_\_\_ Acq. Operator : LTL Seg. Line : 1 Acq. Instrument : Instrument 1 Location : Vial 94 Injection Date : 11/18/2011 11:17:30 AM Inj : 1 Inj Volume : 5 µl : D:\LC\201111\LTL\LTL-13-5\LTL-13-5 2011-11-18 11-15-42\ASH-30-70-1ML-Acg. Method 220NM-30MIN.M Last changed : 11/18/2011 11:14:39 AM by hzl Analysis Method : D:\LC\201111\LTL\LTL-13-5\LTL-13-5 2011-11-18 11-15-42\094-0101.D\DA.M ( ASH-30-70-1ML-220MM-30MIN.M) Last changed : 11/18/2011 12:25:11 PM by hzl (modified after loading) WWD1 A Wavelergth=220 nm(DALC201111\LTL\LTL-13-5\LTL-13-5 2011-11-18 11-15-42'0940101.D) mAU 250 Ο 200 CO<sub>2</sub>Me 150 3a 100 50 TA-DEL 89 ۵ ź 24 26 16 18 20 min Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU] 5 # [min] 1 16.759 MM 0.7869 74.64757 1.58113 0.3354 2 22.263 BB 1.2419 2.21823e4 270.96863 99.6646 Totals : 2.22569e4 272.54976 ------\*\*\* End of Report \*\*\*

Instrument 1 11/18/2011 12:25:17 PM hzl

Data File D:\LC\D&T&\LQH\LQH-5-126-128\LQH-5-126-128 2013-04-28 09-50-59\092-0201.D Sample Wame: LQH-5-126

| Acq. Operator :         | : CX                                                                     | Seq. Line : 2                                 |
|-------------------------|--------------------------------------------------------------------------|-----------------------------------------------|
| Acq. Instrument :       | : Instrument 1                                                           | Location : Vial 92                            |
|                         | : 4/28/2013 10:03:25 AM                                                  | Ιπή: 1                                        |
| -                       |                                                                          | Inj Volume : 5 µl                             |
| Acq. Method :           |                                                                          | QH-5-126-128 2013-04-28 09-50-59\ADH-30-70-   |
| mq. nemou .             | 10ML-220MM.M                                                             | 2. 0 120 120 2010 04 20 07 00 07(121. 00 10   |
| Last changed :          | : 4/28/2013 10:17:23 AM by CX                                            |                                               |
| Last changed :          |                                                                          |                                               |
|                         | (modified after loading)                                                 | T F 107 100 2012 08 20 00 F0 F01002 0201 B1   |
| Anarysis Mernod :       |                                                                          | QH-5-126-128 2013-04-28 09-50-59\092-0201.D\  |
|                         | DA.M (ADH-30-70-10ML-220MM.M)                                            |                                               |
| Last changed :          | : 4/28/2013 11:10:53 AM by CX                                            |                                               |
| VI0/D1_0_306-           | (modified after loading)<br>elength=220 nm(DALCADATALQHALQH-5-126-128ALQ |                                               |
|                         |                                                                          |                                               |
| mAU                     |                                                                          |                                               |
| 350                     | ്പം, ക്                                                                  |                                               |
|                         | 1 6                                                                      |                                               |
|                         | 14                                                                       |                                               |
| 300 -                   | { }                                                                      | \ \\\\                                        |
|                         |                                                                          |                                               |
| 250-                    | f f                                                                      | // ````_ <sub>N</sub> /`'''CO <sub>2</sub> Me |
|                         |                                                                          |                                               |
|                         |                                                                          |                                               |
| 200 -                   |                                                                          | Clau                                          |
|                         |                                                                          | { \ <sup>Ci</sup> 3b                          |
| 150 -                   | $\int $                                                                  |                                               |
|                         |                                                                          |                                               |
| 1 100 1                 |                                                                          |                                               |
| 100 -                   |                                                                          |                                               |
|                         |                                                                          |                                               |
| 50 -                    |                                                                          |                                               |
|                         | / 7                                                                      | /                                             |
| 0-                      |                                                                          |                                               |
|                         |                                                                          |                                               |
| 7.5                     | 8 85 9                                                                   | <u>95 10 105 11 min</u>                       |
|                         |                                                                          |                                               |
|                         |                                                                          |                                               |
|                         | Area Percent Report                                                      |                                               |
|                         |                                                                          |                                               |
|                         |                                                                          |                                               |
| Sorted By               | : Signal                                                                 |                                               |
| Multiplier              | : 1.0000                                                                 |                                               |
| -                       | : 1.0000                                                                 |                                               |
| Dilution                |                                                                          |                                               |
| ose multipiler &        | Dilution Factor with ISTDs                                               |                                               |
|                         |                                                                          |                                               |
|                         |                                                                          |                                               |
| Signal 1: VWD1 A,       | , Wavelength=220 nm                                                      |                                               |
|                         |                                                                          |                                               |
| Peak RetTime Type       | e Width Area Height                                                      | Area                                          |
| # [min]                 | [min] mAU *s [mAU ]                                                      | 8                                             |
|                         | -                                                                        |                                               |
| 1 8.666 MT              | 0.3847 8391.97559 363.57651                                              |                                               |
| 2 9.679 FM              | 0.4296 8758.19141 339.78110                                              |                                               |
| a 5.075 Iu              |                                                                          |                                               |
| Totola                  | 1 71502-0 702 25760                                                      |                                               |
| Totals :                | 1.71502e4 703.35760                                                      |                                               |
|                         |                                                                          |                                               |
|                         |                                                                          |                                               |
| ======================= |                                                                          |                                               |

\*\*\* End of Report \*\*\*

Instrument 1 4/28/2013 11:11:09 AM CX

Data File D:\LC\DATA\LQH\LQH-5-126-128\LQH-5-126-128 2013-04-28 09-50-59\093-0301.D Sample Wame: LQH-5-128A

| Acq. Operator    | : CX Seq. Line : 3                                                                         |
|------------------|--------------------------------------------------------------------------------------------|
| Acq. Instrument  | -                                                                                          |
|                  | : 4/28/2013 10:20:29 M Inj: 1                                                              |
| INJECTION Date   | . 492092013-10.20.29 Ан                                                                    |
| 1                |                                                                                            |
| Acq. Method      | : D:\LC\DATA\LQH\LQH-5-126-128\LQH-5-126-128 2013-04-28 09-50-59\ADH-30-70-                |
|                  | 10ML - 220 MM. M                                                                           |
| Last changed     | : 4/28/2013 10:18:44 AM by CX                                                              |
|                  | (modified after loading)                                                                   |
| Analysis Method  | : D:\LC\DATA\LQH\LQH-5-126-128\LQH-5-126-128 2013-04-28 09-50-59\093-0301.D\               |
|                  | DA.M (ADH-30-70-10ML-220MM.M)                                                              |
| Last changed     | : 4/28/2013 11:12:48 AM by CX                                                              |
|                  | (modified after loading)                                                                   |
|                  | velength=220 nm (D/LC/DATA/LQH/LQH/5-126-128/LQH/5-126-128 2013-04-28 09-50-59/093-0301.D) |
| mAU_             |                                                                                            |
|                  | (··· +**                                                                                   |
|                  |                                                                                            |
| 800-             |                                                                                            |
| ] ***]           |                                                                                            |
|                  |                                                                                            |
|                  |                                                                                            |
| 600 -            | // ``````````````````CO <sub>2</sub> Me                                                    |
|                  | H                                                                                          |
|                  |                                                                                            |
| 400              | 3b                                                                                         |
|                  |                                                                                            |
|                  |                                                                                            |
|                  |                                                                                            |
| 200 -            |                                                                                            |
|                  |                                                                                            |
| 1                |                                                                                            |
| 0                | _,                                                                                         |
|                  | 8.5 9 9.5 10 10.5 min                                                                      |
| 8                | 8.5 9 9.5 10 10.5 min                                                                      |
|                  |                                                                                            |
|                  |                                                                                            |
|                  | Area Percent Report                                                                        |
|                  |                                                                                            |
|                  |                                                                                            |
| Sorted By        | : Signal                                                                                   |
| Multiplier       | : 1.0000                                                                                   |
| Dilution         | : 1.0000                                                                                   |
| Use Multiplier 4 | ; Dilution Factor with ISTDs                                                               |
|                  |                                                                                            |
|                  |                                                                                            |
| Signal 1: VWD1 A | λ, Wavelength=220 nm                                                                       |
|                  |                                                                                            |
| Peak RetTime Typ |                                                                                            |
| # [min]          | [min] mAU *s [mAU ] %                                                                      |
|                  | -                                                                                          |
| 1 8.782 MM       |                                                                                            |
| 2 9.778 MM       | 0.3674 258.42834 11.72447 1.1310                                                           |
|                  |                                                                                            |
| Totals :         | 2.28503e4 999.53422                                                                        |
|                  |                                                                                            |
|                  |                                                                                            |
|                  |                                                                                            |

\*\*\* End of Report \*\*\*

Instrument 1 4/28/2013 11:12:58 AM CX

Data File D:\LC\201111\LQH\LQH-5-123\LQH-5-123A 2011-11-26 10-28-14\094-0201.D Sample Wame: LQH-5-121C

| Acq. Operator : lqh                                                              |                                                |
|----------------------------------------------------------------------------------|------------------------------------------------|
| Acq. Operator : lqh<br>Acq. Instrument : Instrument l                            | Seq. Line : 2<br>Location : Vial 94            |
| Injection Date : 11/26/2011 10:52:07 AM                                          | Intarion , viai 94<br>Inti : 1                 |
|                                                                                  | Inj. I<br>Inj Volume : 5 µl                    |
|                                                                                  | I-5-123A 2011-11-26 10-28-14\ASH-30-70-1ML-    |
| 220BM.W                                                                          | -3-123X 2011-11-20 10-20-14(X3N-30-10-1NL-     |
| Last changed : 11/26/2011 11:17:44 AM by 1qh                                     |                                                |
| (modified after loading)                                                         |                                                |
| Analysis Method : D:\LC\201111\LQH\LQH-5-123\LQH                                 | T_ 5_ 1238 2011_11_26 10_28_14\094_0201 D\D& M |
| (ASH-30-70-1ML-220MM.M)                                                          | 1 3 123X 2011 11 20 10 20 14(0)4 0201.D(DAM    |
| Last changed : 11/26/2011 11:54:36 AM by HZL                                     |                                                |
| (modified after loading)                                                         |                                                |
| WVD1 A, Wavelength=220 nm (D/LC/201111/LQH/LQH/5-123/LQH                         | +5-123A2011-11-26 10-28-14094-0201.D)          |
| mau1 ≓ O o                                                                       |                                                |
| 50-1 Å (~)=0                                                                     |                                                |
|                                                                                  | 861.02                                         |
| / \\                                                                             | 22                                             |
|                                                                                  | / \                                            |
| 40-                                                                              | ""CO <sub>2</sub> Me                           |
|                                                                                  |                                                |
|                                                                                  |                                                |
| <sup>30-</sup> (\c/ 3c                                                           |                                                |
|                                                                                  |                                                |
|                                                                                  |                                                |
| 20-                                                                              |                                                |
|                                                                                  |                                                |
|                                                                                  |                                                |
| 10-                                                                              |                                                |
|                                                                                  |                                                |
|                                                                                  |                                                |
|                                                                                  | · <b></b>                                      |
|                                                                                  |                                                |
| 15 18 17 18 19                                                                   | 20 21 22 23 min]                               |
|                                                                                  |                                                |
|                                                                                  |                                                |
| Area Percent Report                                                              |                                                |
|                                                                                  |                                                |
|                                                                                  |                                                |
| Sorted By : Signal                                                               |                                                |
| Multiplier : 1.0000                                                              |                                                |
| Dilution : 1.0000                                                                |                                                |
| Use Multiplier & Dilution Factor with ISTDs                                      |                                                |
|                                                                                  |                                                |
| Circul 1. UTB1 1. Three begins 200 and                                           |                                                |
| Signal 1: VWD1 A, Wavelength=220 nm                                              |                                                |
| Doold DotTimo Turno Didth Aven Viint                                             | 4200                                           |
| Peak RetTime Type Width Area Height                                              | Area                                           |
| # [min] [min] mAU *s [mAU ]                                                      |                                                |
|                                                                                  |                                                |
| 1 16.764 BB 0.8189 2822.21997 51.34835<br>2 20.798 BB 0.9425 2825.76660 43.76609 |                                                |
| 2 20.170 DD 0.7423 2023.10000 43.10009                                           | 30.0314                                        |
| Totals : 5647.98657 95.11444                                                     |                                                |
| 105415, 3041.90031 93.11444                                                      |                                                |
|                                                                                  |                                                |

-----

\*\*\* End of Report \*\*\*

Instrument 1 11/26/2011 11:54:41 AM HZL

Data File D:\LC\201111\LQH\LQH-5-124\LQH-5-124 2011-11-28 21-46-14\054-0501.D Sample Wame: LQH-5-124C

| Acq. Operator :                             | LQH               |                        |                        | Seq. Line                            | : 5           |           |           |                     |
|---------------------------------------------|-------------------|------------------------|------------------------|--------------------------------------|---------------|-----------|-----------|---------------------|
| Acq. Instrument :                           | Instrume          | ent l                  |                        | Location                             |               | 54        |           |                     |
| Injection Date :                            | 11/28/20          | )11 11:48:24           | 4 PM                   | Ιπј                                  | : 1           |           |           |                     |
|                                             |                   |                        |                        | Inj Volume                           | : 5 µl        |           |           |                     |
| Acq. Method :                               | D:\LC\20          | ) 111 1\ LQH\ L(       | QH-5-124\LQH           | -5-124 2013                          | 1-11-28       | 21-46-1   | 4\ASH-30- | -70-10ML-           |
|                                             | 220 <b>NM-</b> 35 | MIN.M                  |                        |                                      |               |           |           |                     |
| Last changed :                              | 11/28/20          | 011 9:40:40            | PM by tmc              |                                      |               |           |           |                     |
| Analysis Method :                           | D:\LC\20          | )1111\LQH\L            | QH-5-124\LQH           | -5-124 2013                          | 1-11-28       | 21-46-1   | 4\054-050 | 01.D\DA.M           |
|                                             | ASH-30-7          | 0-10ML-220             | MM-35MIN.M)            |                                      |               |           |           |                     |
| Last changed :                              | 11/29/20          | 11 12:00:0             | 8 PM by tmc            |                                      |               |           |           |                     |
|                                             | (modifie          | ed after log           | ading)                 |                                      |               |           |           |                     |
| VM/D1 A, Wave                               | length=220 nm     | 1(DALC201111\L         | QHVLQH-5-124\LQH       | -5-124 201 1-1 1-2                   | 3 21-46-140   | 540501.D) |           |                     |
| mAU -                                       |                   |                        |                        | 52                                   |               |           |           |                     |
| 1                                           |                   |                        |                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>3 | <i>b</i> .    |           | 0         |                     |
| 120 -                                       |                   |                        |                        | [~]~~                                |               | /         |           | )                   |
| 120 -                                       |                   |                        |                        | 199                                  |               | 1         | r         |                     |
|                                             |                   |                        |                        |                                      |               | /         |           |                     |
| 100 -                                       |                   |                        |                        | ( )                                  |               | $\sim$    | / \       |                     |
| 1                                           |                   |                        |                        |                                      | ſ             | F Un      | "<.,>     | ""CO M              |
|                                             |                   |                        |                        | - [ \                                | ĮI            | 1         | N         | ""CO <sub>2</sub> M |
| 80 -                                        |                   |                        |                        |                                      |               |           | н         |                     |
| 1                                           |                   |                        |                        | ין                                   | \             | Γ         |           |                     |
| 60 -                                        |                   |                        |                        | 1                                    | $\setminus$ C | lí –      | 3c        |                     |
| 1                                           |                   |                        |                        |                                      | 1             |           |           |                     |
|                                             |                   |                        |                        |                                      | \             |           |           |                     |
| 40 -                                        |                   |                        |                        | 1                                    | \             |           |           |                     |
| 1                                           |                   | -0                     |                        | 1                                    |               |           |           |                     |
| 20 -                                        |                   | , or the               |                        | 1                                    |               |           |           |                     |
| 1                                           | 8                 | Rost 19.912            |                        | 1                                    |               |           |           |                     |
| ο∔                                          | <u></u>           | <u>~</u>               |                        | /                                    |               | <u> </u>  |           |                     |
| "T                                          |                   | · · · ·                |                        |                                      |               |           |           |                     |
| 16                                          |                   | 18                     | 20                     | ź                                    |               | 24        |           | 26                  |
|                                             |                   |                        |                        |                                      |               |           |           |                     |
|                                             |                   |                        |                        |                                      |               |           |           |                     |
|                                             | 1                 | Area Percent           | t Report               |                                      |               |           |           |                     |
|                                             |                   |                        |                        |                                      |               |           |           |                     |
|                                             |                   |                        |                        |                                      |               |           |           |                     |
| Sorted By                                   | :                 | Signal                 |                        |                                      |               |           |           |                     |
| fultiplier                                  | :                 | 1.0000                 |                        |                                      |               |           |           |                     |
| )ilution                                    | :                 | 1.0000                 |                        |                                      |               |           |           |                     |
| Jse Multiplier a                            | Dilution          | Factor with            | h ISTDs                |                                      |               |           |           |                     |
|                                             |                   |                        |                        |                                      |               |           |           |                     |
|                                             |                   |                        |                        |                                      |               |           |           |                     |
| Sigmal 1: VWDl A,                           | Waveleng          | ſth=220 лm             |                        |                                      |               |           |           |                     |
|                                             |                   |                        |                        |                                      |               |           |           |                     |
|                                             |                   | Area                   | Height                 | Area                                 |               |           |           |                     |
|                                             | [min]             | mAU *s                 | [mAU ]                 | 8                                    |               |           |           |                     |
| eak Reflime Type<br># [min]                 |                   |                        |                        |                                      |               |           |           |                     |
| # [min]<br>                                 |                   |                        |                        | 0.7445                               |               |           |           |                     |
| # [min]<br>  <br>1 17.338 FM                | 0.9675            |                        |                        |                                      |               |           |           |                     |
| # [min]<br>                                 | 0.9675            |                        | 1.29223<br>136.56596   |                                      |               |           |           |                     |
| # [min]<br>  <br>1 17.338 FM<br>2 21.352 MM | 0.9675            | 1.00001e4              | 136.56596              |                                      |               |           |           |                     |
| # [min]<br>  <br>1 17.338 FM<br>2 21.352 MM | 0.9675            | 1.00001e4              |                        |                                      |               |           |           |                     |
| # [min]<br>  <br>1 17.338 FM<br>2 21.352 MM | 0.9675            | 1.00001e4              | 136.56596              |                                      |               |           |           |                     |
| # [min]<br>  <br>1 17.338 FM<br>2 21.352 MM | 0.9675            | 1.00001e4              | 136.56596              |                                      |               |           |           |                     |
| <br>1 17.338 FM                             | 0.9675<br>1.2204  | 1.00001e4<br>1.00751e4 | 136.56596<br>137.85819 |                                      |               |           |           |                     |

Instrument 1 11/29/2011 12:00:14 PM tmc

Data File D:\LC\201111\LQH\LQH-5-117\LQH-5-117 2011-11-23 08-40-38\083-0301.D Sample Wame: LQH-5-117C

|                        |                      | · · · · · · · · · · · · · · · · · · · |                         |                                    |
|------------------------|----------------------|---------------------------------------|-------------------------|------------------------------------|
|                        | LQH                  | Seq. Line                             |                         |                                    |
| Acq. Instrument :      |                      | Location                              |                         |                                    |
| Injection Date :       | 11/23/2011 10:11:32  |                                       |                         |                                    |
|                        |                      | Inj Volume                            |                         |                                    |
| Acq. Method :          |                      | H-5-117\LQH-5-117 2011                | -11-23 08-40-38\ASH-30- | 70-1ML-                            |
|                        | 220 <b>NM.M</b>      |                                       |                         |                                    |
| Last changed :         | 11/23/2011 10:40:09  | -                                     |                         |                                    |
|                        | (modified after loa  |                                       |                         |                                    |
| Analysis Method :      |                      |                                       | -11-23 08-40-38\083-030 | 1.D\DA.M (                         |
|                        | ASH-30-70-1ML-220MM  |                                       |                         |                                    |
| Last changed :         | 11/26/2011 11:40:24  | AM by HZL                             |                         |                                    |
|                        | (modified after loa  | (ding)                                |                         |                                    |
| WWD1 A, Wavel          |                      | HVLQH-5-117\LQH-5-117 2011-11-23      | 08-40-38'083-0301.D)    |                                    |
| mAU ]                  | A SPE                |                                       |                         |                                    |
| 200                    | AS                   |                                       | a'                      | <u> </u>                           |
| 1 1                    | (-\s.                | -                                     | and the f               | F                                  |
| 175                    | ( 29                 |                                       | Sa∲` \                  |                                    |
| 110                    | 1 \                  | 3                                     | Nº .                    |                                    |
| 150-                   | 1 \                  | /                                     |                         | ()                                 |
| 100 -                  | 1 \                  | (                                     | 1 1                     | N <sup>~</sup> "CO <sub>2</sub> Me |
|                        | ( )                  | 1                                     | Br                      | Ĥ                                  |
| 125-                   | ſ \                  |                                       |                         |                                    |
|                        |                      | 1                                     | \                       | 3d                                 |
| 100-                   | \                    | (                                     | \                       | U u                                |
|                        |                      | }                                     | \                       |                                    |
| 75-                    | \                    | }                                     | \                       |                                    |
| 1 1 /                  | \                    | }                                     | \                       |                                    |
| 50 - (                 | \                    | 1                                     | \\                      |                                    |
| 1 1 1                  | \\                   | 1                                     |                         |                                    |
| 25-] }                 |                      | /                                     |                         |                                    |
|                        |                      | /                                     |                         |                                    |
| 0 <del>] · · · ·</del> |                      |                                       |                         |                                    |
| 10                     | 18                   | 20 22                                 | 24                      |                                    |
| 16                     | 18                   | <u>4</u> ) <u>77</u>                  | 24                      | 26 min                             |
|                        |                      |                                       |                         |                                    |
|                        |                      |                                       | ========                |                                    |
|                        | Area Percent         | Report                                |                         |                                    |
|                        |                      |                                       |                         |                                    |
|                        |                      |                                       |                         |                                    |
| Sorted By              | : Signal             |                                       |                         |                                    |
| Multiplier             | : 1.0000             |                                       |                         |                                    |
| Dilution               | : 1.0000             |                                       |                         |                                    |
|                        | Dilution Factor with | ISTDS                                 |                         |                                    |
|                        |                      |                                       |                         |                                    |
|                        |                      |                                       |                         |                                    |
| Signal 1, ULD 1 &      | Wavelength=220 nm    |                                       |                         |                                    |
| ərginar i: vomur A,    | wavelength=220 ium   |                                       |                         |                                    |
|                        |                      | Trainlet lassa                        |                         |                                    |
| Peak RetTime Type      |                      | Height Area                           |                         |                                    |
| # [min]                | [min] mAU *s         | [mAU ] %                              |                         |                                    |
|                        |                      |                                       |                         |                                    |
| 1 17.605 MF            |                      | 208.65845 49.7067                     |                         |                                    |
| 2 22.610 MM            | 1.3266 1.31764e4     | 165.53917 50.2933                     |                         |                                    |
|                        |                      |                                       |                         |                                    |
| Totals :               | 2.61991e4            | 374.19762                             |                         |                                    |
|                        |                      |                                       |                         |                                    |
|                        |                      |                                       |                         |                                    |
|                        |                      |                                       |                         |                                    |

\*\*\* End of Report \*\*\*

Instrument 1 11/26/2011 11:40:29 AM HZL

Data File D:\LC\201111\LQH\LQH-5-121\LQH-5-121AC 2011-11-24 20-38-40\093-0301.D Sample Wame: LQH-5-121B

| Acg. Operator                                                                                                                             |                                                                                                                                                                                                                               |                                                                                        |                                         | Seg. Line                           |                   |                      |              |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-------------------|----------------------|--------------|
| Acq. Instrument                                                                                                                           | -                                                                                                                                                                                                                             | nt 1                                                                                   |                                         |                                     | : J<br>: Vial 93  |                      |              |
| Acq. Instrument<br>Injection Date                                                                                                         |                                                                                                                                                                                                                               |                                                                                        | PM                                      |                                     | : 1               |                      |              |
|                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                        |                                         | nj Volume                           |                   |                      |              |
| Acq. Method                                                                                                                               | : D:\LC\20                                                                                                                                                                                                                    | 1111\LOH\LC                                                                            |                                         |                                     |                   | 0-38-40\ASH-         | 30-70-10ML   |
| <b>1</b>                                                                                                                                  | 220 <b>NM-</b> 30                                                                                                                                                                                                             |                                                                                        |                                         |                                     |                   |                      |              |
| Last changed                                                                                                                              |                                                                                                                                                                                                                               | 11 8:37:08                                                                             | PM by HZL                               |                                     |                   |                      |              |
| Analysis Method                                                                                                                           | : D:\LC\20                                                                                                                                                                                                                    | )1111\LQH\LQ                                                                           | H-5-121\LQH-                            | 5-121AC 2                           | 011-11-24 2       | 0-38-40\093-         | 0301.D\DA.   |
|                                                                                                                                           | (ASH-30-                                                                                                                                                                                                                      | 70-10ML-220                                                                            | NM-30MIN.M)                             |                                     |                   |                      |              |
| Last changed                                                                                                                              | : 11/26/20                                                                                                                                                                                                                    | 11 12:00:52                                                                            | PM by HZL                               |                                     |                   |                      |              |
|                                                                                                                                           |                                                                                                                                                                                                                               | ed after loa                                                                           |                                         |                                     |                   |                      |              |
|                                                                                                                                           | avelength=220 nm                                                                                                                                                                                                              | 1(DALC2011111LC                                                                        | HVLQH-5-121\LQH-                        | _                                   | 1-24 20-38-40'093 | 3-0301.D)            |              |
| mAU                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                        | ž                                       |                                     |                   | 0                    |              |
| 500 -                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                        | /8                                      | 1)6.82                              |                   | 0                    | 0            |
|                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                        |                                         | 69                                  |                   | S F                  | -            |
| 1                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                        |                                         | \                                   |                   | \                    |              |
| 400 -                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                        | 1                                       | \                                   | _                 | $\sim$ / $^{\prime}$ | \            |
|                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                        |                                         |                                     | ſ,                | Jun Al-              | <sup>^</sup> |
| -                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                        | 1                                       | \                                   | Br                | J Ĥ                  | 002          |
| 300 -                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                        | 1                                       | }                                   |                   |                      |              |
| 1                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                        |                                         | /                                   |                   | 3d                   |              |
| 1                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                        | 1                                       |                                     |                   | Ju                   |              |
| 200 -                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                        | 1                                       |                                     |                   |                      |              |
| 1                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                        |                                         | /                                   |                   |                      |              |
| 1                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                        | 1                                       |                                     | \                 |                      |              |
| 100 -                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                        |                                         |                                     | \                 |                      |              |
| 1                                                                                                                                         | .817                                                                                                                                                                                                                          |                                                                                        | 1                                       |                                     |                   |                      |              |
|                                                                                                                                           | 1                                                                                                                                                                                                                             |                                                                                        |                                         |                                     |                   |                      |              |
| ·                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                        |                                         |                                     |                   |                      |              |
|                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                        |                                         |                                     | 24                | 26                   | 28           |
| 16                                                                                                                                        | 18                                                                                                                                                                                                                            | ź                                                                                      | 22                                      |                                     | 27                |                      |              |
| 16                                                                                                                                        | 18                                                                                                                                                                                                                            |                                                                                        | 22                                      |                                     | 27                |                      |              |
| 16                                                                                                                                        | 18                                                                                                                                                                                                                            |                                                                                        |                                         |                                     |                   | :                    |              |
|                                                                                                                                           | <i>"</i>                                                                                                                                                                                                                      | Area Percent                                                                           | Report                                  |                                     |                   | :                    |              |
| 16                                                                                                                                        | <i>"</i>                                                                                                                                                                                                                      | Area Percent                                                                           | Report                                  |                                     |                   | :                    |              |
|                                                                                                                                           | A                                                                                                                                                                                                                             | Area Percent                                                                           | Report                                  |                                     |                   | :                    |              |
|                                                                                                                                           | д<br>                                                                                                                                                                                                                         | Area Percent<br>Signal                                                                 | Report                                  |                                     |                   | :                    |              |
| Sorted By<br>Fultiplier                                                                                                                   | A                                                                                                                                                                                                                             | Area Percent<br>Signal<br>1.0000                                                       | Report                                  |                                     |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution                                                                                                       | 2<br>2<br>:<br>:<br>:                                                                                                                                                                                                         | Area Percent<br>Signal<br>1.0000<br>1.0000                                             | Report                                  |                                     |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution                                                                                                       | 2<br>2<br>:<br>:<br>:                                                                                                                                                                                                         | Area Percent<br>Signal<br>1.0000<br>1.0000                                             | Report                                  |                                     |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier                                                                                     | :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                   | Signal<br>1.0000<br>1.0000<br>Factor with                                              | Report                                  |                                     |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier                                                                                     | :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                   | Signal<br>1.0000<br>1.0000<br>Factor with                                              | Report                                  |                                     |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1                                                                   |                                                                                                                                                                                                                               | Signal<br>1.0000<br>1.0000<br>Factor with<br>gth=220 nm                                | Report                                  |                                     |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty                                                |                                                                                                                                                                                                                               | Signal<br>1.0000<br>1.0000<br>Factor with<br>gth=220 nm<br>Area                        | Report<br>ISTDs<br>Height               | Årea                                |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty<br># [min]                                     |                                                                                                                                                                                                                               | Signal<br>1.0000<br>1.0000<br>Factor with<br>gth=220 nm<br>Area<br>mAU *s              | Report<br>ISTDs<br>Height<br>[mAU]      | Årea<br>%                           |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty<br># [min]                                     | :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                   | Area Percent<br>l.0000<br>l.0000<br>Factor with<br>gth=220 nm<br>Area<br>mAU *s        | Report<br>ISTDs<br>Height<br>[m&U]      | لمَتوع<br>م                         |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty<br># [min]<br>                                 |                                                                                                                                                                                                                               | Signal<br>1.0000<br>1.0000<br>Factor with<br>9th=220 nm<br>Area<br>mAU *s<br>232.72244 | Report<br>ISTDs<br>Height<br>[m&U]<br>  | Area<br>%<br> <br>0.4677            |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty<br># [min]                                     |                                                                                                                                                                                                                               | Signal<br>1.0000<br>1.0000<br>Factor with<br>9th=220 nm<br>Area<br>mAU *s<br>232.72244 | Report<br>ISTDs<br>Height<br>[m&U]      | Area<br>%<br> <br>0.4677            |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty<br># [min]<br>                                 |                                                                                                                                                                                                                               | Signal<br>1.0000<br>1.0000<br>Factor with<br>9th=220 nm<br>Area<br>mAU *s<br>232.72244 | Report<br>ISTDs<br>Height<br>[mAU ]<br> | Area<br>%<br> <br>0.4677            |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty<br># [min]<br>  <br>1 17.817 VB<br>2 22.151 MM |                                                                                                                                                                                                                               | Signal<br>1.0000<br>1.0000<br>Factor with<br>th=220 nm<br>Area<br>mAU *s<br>           | Report<br>ISTDs<br>Height<br>[mAU ]<br> | Area<br>%<br> <br>0.4677            |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty<br># [min]<br>  <br>1 17.817 VB<br>2 22.151 MM |                                                                                                                                                                                                                               | Signal<br>1.0000<br>1.0000<br>Factor with<br>th=220 nm<br>Area<br>mAU *s<br>           | Report<br>ISTDs<br>Height<br>[mAU ]<br> | Area<br>%<br> <br>0.4677            |                   | :                    |              |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier<br>Signal 1: VWD1<br>Peak RetTime Ty<br># [min]<br>  <br>1 17.817 VB<br>2 22.151 MM | 2<br>2<br>2<br>3<br>4<br>5<br>5<br>1<br>4<br>5<br>5<br>1<br>1<br>4<br>5<br>5<br>1<br>1<br>4<br>9<br>5<br>1<br>1<br>4<br>9<br>5<br>1<br>1<br>1<br>4<br>9<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Signal<br>1.0000<br>1.0000<br>Factor with<br>th=220 nm<br>Area<br>mAU *s<br>           | Height<br>[mAU ]<br>                    | Area<br>%<br> <br>0.4677<br>99.5323 |                   | :                    |              |

Instrument 1 11/26/2011 12:00:57 PM HZL

Data File D:\LC\201111\LQH\LQH-5-121\LQH-5-121 2011-11-26 09-44-00\092-0201.D Sample Name: LQH-5-121A

| Acq. Operator       |                       |                         | Seq. Line :              |                                       |     |
|---------------------|-----------------------|-------------------------|--------------------------|---------------------------------------|-----|
| Acq. Instrument     |                       |                         | Location : V             |                                       |     |
| Injection Date      |                       |                         | Ιлј:                     |                                       |     |
|                     |                       |                         | Inj Volume : 5           |                                       |     |
| Acq. Method         | : D:\LC\201111        | \LOH\LOH-5-121\LO       | -                        | -26 09-44-00\ASH-30-70-1ML-           |     |
| mq. accure          | 220MM.M               | ., .,                   |                          |                                       |     |
| Last changed        |                       | 0:25:37 AM by lqh       |                          |                                       |     |
| Leve villigee       |                       | ter loading)            | •                        |                                       |     |
| Analysis Method     |                       |                         | H-5-121 2011-11          | -26 09-44-00\092-0201.D\DA.M          | 1.1 |
| interfette intented | ASH-30-70-1M          |                         |                          |                                       | • • |
| Last changed        |                       | 1:44:26 AM by HZL       |                          |                                       |     |
| habb charged        |                       | ter loading)            |                          |                                       |     |
| WVD1 A, Wa          | velength=220 nm (DAL) | 201111\LQH\LQH-5-121\LQ | H-5-121 201 1-11-26 09-4 | 1400'092-0201.D)                      |     |
| mAU                 | N                     |                         |                          |                                       |     |
|                     | Ĕ                     |                         |                          |                                       |     |
| 25 -                | A                     |                         |                          |                                       |     |
| 1                   |                       |                         |                          |                                       |     |
|                     | [ ]                   | 0                       | C                        | ~                                     |     |
| 1 ml                | í l                   |                         | 5                        | A A A A A A A A A A A A A A A A A A A |     |
| 20-                 | 1 1                   | \/                      |                          | 5 B                                   |     |
|                     | 1 1                   |                         |                          |                                       |     |
|                     | \                     |                         |                          | $\cap$                                |     |
| 15-                 |                       | // `)"``N               | ´™″CO₂Me                 | f                                     |     |
|                     | 1 \                   | S J H                   | -                        |                                       |     |
| 1                   |                       | 1.                      |                          |                                       |     |
|                     | 1                     | 3e                      |                          | $\{ \cdot \}$                         |     |
| 10-                 |                       |                         |                          | $+$ $\times$                          |     |
| 1 1                 |                       |                         |                          |                                       |     |
|                     | ∫ \                   |                         |                          | $\left\{ \right\}$                    |     |
|                     |                       |                         |                          |                                       |     |
| 5-                  |                       |                         | ,                        |                                       |     |
| <u> </u>            | <u> </u>              |                         | V                        |                                       |     |
| <u> </u>            |                       | · . · · ·               | <u>.</u>                 | · · · · · · · · ·                     | · . |
| 12                  | 14                    | 16 1                    | 18 20                    | 22 24                                 | min |
|                     |                       |                         |                          |                                       |     |
|                     |                       |                         |                          | ======                                |     |
|                     | Area                  | Percent Report          |                          |                                       |     |
|                     |                       |                         |                          | ======                                |     |
|                     |                       |                         |                          |                                       |     |
| Sorted By           | : 9                   | lignal                  |                          |                                       |     |
| Multiplier          | : 1                   | .0000                   |                          |                                       |     |
| Dilution            | ; 1                   | .0000                   |                          |                                       |     |
| Use Multiplier      | Dilution Fact         | or with ISTDs           |                          |                                       |     |
| -                   |                       |                         |                          |                                       |     |
|                     |                       |                         |                          |                                       |     |
| Signal 1: VWD1.     | A. Wavelength=2       | :20 лm                  |                          |                                       |     |
|                     | -,,,                  |                         |                          |                                       |     |
| Peak RetTime Typ    | oe Width 3            | urea Height             | Area                     |                                       |     |
| # [min]             |                       | *s [mAU ]               | 8                        |                                       |     |
|                     |                       |                         | -                        |                                       |     |
|                     |                       | .78485 23.38632         |                          |                                       |     |
| 2 20.754 MM         |                       |                         |                          |                                       |     |
| Z ZO.134 MM         | 1.1320 993            | .18842 14.36943         | 30.1011                  |                                       |     |
| T                   | 1070                  | 09009 09 95596          |                          |                                       |     |
| Totals :            | 1979                  | .97327 37.75576         |                          |                                       |     |
|                     |                       |                         |                          |                                       |     |
|                     |                       |                         |                          |                                       |     |
|                     |                       |                         |                          |                                       |     |

\*\*\* End of Report \*\*\*

Instrument 1 11/26/2011 11:44:31 AM HZL

Data File D:\LC\201111\LQH\LQH-5-124\LQH-5-124 2011-11-28 21-46-14\052-0301.D Sample Wame: LQH-5-124A

| Acq. Instrument :<br>Injection Date :<br>Acq. Method :<br>Last changed :<br>Analysis Method :<br>Last changed :                        | 11/28/2011 10:35:13 PM<br>D:\LC\201111\LQH\LQH-5-124\<br>220MM-35MIN.M<br>11/28/2011 9:40:40 PM by tm<br>D:\LC\201111\LQH\LQH-5-124\<br>ASH-30-70-10ML-220MM-35MIN<br>11/29/2011 8:38:54 AM by tm<br>(modified after loading) | LQH-5-124 2011-11-28 21-46-14\052-0301.D\DA.M<br>M)                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acq. Instrument :<br>Injection Date :<br>Acq. Method :<br>Last changed :<br>Analysis Method :<br>Last changed :<br>WWD1A, Waves<br>mAU | 11/28/2011 10:35:13 PM<br>D:\LC\201111\LQH\LQH-5-124\<br>220MM-35MIN.M<br>11/28/2011 9:40:40 PM by tm<br>D:\LC\201111\LQH\LQH-5-124\<br>ASH-30-70-10ML-220MM-35MIN<br>11/29/2011 8:38:54 AM by tm<br>(modified after loading) | Location : Vial 52<br>Inj : 1<br>Inj Volume : 5 µl<br>LQH-5-124 2011-11-28 21-46-14\ASH-30-70-10ML-<br>IC<br>LQH-5-124 2011-11-28 21-46-14\052-0301.D\DA.M<br>M)<br>IC<br>NLDH-5-1242011-11-2821-46-140520301.D) |
| Injection Date :<br>Acq. Method :<br>Last changed :<br>Analysis Method :<br>Last changed :<br>WWDIA Wave<br>mAU                        | 11/28/2011 10:35:13 PM<br>D:\LC\201111\LQH\LQH-5-124\<br>220MM-35MIN.M<br>11/28/2011 9:40:40 PM by tm<br>D:\LC\201111\LQH\LQH-5-124\<br>ASH-30-70-10ML-220MM-35MIN<br>11/29/2011 8:38:54 AM by tm<br>(modified after loading) | Inj: 1<br>Inj Volume: 5 µl<br>LQH-5-124 2011-11-28 21-46-14\ASH-30-70-10ML-<br>IQH-5-124 2011-11-28 21-46-14\052-0301.D\DA.N<br>M)<br>IC<br>NDH5-1242011-11-2821-46-140520301.D)                                 |
| Acq. Method :<br>Last changed :<br>Analysis Method :<br>Last changed :<br>WWDIA Waves<br>mAU                                           | D:\LC\201111\LQH\LQH-5-124\<br>220MM-35MIN.M<br>11/28/2011 9:40:40 PM by tn<br>D:\LC\201111\LQH\LQH-5-124\<br>ASH-30-70-10ML-220MM-35MIN<br>11/29/2011 8:38:54 AM by tn<br>(modified after loading)                           | LQH-5-124 2011-11-28 21-46-14\ASH-30-70-10ML<br>LQH-5-124 2011-11-28 21-46-14\052-0301.D\DA.M<br>M)<br>IC<br>NDH5-1242011-11-2821-46-140520301.D)                                                                |
| Last changed :<br>Analysis Method :<br>Last changed :<br>WWD1A Wevel                                                                   | 220MM-35MIM.M<br>11/28/2011 9:40:40 PM by tm<br>D:\LC\201111\LQH\LQH-5-124\<br>ASH-30-70-10ML-220MM-35MIM.<br>11/29/2011 8:38:54 AM by tm<br>(modified after loading)                                                         | IC<br>L QH-5-124 2011-11-28 21-46-14\ 052-0301. D\ DA.M<br>M)<br>IC<br>VLQH5-1242011-11-28 21-46-140520301. D)                                                                                                   |
| Analysis Method :<br>Last changed :<br>W/DIA Wave<br>mAU                                                                               | D:\LC\201111\LQH\LQH-5-124\<br>ASH-30-70-10ML-220MM-35MIN.<br>11/29/2011 8:38:54 AM by tm<br>(modified after loading)                                                                                                         | LQH-5-124 2011-11-28 21-46-14\052-0301.D\DA.M<br>M)<br>IC<br>NLDH-5-1242011-11-2821-46-14052-0301.D)                                                                                                             |
| Last changed :<br>W/DIA, Wavel<br>mAU                                                                                                  | ASH-30-70-10ML-220MM-35MIN.<br>11/29/2011 8:38:54 AM by tm<br>(modified after loading)                                                                                                                                        | M)<br>IC<br>NLDH-5-124 2011-11-28 21-46-14052-0301.D)                                                                                                                                                            |
| -<br>W/D1 A, Wavel<br>mAU                                                                                                              | 11/29/2011 8:38:54 AM by tm<br>(modified after loading)                                                                                                                                                                       | IC<br>NUDH-5-124 2011-11-28 21-46 14052-0301.D)                                                                                                                                                                  |
| -<br>W/D1 A, Wavel<br>mAU                                                                                                              | (modified after loading)                                                                                                                                                                                                      | NUDH-5-1242011-11-28 21-46-1406520301.D)                                                                                                                                                                         |
| mAU                                                                                                                                    | (modified after loading)<br>ergth=220 nm(D\LC201111\LOH\LOH\6-124                                                                                                                                                             |                                                                                                                                                                                                                  |
| mAU                                                                                                                                    | ength=220 nm (UALC2011111LUHAL0+0-124                                                                                                                                                                                         |                                                                                                                                                                                                                  |
|                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                  |
|                                                                                                                                        |                                                                                                                                                                                                                               | M                                                                                                                                                                                                                |
| 50 -<br>40 -                                                                                                                           |                                                                                                                                                                                                                               |                                                                                                                                                                                                                  |
| 30 -                                                                                                                                   |                                                                                                                                                                                                                               | Н                                                                                                                                                                                                                |
|                                                                                                                                        |                                                                                                                                                                                                                               | ) 3e                                                                                                                                                                                                             |
| 20 -                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                  |
| 10 -                                                                                                                                   | Se and a second                                                                                                                                                                                                               |                                                                                                                                                                                                                  |
|                                                                                                                                        | <u> </u>                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |
|                                                                                                                                        | · · · · · · · · · · ·                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                            |
| 12 14                                                                                                                                  | 4 16 18                                                                                                                                                                                                                       | 20 22 24 26 28                                                                                                                                                                                                   |
|                                                                                                                                        | Area Percent Report                                                                                                                                                                                                           |                                                                                                                                                                                                                  |
| Sorted By                                                                                                                              | : Signal                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |
| Multiplier                                                                                                                             | : 1.0000                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |
| Dilution                                                                                                                               | : 1.0000                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |
|                                                                                                                                        | Dilution Factor with ISTDs                                                                                                                                                                                                    |                                                                                                                                                                                                                  |
|                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                  |
| Signal 1: VWD1 A,                                                                                                                      | Wavelength=220 nm                                                                                                                                                                                                             |                                                                                                                                                                                                                  |
| Peak RetTime Type<br># [min]                                                                                                           | [min] mAU *s [mAU ]                                                                                                                                                                                                           | 8                                                                                                                                                                                                                |
| 1 14.303 MM<br>2 21.285 MM                                                                                                             | <br>0.7022 32.03307 7.60255e<br>1.3427 5252.01660 65.190                                                                                                                                                                      | -1 0.6062                                                                                                                                                                                                        |
| Totals :                                                                                                                               | 5284.04967 65.950                                                                                                                                                                                                             | 90                                                                                                                                                                                                               |
|                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                  |
|                                                                                                                                        | *** End of Report *                                                                                                                                                                                                           | **                                                                                                                                                                                                               |

Instrument 1 11/29/2011 8:39:00 AM tmc

Data File D:\LC\201111\LQH\LQH-5-117\LQH-5-117 2011-11-23 08-40-38\081-0101.D Sample Wame: LQH-5-117A

| Acq. Operator    |                                                                        | Seq. Line : 1                              |                   |
|------------------|------------------------------------------------------------------------|--------------------------------------------|-------------------|
| Acq. Instrument  |                                                                        | Location : Vial 81                         |                   |
|                  | : 11/23/2011 8:41:49 AM                                                | Inj: 1                                     |                   |
| injection bate   | . 11/23/2011 0.41.49 An                                                | Inj. I<br>Inj Volume : 5 µl                |                   |
| Acq. Method      | • D• \ T C\ 201111\ T OB\ T OB_ F = 117\1                              | LQH-5-117 2011-11-23 08-40-38\j            | SW-20-70-1MT -    |
| Acq. Method      | 220NM.M                                                                | 50W-2-111 2011-11-22 00-40-20/2            | GU-20-10-101-     |
| Lent sherwed     |                                                                        | I                                          |                   |
| Last changed     | : 11/23/2011 9:12:32 AM by L01                                         | a                                          |                   |
| 1                | (modified after loading)                                               | OT 5 117 2011 11 22 00 40 200 4            | 01 0101 5551 15 / |
| Anarysis Mernod  | : D:\LC\201111\LQH\LQH-5-117\]                                         | 5QR-3-111 2011-11-23 00-40-30\0            | 01-0101.D/DA.M (  |
|                  | ASH-30-70-1ML-2201MM.M)                                                |                                            |                   |
| Last changed     | : 11/26/2011 11:37:18 AM by H                                          | ٤L                                         |                   |
| VI0/D1 A 306     | (modified after loading)<br>avelength=220 nm(DALC2011114LOH4LOH-5-117) |                                            |                   |
|                  | weiengen-zzoihm (DALCODITITICOH COH-5-TTA)                             | D2F+5-117 2011-11-23 06-40-36 061-0101.0)  |                   |
| mAU -            | 8923                                                                   |                                            |                   |
|                  | ß                                                                      |                                            |                   |
| 80-              | ] {                                                                    |                                            |                   |
| ]                | 0                                                                      |                                            |                   |
| 70-              |                                                                        | 20                                         |                   |
|                  |                                                                        |                                            |                   |
| 60-              | \ \m                                                                   | ≆                                          |                   |
|                  |                                                                        |                                            |                   |
| 50-              | I June                                                                 | N∕™CO₂Me /                                 |                   |
|                  |                                                                        |                                            |                   |
| 40-] (           | Me                                                                     | н {\                                       |                   |
|                  |                                                                        | { }                                        |                   |
| 30-]             |                                                                        | 3f / \                                     |                   |
|                  |                                                                        |                                            |                   |
| 20-1 /           |                                                                        | $\{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |                   |
|                  |                                                                        |                                            |                   |
| 10-  }           | \<br>\                                                                 | / `                                        |                   |
|                  |                                                                        | /                                          |                   |
| 0-               |                                                                        |                                            |                   |
| 12               | 14 16                                                                  | 18 20 22                                   | 24 min            |
|                  |                                                                        |                                            | 2                 |
|                  |                                                                        |                                            |                   |
|                  |                                                                        |                                            |                   |
|                  | Area Percent Report                                                    |                                            |                   |
|                  |                                                                        |                                            |                   |
|                  |                                                                        |                                            |                   |
| Sorted By        | : Signal                                                               |                                            |                   |
| Multiplier       | : 1.0000                                                               |                                            |                   |
| Dilution         | : 1.0000                                                               |                                            |                   |
| Use Multiplier a | a Dilution Factor with ISTDs                                           |                                            |                   |
|                  |                                                                        |                                            |                   |
|                  |                                                                        |                                            |                   |
| Sional 1: VMD1 3 | A, Wavelength=220 nm                                                   |                                            |                   |
|                  | ····                                                                   |                                            |                   |
| Peak RetTime Typ | pe Width Area Height                                                   | Area                                       |                   |
| # [min]          | [min] mAU *s [mAU ]                                                    | 8                                          |                   |
|                  |                                                                        | -                                          |                   |
|                  |                                                                        |                                            |                   |
|                  |                                                                        |                                            |                   |
| 2 21.442 BB      | 1.0646 3547.45557 48.574                                               | 40 49.3803                                 |                   |
|                  |                                                                        |                                            |                   |
| Totals :         | 7154.97363 133.879                                                     | 58                                         |                   |
|                  |                                                                        |                                            |                   |
|                  |                                                                        |                                            |                   |
|                  |                                                                        |                                            |                   |

\*\*\* End of Report \*\*\*

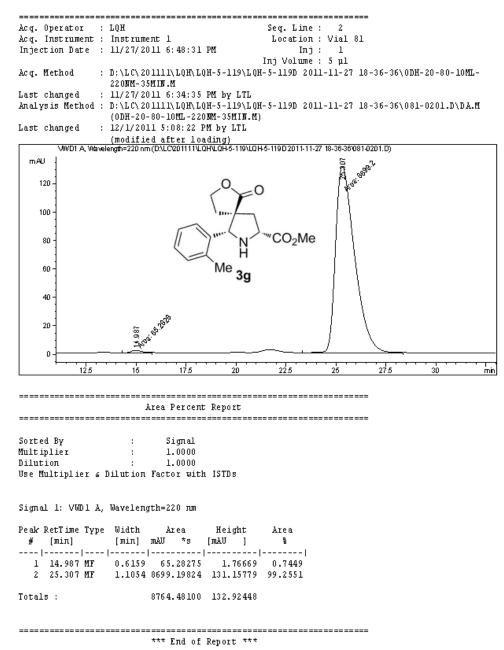
Instrument 1 11/26/2011 11:37:24 AM HZL

Sample Name: LQH-5-121A

\_\_\_\_\_ Acq. Operator : LQH Seg. Line : 2 Acq. Instrument : Instrument 1 Location : Vial 92 Injection Date : 11/24/2011 8:51:00 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201111\LQH\LQH-5-121\LQH-5-121AC 2011-11-24 20-38-40\ASH-30-70-10ML-Acg. Method 220NM-30MIN.M : 11/24/2011 8:37:08 PM by HZL Last changed Analysis Method : D:\LC\201111\LQH\LQH\20.5-121\LQH-5-121AC 2011-11-24 20-38-40\092-0201.D\DA.M (ASH-30-70-10ML-220MM-30MIN.M) Last changed : 11/26/2011 11:57:52 AM by HZL (modified after loading) W/DIA, Wavelength=220 nm (D\LC201111\LQH\LQH5-121\LQH5-121AC 2011-11-24 20-38-40'092-0201.D) mAU ф<sup>990</sup> 300 250 CO<sub>2</sub>Me 200 Me 150 -3f 100 -50 12.735 ٥· 22 14 16 24 26 12 18 20 min \_\_\_\_\_ Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU] 5 # [min] 1 12.735 BB 0.6512 180.80287 3.90208 0.6224 2 20.999 MM 1.4402 2.88687e4 334.07495 99.3776 Totals : 2.90495e4 337.97703

Data File D:\LC\201111\LQH\LQH-5-121\LQH-5-121AC 2011-11-24 20-38-40\092-0201.D

\*\*\* End of Report \*\*\*


Instrument 1 11/26/2011 11:58:52 AM HZL

Data File D:\LC\201111\LQH\LQH-5-117\LQH-5-117D-0DH 2011-11-23 12-25-15\084-0201.D Sample Wame: LQH-5-117D-0DH

|                                                                                                                                                   | LQH                                                                                                                                                                                   |                                           | Seq. Line :                                                                                                      | 2                 |              |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|--------------|---------------------------------------|
| мод. пластилелт :                                                                                                                                 | Instrument 1                                                                                                                                                                          |                                           | Location :                                                                                                       |                   |              |                                       |
| Injection Date :                                                                                                                                  | 11/23/2011 12:37:                                                                                                                                                                     | 38 PM                                     | Inj :                                                                                                            | 1                 |              |                                       |
| -                                                                                                                                                 |                                                                                                                                                                                       |                                           | Inj Volume :                                                                                                     | 5 µl              |              |                                       |
| Acq. Method :                                                                                                                                     | D:\LC\201111\LQH\                                                                                                                                                                     | LQH-5-117\LQH                             | -5-117D-0DH 2                                                                                                    | 011-11-23         | 12-25-15\ OD | H-20-80-                              |
| -                                                                                                                                                 | 10 ML - 220 MM. M                                                                                                                                                                     |                                           |                                                                                                                  |                   |              |                                       |
| Last changed :                                                                                                                                    | 11/23/2011 12:24:                                                                                                                                                                     | 25 PM by hzl                              |                                                                                                                  |                   |              |                                       |
| Analysis Method :                                                                                                                                 | D:\LC\201111\LQH\                                                                                                                                                                     | LQH-5-117\LQH                             | -5-117D-0DH 2                                                                                                    | 011-11-23         | 12-25-15\08  | 4-0201.D\                             |
|                                                                                                                                                   | DA.M (ODH-20-80-1                                                                                                                                                                     | OML-220MM.M)                              |                                                                                                                  |                   |              |                                       |
| Last changed :                                                                                                                                    | 11/26/2011 11:41:                                                                                                                                                                     | 48 AM by HZL                              |                                                                                                                  |                   |              |                                       |
|                                                                                                                                                   | (modified after l                                                                                                                                                                     | oading)                                   |                                                                                                                  |                   |              |                                       |
| WVD1 A, Wave                                                                                                                                      | elength=220 nm (DALC201111                                                                                                                                                            | LOH/LOH-5-117/LOF                         | +5-117 D-0DH2011-1                                                                                               | 1-23 12-25-15/084 | 40201.D)     |                                       |
| mAU ]                                                                                                                                             | 8                                                                                                                                                                                     |                                           |                                                                                                                  |                   |              |                                       |
|                                                                                                                                                   | Ē                                                                                                                                                                                     |                                           |                                                                                                                  |                   |              |                                       |
|                                                                                                                                                   | Л                                                                                                                                                                                     | 0                                         |                                                                                                                  |                   |              |                                       |
| 80 -                                                                                                                                              |                                                                                                                                                                                       | 0                                         | 0                                                                                                                |                   |              |                                       |
|                                                                                                                                                   |                                                                                                                                                                                       | $\langle F \rangle$                       | .0                                                                                                               |                   |              |                                       |
| 4                                                                                                                                                 | - 11                                                                                                                                                                                  | \                                         |                                                                                                                  |                   | <u>_</u> %   |                                       |
|                                                                                                                                                   |                                                                                                                                                                                       | ~                                         | 1                                                                                                                |                   | >25.412      |                                       |
| 60 -                                                                                                                                              | LI LI                                                                                                                                                                                 | Imil                                      |                                                                                                                  |                   | 5.0          |                                       |
| 1                                                                                                                                                 |                                                                                                                                                                                       | )" `N                                     | CO <sub>2</sub> Me                                                                                               |                   | ñ            |                                       |
| 1                                                                                                                                                 |                                                                                                                                                                                       | - H                                       |                                                                                                                  |                   | ( )          |                                       |
| 40-                                                                                                                                               |                                                                                                                                                                                       | Me 3g                                     |                                                                                                                  |                   | · \          |                                       |
| 40 ]                                                                                                                                              |                                                                                                                                                                                       | <sup>101</sup> 3a                         |                                                                                                                  |                   |              |                                       |
| 1                                                                                                                                                 | 1                                                                                                                                                                                     | - 3                                       |                                                                                                                  |                   | 1            |                                       |
|                                                                                                                                                   |                                                                                                                                                                                       |                                           |                                                                                                                  |                   | 1            |                                       |
| 20 -                                                                                                                                              |                                                                                                                                                                                       |                                           |                                                                                                                  |                   | \            |                                       |
|                                                                                                                                                   |                                                                                                                                                                                       |                                           |                                                                                                                  |                   | \            |                                       |
| -                                                                                                                                                 |                                                                                                                                                                                       |                                           |                                                                                                                  |                   | \<br>\       |                                       |
| · · · · ·                                                                                                                                         |                                                                                                                                                                                       |                                           |                                                                                                                  |                   |              |                                       |
| 0-                                                                                                                                                |                                                                                                                                                                                       |                                           |                                                                                                                  |                   |              | · · · · · · · · · · · · · · · · · · · |
| 1                                                                                                                                                 |                                                                                                                                                                                       |                                           |                                                                                                                  | 24                | 00           | 28                                    |
| 12 1                                                                                                                                              | 14 16                                                                                                                                                                                 | 18 20                                     | 22                                                                                                               | 24                | 26           |                                       |
| 12 12                                                                                                                                             | 14 16                                                                                                                                                                                 | 18 20                                     |                                                                                                                  | 24                | 20           |                                       |
| 12                                                                                                                                                | 14 16                                                                                                                                                                                 | <u>18 20</u>                              |                                                                                                                  |                   | 20           |                                       |
| 12                                                                                                                                                | 4 16<br><br>Area Perce                                                                                                                                                                |                                           |                                                                                                                  |                   | 20           |                                       |
| 12                                                                                                                                                |                                                                                                                                                                                       | nt Report                                 |                                                                                                                  |                   |              |                                       |
| 12                                                                                                                                                |                                                                                                                                                                                       | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
|                                                                                                                                                   |                                                                                                                                                                                       | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By                                                                                                                                         | Area Perce                                                                                                                                                                            | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier                                                                                                                           | Area Perce<br>: Signal                                                                                                                                                                | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution                                                                                                               | Area Perce<br>: Signal<br>: 1.0000                                                                                                                                                    | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution                                                                                                               | Area Perce<br>: Sigmal<br>: 1.0000<br>: 1.0000                                                                                                                                        | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution                                                                                                               | Area Perce<br>: Sigmal<br>: 1.0000<br>: 1.0000                                                                                                                                        | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &                                                                                           | Area Perce<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor wi                                                                                                                  | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &                                                                                           | Area Perce<br>: Sigmal<br>: 1.0000<br>: 1.0000                                                                                                                                        | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &,                                                                      | Area Perce<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor wi                                                                                                                  | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &,                                                                      | Area Perce<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor wi                                                                                                                  | nt Report                                 |                                                                                                                  |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]                                      | Area Perce<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor wi<br>Wavelength=220 nm<br>: Width Area<br>[min] mAU *s                                                             | nt Report<br>th ISTDs<br>Height<br>[mAU ] | Агеа<br>%                                                                                                        |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]                                      | Area Perce<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor wi<br>Wavelength=220 nm<br>: Width Area<br>[min] mAU *s                                                             | nt Report<br>th ISTDs<br>Height<br>[m&U]  | لمحمد المحمد ا |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]<br>                                  | Area Perce<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor wi<br>Wavelength=220 nm<br>: Width Area<br>[min] mAU *s<br>.]                                                       | nt Report<br>                             | Area<br>%<br> <br>50.0699                                                                                        |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]                                      | Area Perce<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor wi<br>Wavelength=220 nm<br>: Width Area<br>[min] mAU *s<br>.]                                                       | nt Report<br>                             | Area<br>%<br> <br>50.0699                                                                                        |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>   <br>1 14.903 BB<br>2 25.472 MM | ل     ل                                                                                                                                                                               | Height<br>[mAU ]<br>                      | Area<br>%<br> <br>50.0699                                                                                        |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]<br>                                  | ل     ل                                                                                                                                                                               | nt Report<br>                             | Area<br>%<br> <br>50.0699                                                                                        |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>   <br>1 14.903 BB<br>2 25.472 MM | ل     ل                                                                                                                                                                               | Height<br>[mAU ]<br>                      | Area<br>%<br> <br>50.0699                                                                                        |                   | 20           |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>   <br>1 14.903 BB<br>2 25.472 MM | Area Perce<br>: Sigmal<br>: 1.0000<br>: 1.0000<br>Dilution Factor wi<br>Wavelength=220 nm<br>: Width Area<br>[min] mAU *s<br>-))<br>0.5536 3339.6486<br>1.0647 3330.3269<br>6669.9755 | Height<br>[mAU]<br>                       | Area<br>%<br> <br>50.0699                                                                                        |                   | 20           |                                       |

Instrument 1 11/26/2011 11:41:53 AM HZL

Data File D:\LC\201111\LQH\LQH-5-119\LQH-5-119D 2011-11-27 18-36-36\081-0201.D Sample Wame: LQH-5-119D



Instrument 1 12/1/2011 5:08:27 PM LTL

Data File D:\LC\201111\LQH\LQH-5-123\LQH-5-123A 2011-11-26 10-28-14\095-0301.D Sample Wame: LQH-5-121D

|                  | <br>: lgh Seq. Line : 3                                                             |
|------------------|-------------------------------------------------------------------------------------|
| Acq. Instrument  | • •                                                                                 |
|                  | : 11/26/2011 11:19:34 AM Inj: 1                                                     |
| -                | Inj Volume : 5 µl                                                                   |
| Acq. Method      | : D:\LC\201111\LQH\LQH-5-123\LQH-5-123A 2011-11-26 10-28-14\ASH-30-70-1ML-          |
| •                | 220 <b>0</b> M.M                                                                    |
| Last changed     | : 11/26/2011 11:18:21 AM by lqh                                                     |
| -                | (modified after loading)                                                            |
| Analysis Method  | : D:\LC\201111\LQH\LQH-5-123\LQH-5-123A 2011-11-26 10-28-14\095-0301.D\DA.M         |
|                  | (ASH-30-70-1ML-220WM.M)                                                             |
| Last changed     | : 11/26/2011 11:55:41 AM by HZL                                                     |
|                  | (modified after loadiπg)                                                            |
|                  | velength=220 nm (D\LC/201111\LQH\LQH\5-123\LQH-5-123A2011-11-26 10-28-14095-0301.D) |
| mAU ]            | 6                                                                                   |
|                  | A Q O                                                                               |
| 200 -            |                                                                                     |
| 200              |                                                                                     |
|                  |                                                                                     |
|                  |                                                                                     |
| 150 -            | // ````````````````CO <sub>2</sub> Me / \                                           |
| 1 1              |                                                                                     |
|                  |                                                                                     |
| 100 -            | Me 3h                                                                               |
|                  |                                                                                     |
|                  |                                                                                     |
|                  |                                                                                     |
| 50 -             |                                                                                     |
|                  |                                                                                     |
|                  |                                                                                     |
|                  |                                                                                     |
| 0                |                                                                                     |
| 10               | 11 12 13 14 15 16 17 18 min                                                         |
|                  |                                                                                     |
|                  |                                                                                     |
|                  | Area Percent Report                                                                 |
|                  |                                                                                     |
|                  |                                                                                     |
| Sorted By        | : Signal                                                                            |
| Multiplier       | : 1.0000                                                                            |
| Dilution         | : 1.0000                                                                            |
| Use Multiplier s | Dilution Factor with ISTDs                                                          |
|                  |                                                                                     |
|                  |                                                                                     |
| Signal 1: VMD1 A | ., Wavelength=220 nm                                                                |
|                  |                                                                                     |
| Peak RetTime Typ | e Width Area Height Area                                                            |
| # [min]          | [min] mAU *s [mAU ] %                                                               |
|                  | -                                                                                   |
| 1 11.619 BB      | 0.6491 9637.21875 228.60901 49.8263                                                 |
| 2 15.954 BB      | 0.8179 9704.40039 179.70007 50.1737                                                 |
|                  |                                                                                     |
| Totals :         | 1.93416e4 408.30908                                                                 |
|                  |                                                                                     |
|                  |                                                                                     |
|                  |                                                                                     |

\*\*\* End of Report \*\*\*

Instrument 1 11/26/2011 11:55:46 AM HZL

Data File D:\LC\201111\THL\THL-12-43B\THL-12-43B 2011-11-29 11-18-34\084-1001.D Sample Mame: LQH-5-124D

Acq. Operator : THL Seg. Line : 10 Location : Vial 84 Acq. Instrument : Instrument 1 Injection Date : 11/29/2011 2:35:16 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201111\th1\THL-12-43B\THL-12-43B 2011-11-29 11-18-34\ASH-30-70-10ML-Acg. Method 220NM-30MIN.M : 11/24/2011 8:37:08 PM by HZL Last changed Analysis Method : D:\LC\201111\THL\THL-12-43B\THL-12-43B 2011-11-29 11-18-34\084-1001.D\DA.M (ASH-30-70-10ML-220MM-30MIN.M) Last changed : 12/1/2011 9:54:26 PM by LTL (modified after loading) W/D1A, Wavelength=220 nm (D%LC201111\THL\THL-12-438\THL-12-438 2011-11-29 11-18-344084 1001.D) mAU Se Co 90 -О 80 70 -′CO<sub>2</sub>Me 60 -50 -3h Me 40 SP Child 30 -£3 20 18 14 16 12 20 min Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU ] 5 # [min] 1 12.428 FM 0.6728 56.04337 1.38823 1.4668 2 16.795 MM 0.8837 3764.78394 71.00076 98.5332 Totals : 3820.82731 72.38900 \_\_\_\_\_ \*\*\* End of Report \*\*\*

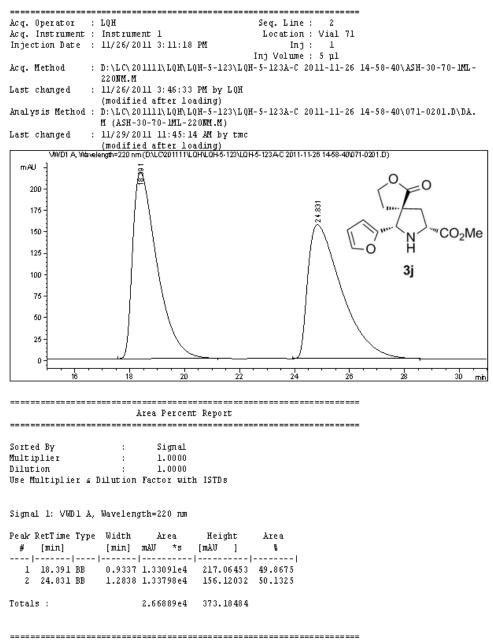
Instrument 1 12/1/2011 9:54:32 PM LTL

Data File D:\LC\201111\LQH\LQH-5-117\LQH-5-117 2011-11-23 08-40-38\082-0201.D Sample Wame: LQH-5-117B

|                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                              | == == == ===                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                              | LQH                                                                                                                                                                                                                                       | Seq. Line :                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Acq. Instrument :                                                                                                                            |                                                                                                                                                                                                                                           | Location :                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Injection Date :                                                                                                                             | 11/23/2011 9:14:33                                                                                                                                                                                                                        | AM Inj:                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|                                                                                                                                              |                                                                                                                                                                                                                                           | Inj Volume :                                                                 | 5 µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| kcq.Method :                                                                                                                                 | D:\LC\201111\LQH\LQ                                                                                                                                                                                                                       | QH-5-117\LQH-5-117 2011-                                                     | 11-23 08-40-38\ASH-30-70-1ML-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                                                                                                                                              | 220 <b>NM.M</b>                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| last changed :                                                                                                                               | 11/23/2011 10:09:43                                                                                                                                                                                                                       |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                              | (modified after loa                                                                                                                                                                                                                       |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Analysis Method :                                                                                                                            |                                                                                                                                                                                                                                           |                                                                              | 11-23 08-40-38\082-0201.D\DA.M (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
|                                                                                                                                              | ASH-30-70-1ML-220MM                                                                                                                                                                                                                       |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| last changed :                                                                                                                               | 11/26/2011 11:39:06                                                                                                                                                                                                                       |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| V10/D1 A \06\ot                                                                                                                              | (modified after los                                                                                                                                                                                                                       | ձ ձ և դ.ց.)<br>2H/LQH-5-117\LQH-5-117 2011-11-23 Օ                           | 9 40 299092 0201 Fb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                 |
|                                                                                                                                              |                                                                                                                                                                                                                                           | 2010/2019-117 02/09-117 2011-11-23 0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| mAU -                                                                                                                                        | a to be                                                                                                                                                                                                                                   | 1 200 II 200                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                 |
| 1                                                                                                                                            | /¤\_#                                                                                                                                                                                                                                     | 31 800<br>21 800                                                             | $\sim$ $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| 25 -                                                                                                                                         | 1 2                                                                                                                                                                                                                                       | Č s <sup>e</sup>                                                             | (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
|                                                                                                                                              | $\{ \cdot \}$                                                                                                                                                                                                                             | / \                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1                                                                                                                                            | $\{ \}$                                                                                                                                                                                                                                   |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 20-                                                                                                                                          | $I \setminus$                                                                                                                                                                                                                             | { \                                                                          | The start of the s | ~~ M              |
| 1                                                                                                                                            | { }                                                                                                                                                                                                                                       | }                                                                            | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO <sub>2</sub> M |
| 1 /                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                              | MeO H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| 15-                                                                                                                                          | · \                                                                                                                                                                                                                                       | ( )                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1 (                                                                                                                                          | \                                                                                                                                                                                                                                         |                                                                              | 3i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                                                                                                                                              | \                                                                                                                                                                                                                                         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 10 - (                                                                                                                                       | \                                                                                                                                                                                                                                         | 1                                                                            | $\backslash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 1 (                                                                                                                                          | \                                                                                                                                                                                                                                         | 1                                                                            | $\mathbf{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 6- /                                                                                                                                         | \                                                                                                                                                                                                                                         | 1                                                                            | $\langle \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| °   /                                                                                                                                        |                                                                                                                                                                                                                                           | 1                                                                            | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| 1 /                                                                                                                                          |                                                                                                                                                                                                                                           | /                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                              |                                                                                                                                                                                                                                           | ~                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                 |
| <u> </u>                                                                                                                                     |                                                                                                                                                                                                                                           | · · · · · · ·                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                 |
|                                                                                                                                              | 24                                                                                                                                                                                                                                        | 26 28                                                                        | 30 32 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in                |
| <u> </u>                                                                                                                                     | 24                                                                                                                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 2                                                                                                                                            | 24                                                                                                                                                                                                                                        |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <u></u>                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <u></u>                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <u></u>                                                                                                                                      | Area Percent                                                                                                                                                                                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                              | Area Percent                                                                                                                                                                                                                              | t Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                                                                                                              | Area Percent<br>: Signal                                                                                                                                                                                                                  | t Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <br>Sorted By<br>Multiplier                                                                                                                  | Area Percent<br>: Signal<br>: 1.0000                                                                                                                                                                                                      | t Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <br>Sorted By<br>Multiplier<br>Dilution                                                                                                      | Area Percent<br>: Signal<br>: 1.0000<br>: 1.0000                                                                                                                                                                                          | ; Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <br>Sorted By<br>Multiplier<br>Dilution                                                                                                      | Area Percent<br>: Signal<br>: 1.0000                                                                                                                                                                                                      | ; Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <br>Sorted By<br>Multiplier<br>Dilution                                                                                                      | Area Percent<br>: Signal<br>: 1.0000<br>: 1.0000                                                                                                                                                                                          | ; Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & D                                                                                    | Area Percent<br>: Sigmal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with                                                                                                                                                                  | ; Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & D                                                                                    | Area Percent<br>: Signal<br>: 1.0000<br>: 1.0000                                                                                                                                                                                          | ; Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & F<br>Signal 1: VMD1 &,                                                               | Area Percent<br>: Sigmal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with<br>Wavelength=220 nm                                                                                                                                             | z Report                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & I<br>Signal 1: VMD1 A,<br>Peak RetTime Type                                          | Area Percent<br>: Sigmal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with<br>Wavelength=220 nm<br>Width Area                                                                                                                               | t Report<br>a ISTDs<br>Height Area                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Gorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & I<br>Gignal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]                               | Area Percent<br>: Sigmal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with<br>Wavelength=220 nm<br>Width Area<br>[min] mAU *s                                                                                                               | t Report<br>n ISTDs<br>Height Area<br>[mAU] %                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & I<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]                               | Area Percent           :         Sigmal           :         1.0000           :         1.0000           Dilution Factor with           Wavelength=220 nm           Width         Area           [min]         mAU                         | t Report<br>A ISTDs<br>Height Area<br>[mAU] %                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Gorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & I<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]<br>1 22.951 MF                | Area Percent<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with<br>Wavelength=220 nm<br>Width Area<br>[min] mAU *s<br>[                                                                                                          | r Report<br>A ISTDs<br>[mAU] %<br>[                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Gorted By<br>Multiplier<br>Dilution<br>Jignal 1: VWD1 &,<br>Peak RetTime Type<br># [min]<br>1 22.951 MF                                      | Area Percent<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with<br>Wavelength=220 nm<br>Width Area<br>[min] mAU *s<br>[                                                                                                          | t Report<br>A ISTDs<br>Height Area<br>[mAU] %                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & I<br>Signal 1: VMD1 A,<br>Peak RetTime Type<br># [min]<br>1 22.951 MF<br>2 27.809 FM | Area Percent           :         Sigmal           :         1.0000           :         1.0000           Dilution Factor with           Wavelength=220 nm           Width         Area           [min]         mAU         *s           [] | E Report<br>A ISTDS<br>[mAU] %<br>[]<br>29.39459 49.9426<br>26.24825 50.0574 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier & I<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]<br>1 22.951 MF                | Area Percent<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with<br>Wavelength=220 nm<br>Width Area<br>[min] mAU *s<br>[                                                                                                          | E Report<br>A ISTDS<br>[mAU] %<br>[]<br>29.39459 49.9426<br>26.24825 50.0574 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

\*\*\* End of Report \*\*\*

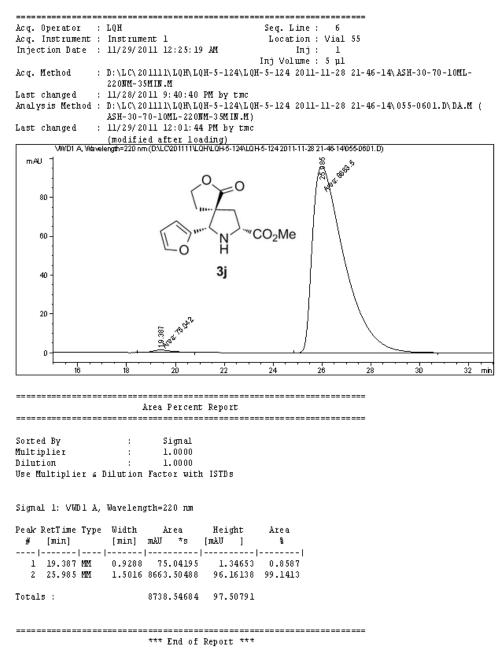
Instrument 1 11/26/2011 11:39:25 AM HZL


Sample Name: LQH-5-119B \_\_\_\_\_ Acq. Operator : LQH Seg. Line : 2 Acq. Instrument : Instrument 1 Location : Vial 51 Injection Date : 11/29/2011 8:52:34 AM Inj : 1 Inj Volume : 5 µl : D:\LC\201111\LQH\LQH-5-119\LQH-5-119B 2011-11-29 08-39-50\ASH-30-70-10ML-Acg. Method 220NM-35MIN.M : 11/28/2011 9:40:40 PM by tmc Last changed Analysis Method : D:\LC\201111\LQH\LQH-5-119\LQH-5-119B 2011-11-29 08-39-50\051-0201.D\DA.M (ASH-30-70-10ML-220MM-35MIN.M) Last changed : 12/1/2011 5:05:49 PM by LTL (modified after loading) W/D1A, Wavelength=220 nm (D/LC/201111/LOH/LOH/5-119/LQH-5-119B 2011-11-29 08-39-50/051-0201.D) mAU 100 -10 20 2 Ω 80 CO<sub>2</sub>Me 60 MeO 3i 40 20 8 0 -26 28 30 32 34 ź 24 min Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU ] # [min] 5 1 23.496 MM 1.1791 63.29495 8.94683e-1 0.5969 1.7706 1.05412e4 2 28.214 MM 99.22559 99.4031 Totals : 1.06045e4 100.12028 \_\_\_\_\_

Data File D:\LC\201111\LQH\LQH-5-119\LQH-5-119B 2011-11-29 08-39-50\051-0201.D

\*\*\* End of Report \*\*\*

Instrument 1 12/1/2011 5:05:55 PM LTL


Data File D:\LC\201111\LQH\LQH-5-123\LQH-5-123A-C 2011-11-26 14-58-40\071-0201.D Sample Wame: LQH-5-123A



\*\*\* End of Report \*\*\*

Instrument 1 11/29/2011 11:45:19 AM tmc

Data File D:\LC\201111\LQH\LQH-5-124\LQH-5-124 2011-11-28 21-46-14\055-0601.D Sample Wame: LQH-5-124E



Instrument 1 11/29/2011 12:01:49 PM tmc

Data File D:\LC\201111\LQH\LQH-5-123\LQH-5-123A-C 2011-11-26 14-58-40\072-0301.D Sample Name: LQH-5-123B

| Acq. Operator :   | : LQH Seg. Line : 3                                                                     |
|-------------------|-----------------------------------------------------------------------------------------|
| Acq. Instrument : | •                                                                                       |
|                   | : 11/26/2011 3:48:16 PM Inj: 1                                                          |
|                   | Inj Volume : 5 µl                                                                       |
| Acq. Method :     | : D:\LC\201111\LQH\LQH-5-123\LQH-5-123A-C 2011-11-26 14-58-40\ASH-30-70-1ML-<br>220MM.M |
| Last changed :    | : 11/26/2011 4:19:52 PM by LQH<br>(modified after loading)                              |
| Analysis Method : | M (ASH-30-70-IML-220MM.M)                                                               |
| Last changed :    | : 11/29/2011 11:46:54 AM by tmc<br>(modified after loading)                             |
| WVD1 A, Wave      | elength=220 nm (D/LC201111/LQH/LQH/5-123/LQH/5-123AC 2011-11-26 14-58-40/072-0301.D)    |
| mAU I             | · · · · · · · · · · · · · · · · · · ·                                                   |
|                   | Ā                                                                                       |
| 30-               | A                                                                                       |
| 307               |                                                                                         |
|                   |                                                                                         |
| 25-               |                                                                                         |
|                   |                                                                                         |
| 11                |                                                                                         |
| 20-               | ₩ <sup>™</sup> N <sup>™</sup> CO <sub>2</sub> Me                                        |
|                   |                                                                                         |
| 15                |                                                                                         |
|                   |                                                                                         |
|                   | 3k                                                                                      |
| 10-               |                                                                                         |
|                   |                                                                                         |
| 5-                |                                                                                         |
| 1                 |                                                                                         |
|                   |                                                                                         |
| 0 f               |                                                                                         |
| 16                | 18 20 22 24 26 28 30 min                                                                |
| 10                | 18 20 22 24 26 28 30 min                                                                |
|                   |                                                                                         |
|                   |                                                                                         |
|                   | Area Percent Report                                                                     |
|                   |                                                                                         |
|                   |                                                                                         |
| Sorted By         | : Signal                                                                                |
| Multiplier        | : 1.0000                                                                                |
| Dilution          | : 1.0000                                                                                |
| Use Multiplier s  | Dilution Factor with ISTDs                                                              |
|                   |                                                                                         |
|                   |                                                                                         |
| Signal 1: VWD1 A, | , Wavelength=220 лл                                                                     |
|                   |                                                                                         |
| Peak RetTime Type | e Width Area Height Area                                                                |
| # [min]           | [min] mAU *s [mAU ] %                                                                   |
|                   | -                                                                                       |
|                   | 0.8101 1828.05859 33.26278 49.9095                                                      |
| 2 25.721 MM       |                                                                                         |
| 5 53.151 MM       | 1.4100 1034.00004 21.01430 30.0203                                                      |
| Totola            | 2662 20200 60 02200                                                                     |
| Totals :          | 3662.74744 54.93708                                                                     |
|                   |                                                                                         |
|                   |                                                                                         |
|                   |                                                                                         |

\*\*\* End of Report \*\*\*

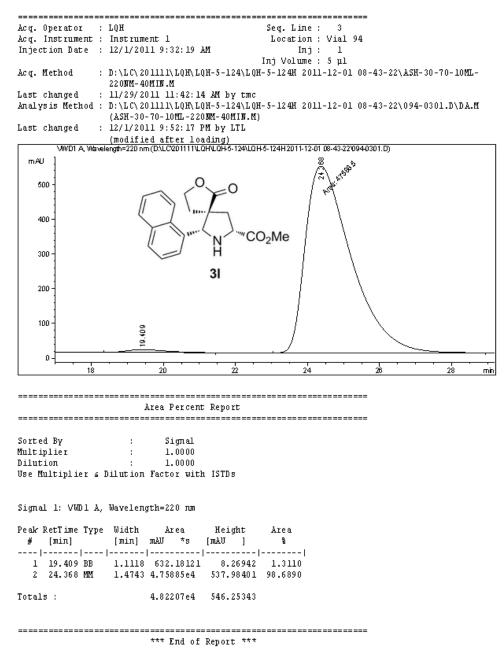
Instrument 1 11/29/2011 11:46:58 AM tmc

Data File D:\LC\201111\LQH\LQH-5-124\LQH-5-124 2011-11-28 21-46-14\056-0701.D Sample Wame: LQH-5-124F

\_\_\_\_\_ Acq. Operator : LQH Seg. Line : 7 Acq. Instrument : Instrument 1 Location : Vial 56 Injection Date : 11/29/2011 1:01:47 AM Inj : 1 Inj Volume : 5 µl : D:\LC\201111\LQH\LQH-5-124\LQH-5-124 2011-11-28 21-46-14\ASH-30-70-10ML-Acg. Method 220NM-35MIN.M : 11/28/2011 9:40:40 PM by tmc Last changed Analysis Method : D:\LC\201111\LQH\LQH-5-124\LQH-5-124 2011-11-28 21-46-14\056-0701.D\DA.M ( ASH-30-70-10ML-220MM-35MIN.M) Last changed : 12/1/2011 5:13:39 PM by LTL (modified after loading) W/D1 A. Wavelergth=220 nm (D\LC201111\LQH\LQH-5-124\LQH-5-124 2011-11-28 21-46-14056-0701.D) mAU ,0, 19, 19, C 80 "CO<sub>2</sub>Me 60 3k 40 20 ē ٥ 18 30 16 22 24 26 28 32 20 min Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU] 5 # [min] 4.02083 2.2175 1 19.434 MM 0.9583 231.19904 2 26.167 MM 1.6899 1.01948e4 100.54826 97.7825 Totals : 1.04260e4 104.56909 \_\_\_\_\_ \*\*\* End of Report \*\*\*

Instrument 1 12/1/2011 5:13:45 PM LTL

Sample Name: LQH-5-123D


\_\_\_\_\_ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 1 Location : Vial 74 Injection Date : 11/26/2011 5:02:42 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201111\LQH\LQH-5-123\LQH-5-123D 2011-11-26 17-01-03\ASH-30-70-1ML-Acg. Method 220**NM.M** Last changed : 9/7/2011 3:17:43 PM by thl Analysis Method : D:\LC\201111\LQH\LQH-5-123\LQH-5-123D 2011-11-26 17-01-03\074-0101.D\DA.M (ASH-30-70-1ML-220NM.M) Last changed : 11/29/2011 11:52:00 AM by tmc (modified after loading) W/DIA Wavelength=220 nm (D%LC201111\LOH\LOH\5-123\LOH\5-123D2011-11-26 17-01-03'0740101.D) es. Hallen mAU g 22922 F 700 600 -CO<sub>2</sub>Me 500 -400 31 300 -200 -100 -٥ 18 ź 쓞 2224 min Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU ] 5 # [min] 1 17.902 MM 1.2084 5.55024e4 765.53265 50.1636 2 22.922 MM 1.3314 5.51403e4 690.26672 49.8364 Totals : 1.10643e5 1455.79938 ------

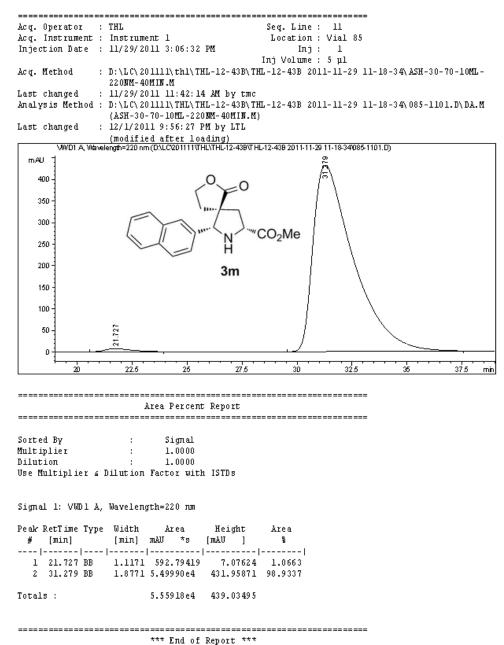
Data File D:\LC\201111\LQH\LQH-5-123\LQH-5-123D 2011-11-26 17-01-03\074-0101.D

\*\*\* End of Report \*\*\*

Instrument 1 11/29/2011 11:52:06 AM tmc

Data File D:\LC\201111\LQH\LQH-5-124\LQH-5-124H 2011-12-01 08-43-22\094-0301.D Sample Wame: LQH-5-124H




Instrument 1 12/1/2011 9:52:24 PM LTL

Data File D:\LC\201111\LQH\LQH-5-123\LQH-5-123A-C 2011-11-26 14-58-40\073-0401.D

Sample Name: LQH-5-123C \_\_\_\_\_ Acq. Operator : LQH Seg. Line : 4 Location : Vial 73 Acq. Instrument : Instrument 1 Injection Date : 11/26/2011 4:21:35 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201111\LQH\LQH-5-123\LQH-5-123A-C 2011-11-26 14-58-40\ASH-30-70-1ML-Acg. Method 220**NM.M** : 11/26/2011 4:59:25 PM by LQH Last changed (modified after loading) Analysis Method : D:\LC\201111\LQH\LQH-5-123\LQH-5-123A-C 2011-11-26 14-58-40\073-0401.D\DA. M (ASH-30-70-1ML-220NM.M) : 11/29/2011 11:48:12 AM by tmc Last changed (modified after loading) W/DIA Wavelergth=220 nm(D\LCC201111\LQH\LQH5-123\LQH5-123AC 2011-11-26 1458-40073-0401.D) mAU 600 -500 30.115 CO<sub>2</sub>Me 400 -3m 300 -200 100 ٥ 35 25 30 17.5 ź 225 275 32.5 min \_\_\_\_\_ Area Percent Report \_\_\_\_\_ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] 和初 \*5 [màひ] % 1 20.832 BB 1.2513 5.16021e4 2 30.115 BB 1.7414 5.16089e4 625.16650 49.9967 430.29391 50.0033 1.03211e5 1055.46042 Totals : \*\*\* End of Report \*\*\*

Instrument 1 11/29/2011 11:48:21 AM tmc

Data File D:\LC\201111\THL\THL-12-43B\THL-12-43B 2011-11-29 11-18-34\085-1101.D Sample Name: LQH-5-124G



Instrument 1 12/1/2011 9:56:33 PM LTL

Data File D:\LC\DATA\LQH\LQH-8-67\LQH-8-67B 2012-07-19 19-00-08\081-0301.D Sample Wame: LQH-8-67B

| Acq. Operator    | : LQH                                                                             |                                     | 3                 |          |
|------------------|-----------------------------------------------------------------------------------|-------------------------------------|-------------------|----------|
| Acq. Instrument  |                                                                                   | Location : Vi                       |                   |          |
|                  | : 7/19/2012 8:11:32 PM                                                            |                                     | 1                 |          |
|                  |                                                                                   | Inj Volume : 5                      | -<br>ul           |          |
| Acq. Method      | : D:\LC\DATA\LQH\LQH-8-67\<br>210NM.M                                             | -                                   |                   | 0-10ML-  |
| Last changed     | : 7/19/2012 8:39:58 PM by                                                         |                                     |                   |          |
| Analysis Method  | (modified after loading)<br>: D:\LC\DATA\LQH\LQH-8-67\<br>DBW 20 70 LOWE 210FF F) |                                     | 19-00-08\081-0301 | D\DA.M ( |
| Last changed     | ADH-30-70-10ML-210MM.M)<br>: 3/16/2013 4:47:33 PM by                              | FX                                  |                   |          |
| VI0/D1 A 304     | (modified after loading)<br>avelength=210 nm(DALCDATALQHVLQH8-                    |                                     | V001.0201.E0      |          |
|                  | sverengin-zitunmi, DALCADATA/LAHALAH-<br>N                                        | 0/1/L/2/H-0-0/B/2012-07-19/19-00-00 | 0010301.0)        |          |
| mAU 2<br>350 -   | And                                           |                                     |                   |          |
|                  | Ma.                                                                               |                                     |                   |          |
| 300 -            |                                                                                   | 0                                   |                   |          |
| 250 -            | \\                                                                                | Ľ                                   |                   |          |
| 200              |                                                                                   |                                     |                   |          |
|                  | 1                                                                                 | N <sup>∕™</sup> CO₂Me               | . <b>U</b> .      |          |
| 150-             | Ph-                                                                               | н                                   | × .19             |          |
| 100              |                                                                                   | 3n                                  | SI BASS           |          |
| 50-              |                                                                                   |                                     |                   |          |
|                  |                                                                                   |                                     |                   |          |
|                  |                                                                                   |                                     |                   |          |
| 8                | 10 12 14                                                                          | 16 18                               | 20 22             | 24 п     |
|                  |                                                                                   |                                     |                   |          |
|                  | Area Percent Repo                                                                 |                                     |                   |          |
|                  |                                                                                   |                                     |                   |          |
| Sorted By        | : Signal                                                                          |                                     |                   |          |
| Multiplier       | : 1.0000                                                                          |                                     |                   |          |
| Dilution         | : 1.0000                                                                          |                                     |                   |          |
| Vse Multiplier a | a Dilution Factor with ISTD                                                       | 5                                   |                   |          |
|                  |                                                                                   |                                     |                   |          |
| Signal 1: VWD1 3 | A, Wavelength=210 nm                                                              |                                     |                   |          |
| Peak RetTime Typ | pe Width Area Hei                                                                 | ght Area                            |                   |          |
| # [min]          | [min] mAU *s [mAU                                                                 | ] %                                 |                   |          |
|                  | <br>0.3835 8575.46191 372.                                                        |                                     |                   |          |
| 2 20.725 MF      |                                                                                   |                                     |                   |          |
| Totals :         | 1.68039e4 466.                                                                    | 49088                               |                   |          |
|                  |                                                                                   |                                     |                   |          |
|                  |                                                                                   |                                     | ======            |          |

\*\*\* End of Report \*\*\*

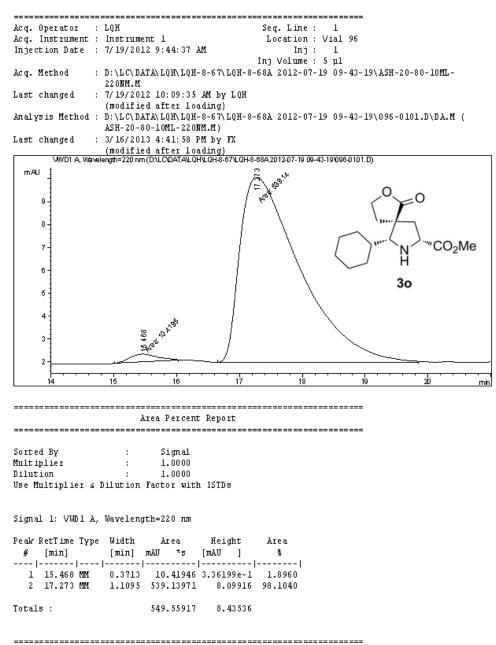
Instrument 1 3/16/2013 4:47:37 PM FX

Data File D:\LC\DATA\LQH\LQH-8-67\LQH-8-67B 2012-07-19 19-00-08\082-0401.D Sample Wame: LQH-8-68B

| Acq. Operator                                                                                                  | : LQH                                                                                             |                                                                                                                  |                                      | Seq. Line :       |         |           |                |            |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|---------|-----------|----------------|------------|
| Acq. Instrument                                                                                                | : Instrumer                                                                                       | ıt l                                                                                                             |                                      | Location :        | Vial    | 82        |                |            |
| Injection Date                                                                                                 | : 7/19/2012                                                                                       | 2 8:43:27 1                                                                                                      | PM                                   | Inj :             | 1       |           |                |            |
|                                                                                                                |                                                                                                   |                                                                                                                  |                                      | Inj Volume :      | 5 µl    |           |                |            |
| Acq. Method                                                                                                    | : D:\LC\DAX<br>210NM.M                                                                            | A LOH LOH                                                                                                        | -8-67\LQH-8-                         | 67B 2012-07-      | -19 19  | -00-08\   | ADH-30-70-10MI | <b>_</b> - |
| Last changed                                                                                                   | : 7/19/2012                                                                                       | 2 8:41:40 ]<br>1 after lo:                                                                                       |                                      |                   |         |           |                |            |
| Analysis Method                                                                                                | : D:\LC\DAT                                                                                       |                                                                                                                  | -8-67\LQH-8-                         | 67B 2012-07       | -19 19  | -00-08\   | 082-0401.D\DA  | М (        |
| Last changed                                                                                                   | : 3/16/2013                                                                                       | 3 4:49:45 1                                                                                                      | PM by FX                             |                   |         |           |                |            |
| VI0/D1 A 306                                                                                                   |                                                                                                   | l after log                                                                                                      |                                      | 678 2012-07-19-19 | 00.0909 | 2.0401 FD |                |            |
| mAU 1                                                                                                          | velengur-ziturinni<br>Ko                                                                          |                                                                                                                  |                                      | 078 2012-07-18 18 | 000000  | 210401.0) |                |            |
|                                                                                                                | Ĩ                                                                                                 |                                                                                                                  |                                      |                   |         |           |                |            |
|                                                                                                                | 1                                                                                                 |                                                                                                                  |                                      |                   |         |           |                |            |
| 500                                                                                                            | 1                                                                                                 |                                                                                                                  |                                      |                   |         |           |                |            |
| 500 -                                                                                                          | 11                                                                                                |                                                                                                                  | 0                                    |                   |         |           |                |            |
| 1                                                                                                              | Ц                                                                                                 |                                                                                                                  | ~~~(                                 | )                 |         |           |                |            |
| 400 -                                                                                                          |                                                                                                   |                                                                                                                  | F                                    |                   |         |           |                |            |
| -00                                                                                                            | - 11                                                                                              |                                                                                                                  | \                                    |                   |         |           |                |            |
|                                                                                                                |                                                                                                   |                                                                                                                  | / \                                  |                   |         |           |                |            |
| 300-                                                                                                           | - 11                                                                                              |                                                                                                                  | 1111                                 | ""CO2Me           |         |           |                |            |
| 1                                                                                                              | 11                                                                                                |                                                                                                                  | / N                                  | 0021016           |         |           |                |            |
|                                                                                                                |                                                                                                   | Ph-                                                                                                              | Л                                    |                   |         |           |                |            |
| 200 -                                                                                                          |                                                                                                   |                                                                                                                  | 2                                    |                   |         |           |                |            |
|                                                                                                                | - ( )                                                                                             |                                                                                                                  | 3n                                   |                   |         |           |                |            |
|                                                                                                                | {                                                                                                 |                                                                                                                  |                                      |                   |         |           | .*             |            |
| 100 -                                                                                                          |                                                                                                   |                                                                                                                  |                                      |                   |         |           | ం నో           |            |
|                                                                                                                | 1 \                                                                                               |                                                                                                                  |                                      |                   |         |           | 2 <u>.</u>     |            |
| l ₀∔                                                                                                           | $ \rightarrow $                                                                                   |                                                                                                                  |                                      |                   |         |           |                |            |
|                                                                                                                |                                                                                                   |                                                                                                                  |                                      |                   |         |           |                |            |
|                                                                                                                |                                                                                                   | 12.5                                                                                                             | 5 15                                 | 17.5              |         | 20        | 225            | 25 mi      |
| 1                                                                                                              | 10                                                                                                |                                                                                                                  |                                      |                   |         |           |                |            |
| 1                                                                                                              | 10                                                                                                |                                                                                                                  |                                      |                   |         |           |                |            |
| 75                                                                                                             |                                                                                                   |                                                                                                                  |                                      |                   |         |           |                |            |
|                                                                                                                |                                                                                                   | cea Percent                                                                                                      |                                      |                   |         |           |                |            |
|                                                                                                                | ـــــــــــــــــــــــــــــــــــــ                                                             | cea Percent                                                                                                      |                                      |                   |         |           |                |            |
| <br>Sorted By                                                                                                  | ـــــــــــــــــــــــــــــــــــــ                                                             | signal                                                                                                           |                                      |                   |         |           |                |            |
| Sorted By<br>Multiplier                                                                                        | ۸.<br>۸.<br>:<br>:                                                                                | sea Percent<br>Signal<br>1.0000                                                                                  |                                      |                   |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution                                                                            |                                                                                                   | cea Percent<br>Signal<br>1.0000<br>1.0000                                                                        | t Report                             |                   |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution                                                                            |                                                                                                   | cea Percent<br>Signal<br>1.0000<br>1.0000                                                                        | t Report                             |                   |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &                                                        | ية<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | signal<br>Signal<br>1.0000<br>1.0000<br>Factor with                                                              | t Report                             |                   |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &                                                        | ية<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | signal<br>Signal<br>1.0000<br>1.0000<br>Factor with                                                              | t Report                             |                   |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &                                    | ی<br>:<br>:<br>: Dilution 1<br>د, Wavelengt                                                       | signal<br>Signal<br>1.0000<br>1.0000<br>Factor with                                                              | t Report                             |                   |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &                                    | ی<br>:<br>:<br>: Dilution 1<br>د, Wavelengt                                                       | sea Percent<br>Sigmal<br>1.0000<br>1.0000<br>Factor with<br>th=210 nm<br>Area                                    | t Report                             |                   |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &<br>Peak RetTime Typ<br># [min]     | A<br>:<br>:<br>: Dilution 1<br>:<br>A, Wavelengt<br>ve Width<br>[min] 1                           | rea Percent<br>Signal<br>1.0000<br>1.0000<br>Factor with<br>ch=210 nm<br><u>Ar</u> ea<br>nAU *s                  | t Report<br>ISTDs<br>Height<br>[mAU] | Area<br>8         |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &<br>Peak RetTime Typ<br># [min]     | ی<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن<br>ن  | rea Percent<br>Signal<br>1.0000<br>1.0000<br>Factor with<br>th=210 nm<br>Area<br>nAU *s                          | t Report<br>ISTDs<br>Height<br>[mAU] | لمعدم<br>م        |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &<br>Peak RetTime Typ<br># [min]     |                                                                                                   | rea Percent<br>Signal<br>1.0000<br>1.0000<br>Factor with<br>th=210 nm<br>Area<br>nAU *s                          | t Report<br>                         | لمعدم<br>م        |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &<br>Peak RetTime Typ<br># [min]<br> | k;<br>bilution 1<br>k, Wavelengt<br>(min] 5<br>-                                                  | rea Percent<br>Signal<br>1.0000<br>1.0000<br>Factor with<br>ch=210 nm<br>Area<br>nAU *5<br>1.36807e4<br>96.27553 | t Report<br>Height<br>[mAU ]<br>     | Area<br>%<br>     |         |           |                |            |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &<br>Peak RetTime Typ<br># [min]<br> | k;<br>bilution 1<br>k, Wavelengt<br>(min] 5<br>-                                                  | rea Percent<br>Signal<br>1.0000<br>1.0000<br>Factor with<br>th=210 nm<br>Area<br>AV *5<br>L.36807e4              | t Report<br>Height<br>[mAU ]<br>     | Area<br>%<br>     |         |           |                |            |

\*\*\* End of Report \*\*\*

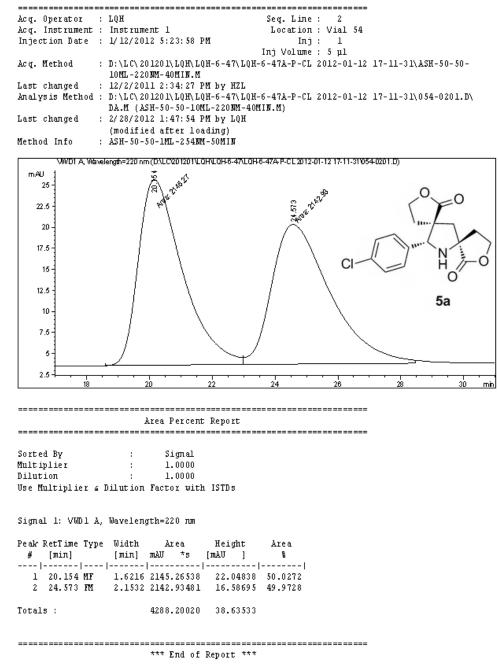
Instrument 1 3/16/2013 4:49:56 PM FX


Data File D:\LC\DATA\LQH\LQH-8-67\LQH-8-68A 2012-07-19 09-43-19\095-0401.D Sample Wame: LQH-8-67A

| Acg. Operator :                                                                                                                                  | : LOH Seg. Line : 4                                                                                                                                                                                                                                            |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Acq. Instrument :                                                                                                                                |                                                                                                                                                                                                                                                                |                       |
|                                                                                                                                                  | : 7/19/2012 11:36:58 AM Inj: 1                                                                                                                                                                                                                                 |                       |
|                                                                                                                                                  | Inj Volume : 5 µl                                                                                                                                                                                                                                              |                       |
| Acq. Method :                                                                                                                                    | : D:\LC\DATA\LQH\LQH-8-67\LQH-8-68A 2012-07-19 09-43-19\ASH                                                                                                                                                                                                    | -20-80-10ML-          |
|                                                                                                                                                  | 20 5MM- 25MIN .M                                                                                                                                                                                                                                               |                       |
|                                                                                                                                                  | : 7/19/2012 11:28:51 AM by LQH                                                                                                                                                                                                                                 |                       |
| Analysis Method :                                                                                                                                | : D:\LC\DATA\LQH\LQH-8-67\LQH-8-68A 2012-07-19 09-43-19\095                                                                                                                                                                                                    | -0401.D\DA.M (        |
|                                                                                                                                                  | ASH-20-80-10ML-205MM-25MIN.M)                                                                                                                                                                                                                                  |                       |
| Last changed                                                                                                                                     | : 3/16/2013 4:36:41 PM by FX                                                                                                                                                                                                                                   |                       |
| WVD1 A. Wav                                                                                                                                      | (modified after loading)<br>velength=205 nm(DALC/DATA/LQH/LQH/8-67/LQH/8-68A/2012-07-19/09-43-19/095-0401.D)                                                                                                                                                   |                       |
| mAU                                                                                                                                              | g                                                                                                                                                                                                                                                              |                       |
| 25 -                                                                                                                                             | ā.                                                                                                                                                                                                                                                             |                       |
|                                                                                                                                                  | (=)<br>0                                                                                                                                                                                                                                                       | -0                    |
| 1                                                                                                                                                |                                                                                                                                                                                                                                                                | F                     |
| 20 -                                                                                                                                             |                                                                                                                                                                                                                                                                |                       |
| 207                                                                                                                                              |                                                                                                                                                                                                                                                                | / \                   |
| 1                                                                                                                                                |                                                                                                                                                                                                                                                                | N <sup>∕™</sup> CO₂Me |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                |                       |
| 15 -                                                                                                                                             |                                                                                                                                                                                                                                                                | п                     |
| -                                                                                                                                                |                                                                                                                                                                                                                                                                | 30                    |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                | 50                    |
| 10-                                                                                                                                              |                                                                                                                                                                                                                                                                |                       |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                |                       |
| 1                                                                                                                                                |                                                                                                                                                                                                                                                                |                       |
| 5-                                                                                                                                               |                                                                                                                                                                                                                                                                |                       |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                |                       |
| F                                                                                                                                                |                                                                                                                                                                                                                                                                | <u> </u>              |
| 4                                                                                                                                                |                                                                                                                                                                                                                                                                |                       |
| 13                                                                                                                                               | 14 15 16 17 18 19                                                                                                                                                                                                                                              |                       |
| 13<br>13                                                                                                                                         | 14 15 16 17 18 19                                                                                                                                                                                                                                              | 20                    |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                | 20                    |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                | 20                    |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                | 20                    |
|                                                                                                                                                  | Area Percent Report                                                                                                                                                                                                                                            | 20                    |
| Sorted By                                                                                                                                        | Area Percent Report<br>: Signal                                                                                                                                                                                                                                | 20                    |
| Sorted By<br>Multiplier                                                                                                                          | Area Percent Report<br>: Signal<br>: 1.0000                                                                                                                                                                                                                    | 20                    |
| Sorted By<br>fultiplier<br>Dilution                                                                                                              | Area Percent Report           :         Signal           :         1.0000           :         1.0000                                                                                                                                                           | 20                    |
| Sorted By<br>Multiplier<br>Dilution                                                                                                              | Area Percent Report<br>: Signal<br>: 1.0000                                                                                                                                                                                                                    | 20                    |
| Sorted By<br>Multiplier<br>Dilution                                                                                                              | Area Percent Report           :         Signal           :         1.0000           :         1.0000                                                                                                                                                           | 20                    |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier 6                                                                                          | Area Percent Report<br>: Signal<br>: 1.0000<br>: 1.0000<br>: Dilution Factor with ISTDs                                                                                                                                                                        | 20                    |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier 6                                                                                          | Area Percent Report           :         Signal           :         1.0000           :         1.0000                                                                                                                                                           | 20                    |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier 6                                                                                          | Area Percent Report<br>: Signal<br>: 1.0000<br>: 1.0000<br>: Dilution Factor with ISTDs<br>A, Wavelength=205 nm                                                                                                                                                | 20                    |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 &                                                                      | Area Percent Report<br>: Signal<br>: 1.0000<br>: 1.0000<br>: Dilution Factor with ISTDs<br>A, Wavelength=205 nm                                                                                                                                                | 20                    |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 Å<br>Peak RetTime Type<br># [min]                                      | Area Percent Report<br>: Signal<br>: 1.0000<br>: 1.0000<br>: Dilution Factor with ISTDs<br>A. Wavelength=205 nm<br>Me Width Area Height Area                                                                                                                   | 20                    |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]                                     | Area Percent Report<br>: Signal<br>: 1.0000<br>: 1.0000<br>: Dilution Factor with ISTDs<br>A, Wavelength=205 nm<br>We Width Area Height Area<br>[min] mAU *s [mAU ] %                                                                                          | 20                    |
| Sorted By<br>fultiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 &<br>Peak RetTime Type<br># [min]<br>                                  | Area Percent Report<br>: Signal<br>: 1.0000<br>: 1.0000<br>: Dilution Factor with ISTDs<br>A, Wavelength=205 nm<br>We Width Area Height Area<br>[min] mAU *s [mAU ] %                                                                                          | 20                    |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>  <br>1 15.263 BV<br>2 17.207 VB | Area Percent Report           :         Signal           :         1.0000           :         1.0000           :         1.0000           :         Dilution Factor with ISTDs           Aveelength=205 nm           :         [min] mAU *s [mAU ]           : | 20                    |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VMD1 &<br>Peak RetTime Type<br># [min]<br>                                  | Area Percent Report<br>: Signal<br>: 1.0000<br>: 1.0000<br>: Dilution Factor with ISTDs<br>A, Wavelength=205 nm<br>We Width Area Height Area<br>[min] mAW *s [mAW ] %<br>[]<br>0.7113 1186.18982 24.27481 50.2759                                              | 20                    |

\*\*\* End of Report \*\*\*

Instrument 1 3/16/2013 4:36:47 PM FX


Data File D:\LC\DATA\LQH\LQH-8-67\LQH-8-68A 2012-07-19 09-43-19\096-0101.D Sample Wame: LQH-8-68A



\*\*\* End of Report \*\*\*

Instrument 1 3/16/2013 4:42:35 PM FX

Data File D:\LC\201201\LQH\LQH-6-47\LQH-6-47A-P-CL 2012-01-12 17-11-31\054-0201.D Sample Wame: LQH-6-47A-P-C1



Instrument 1 2/28/2012 1:47:59 PM LQH

Data File D:\LC\201201\LQH\LQH-6-47\LQH-6-47-48 2012-01-12 14-34-45\052-0101.D Sample Wame: LQH-6-48

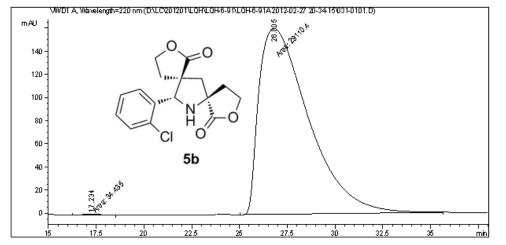
|                              | : LQH Seq. Line : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acq. Instrument              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Injection Date               | : 1/12/2012 2:36:10 PM Inj: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | Inj Volume : 5 µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Acq. Method                  | : D:\LC\201201\LQH\LQH-6-47\LQH-6-47-48 2012-01-12 14-34-45\ASH-50-50-10ML-<br>220MM-40MIN.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                            | : 12/2/2011 2:34:27 PM by HZL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analysis Method              | : D:\LC\201201\LQH\LQH-6-47\LQH-6-47-48 2012-01-12 14-34-45\052-0101.D\DA.M<br>(ASH-50-50-10ML-220MM-40MIN.M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| last changed                 | : 2/28/2012 1:50:53 PM by LQH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Method Info                  | (modified after loading)<br>: ASH-50-50-1ML-254AM-50MIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WVD1 A, Way                  | velength=220 nm (D\LCV2012011LQH\LQH8-47\LQH6-47-48 2012-01-12 14-34-45'052-0101.D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mAU ]                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 70 -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60 -                         | hat C FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50-                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40-                          | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ***]                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30 -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | 5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20 -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10-                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | a de la companya de |
| ⁰- <u>−</u>                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18                           | <u>20 22 24 26 28 30 32 34</u> π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | Årea Percent Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sorted By                    | : Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Multiplier                   | : 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| )ilution<br>The Waltinlian - | : 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| se muitipiler a              | Dilution Factor with ISTDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sional I. VIIII &            | ., Wavelength=220 πm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ergnar I. YwDI A             | y watczenycz-uso zan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Peak RetTime Typ             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| # [min]<br>!!                | [min] mAU *s [mAU ] %<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 20.600 MM                  | 1.3168 11.83757 1.49823e-1 0.1202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 24.466 MM                  | 2.2858 9834.43359 71.70798 99.8798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| fotals :                     | 9846.27117 71.85781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Instrument 1 2/28/2012 1:50:58 PM LQH

\*\*\*\* End of Report \*\*\*

Sample Name: LQH-6-90A

Data File D:\LC\201201\LQH\LQH-6-91\LQH-6-90A 2012-02-27 17-14-39\037-0101.D


\_\_\_\_\_ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 1 Location : Vial 37 Injection Date : 2/27/2012 5:16:17 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\LQH\LQH-6-91\LQH-6-90A 2012-02-27 17-14-39\ASH-50-50-10ML-Acg. Method 220NM.M Last changed : 12/6/2011 11:03:10 AM by TMC Analysis Method : D:\LC\201201\LQH\LQH-6-91\LQH-6-90A 2012-02-27 17-14-39\037-0101.D\DA.M ( ASH-50-50-10ML-220NM.M) Last changed : 3/9/2012 11:17:25 AM by FX (modified after loading) WWD1A, Wavelength=220 nm (D:LC201201/LQH/LQH6-91/LQH6-90A2012-02-27 17-1439/037-0101.D) tes so a mAU ≌ Ã 22.5 -20 -റ 17.5 15 -266 ake. 12.5 -10 0 CI 7.5 -5b 5 -2.5 0 -27.5 30 35 min 17.5 20 22.5 25 32.5 Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU ] 5 # [min] 1 17.048 MM 1.2304 1661.57849 22.50783 50.0190 2 28.266 MM 2.6761 1660.31567 10.34035 49.9810 Totals : 3321.89417 32.84818 

\*\*\* End of Report \*\*\*

Instrument 1 3/9/2012 11:17:30 AM FX

Data File D:\LC\201201\LQH\LQH-6-91\LQH-6-91A 2012-02-27 20-34-15\031-0101.D Sample Wame: LQH-6-91A

|                 | == |                                  |             | ==  |        | ===                       |
|-----------------|----|----------------------------------|-------------|-----|--------|---------------------------|
| Acq. Operator   | :  | LQH                              | Seq. Line   | :   | 1      |                           |
| Acq. Instrument | :  | Instrument 1                     | Location    | : ' | Vial   | 31                        |
| Injection Date  | :  | 2/27/2012 8:35:40 PM             | Inj         | :   | 1      |                           |
|                 |    |                                  | Inj Volume  | :   | 5 µl   |                           |
| Acq. Method     | :  | D: \LC\ 201201\LQH\LQH-6-91\LQH- | 6-91A 2012- | 02  | 2-27 2 | 0-34-15\ASH-50-50-10ML-   |
|                 |    | 220NM-40MIN.M                    |             |     |        |                           |
| Last changed    | :  | 12/2/2011 2:34:27 PM by HZL      |             |     |        |                           |
| Analysis Method | :  | D: \LC\ 201201\LQH\LQH-6-91\LQH- | 6-91A 2012- | 02  | 2-27 2 | 0-34-15\031-0101.D\DA.M ( |
|                 |    | ASH-50-50-10ML-220NM-40MIN.M)    |             |     |        |                           |
| Last changed    | :  | 3/9/2012 11:19:39 AM by FX       |             |     |        |                           |
|                 |    | (modified after loading)         |             |     |        |                           |
| Method Info     | ;  | ASH-50-50-1ML-254NM-50MIN        |             |     |        |                           |
|                 |    |                                  |             |     |        |                           |



## Area Percent Report

| Sorted By        | :         | Signal      |       |
|------------------|-----------|-------------|-------|
| Multiplier       | :         | 1.0000      |       |
| Dilution         | :         | 1.0000      |       |
| Use Multiplier s | Dilut ion | Factor with | ISTDs |

Signal 1: VWD1 Å, Wavelength=220 nm

| Peak RetTime Type<br># [min] | [min]  | mAU *s    | [mAU]]     | 8      |
|------------------------------|--------|-----------|------------|--------|
| 1 17.234 MM<br>2 26.805 MM   | 1.0958 | 34.43504  | 5.23737e-1 | 0.1182 |
| Totals :                     |        | 2.91448e4 | 161.17756  |        |

\_\_\_\_\_

\*\*\* End of Report \*\*\*

Instrument 1 3/9/2012 11:19:47 AM FX

Data File D:\LC\201201\LQH\LQH-6-90\LQH-6-90B 2012-02-27 08-47-40\031-0301.D Sample Wame: LQH-6-90B

| Acq. Operator             | : LQH Seq. Line : 3                                                                                     |
|---------------------------|---------------------------------------------------------------------------------------------------------|
| Acq. Instrument           | •                                                                                                       |
|                           | : 2/27/2012 9:37:15 AM Inj: 1                                                                           |
| Injection babe            | Inj Volume : 5 µl                                                                                       |
| Acq. Method               | : D:\LC\201201\LQH\LQH-6-90\LQH-6-90B 2012-02-27 08-47-40\ASH-50-50-10ML-                               |
|                           | 220 <b>nm.m</b>                                                                                         |
| Last changed              | : 2/27/2012 10:20:41 AM by LOH                                                                          |
| Amelveje Method           | (modified after loading)<br>: D:\LC\201201\LQH\LQH-6-90\LQH-6-90B 2012-02-27 08-47-40\031-0301.D\DA.M ( |
| And 1515 Include          | ASH-50-50-10ML-220MM.M)                                                                                 |
| Last changed              | : 3/9/2012 11:15:17 AM by FX                                                                            |
|                           | (modified after loading)                                                                                |
|                           | nelength=220 nm (D/LC/201201/LQH/LQH/6-90/LQH/6-90B 2012-02-27 08-47-40/031-0301.D)                     |
| m AU                      |                                                                                                         |
| 35-                       |                                                                                                         |
|                           |                                                                                                         |
| 30-                       |                                                                                                         |
|                           |                                                                                                         |
| ar 1                      | $ \land \land \land \land$                                                                              |
| 25-                       |                                                                                                         |
|                           |                                                                                                         |
| 20-                       |                                                                                                         |
|                           |                                                                                                         |
| 15 -                      |                                                                                                         |
|                           | 5c                                                                                                      |
| 10-                       |                                                                                                         |
|                           |                                                                                                         |
| 5-]                       |                                                                                                         |
|                           |                                                                                                         |
| 01                        |                                                                                                         |
|                           |                                                                                                         |
| 15                        | 17.5 20 22.5 25 27.5 30 32.5 min                                                                        |
|                           |                                                                                                         |
|                           |                                                                                                         |
|                           | Area Percent Report                                                                                     |
|                           |                                                                                                         |
| Sorted By                 | : Simal                                                                                                 |
| Multiplier                | : 1.0000                                                                                                |
| Dilution                  | : 1.0000                                                                                                |
|                           | s Dilution Factor with ISTDs                                                                            |
| ose unicipiter a          | PTTUCION EGCCOL MICH 19102                                                                              |
|                           |                                                                                                         |
| Signal 1: VMD1 A          | A, Wavelength=220 nm                                                                                    |
| -                         |                                                                                                         |
| Peak RetTime Typ          | -                                                                                                       |
| # [min]                   | [min] mAU *s [mAU ] %                                                                                   |
|                           |                                                                                                         |
| 1 16.842 M                |                                                                                                         |
| 2 24.771 MM               | 2.5608 2598.86987 16.91425 49.8709                                                                      |
|                           |                                                                                                         |
| Totals :                  | 5211.19775 54.41606                                                                                     |
|                           |                                                                                                         |
|                           |                                                                                                         |
| == == == == == == == == = |                                                                                                         |

\*\*\* End of Report \*\*\*

Instrument 1 3/9/2012 11:15:22 AM FX

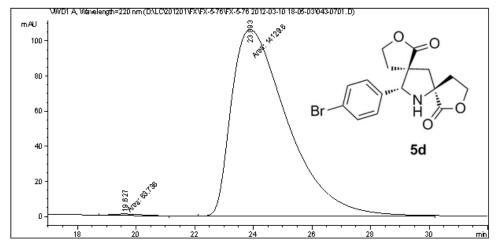
Sample Name: LQH-10-73

Data File D:\LC\DATA\LQH\LQH-10-73\LQH-10-73 2013-03-19 10-47-46\095-0201.D

\_\_\_\_\_ Acq. Operator : TL Seg. Line : 2 Location : Vial 95 Acq. Instrument : Instrument 1 Injection Date : 3/19/2013 11:00:30 AM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-10-73\LQH-10-73 2013-03-19 10-47-46\ASH-50-50-10ML-Acq. Method 220NM-60MIN.M Last changed : 12/6/2011 9:55:58 PM by TMC Analysis Method : D:\LC\DATA\LQH\LQH-10-73\LQH-10-73 2013-03-19 10-47-46\095-0201.D\DA.M ( ASH-50-50-10ML-220NM-60MIN.M) Last changed : 4/27/2013 11:14:30 AM by LFL (modified after loading) W/D1 A. Wavelength=220 nm (D%LC/DATA%LOH/LOH-10-73/LOH-10-73 2013-03-19 10-47-46/095-0201.D) . 7. 18<sup>4 3</sup> mAU റ =0 100 80 60 40 5c , 10.9<sup>19</sup> 20 n 17.5 20 22.5 25 27.5 30 32.5 min \_\_\_\_\_ Area Percent Report \_\_\_\_\_ Sorted By Signal : 1.0000 Multiplier : Dilution . 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width 2.12834e4 126.37211 Totals : -----\*\*\* End of Report \*\*\*

Instrument 1 4/27/2013 11:14:37 AM LFL

Data File D:\LC\201201\LQH\LQH-6-93\LQH-6-93BE 2012-03-09 14-49-26\065-0301.D Sample Wame: LQH-6-93E


| <pre>AcgInstrument : Instrument : Instrume</pre>                                                                                                                                                                                                                                                                                                               |                    |                                   |                                                           | ====                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|-----------------------------------------------------------|----------------------------|
| Injection Date : 3/9/2012 3:35:13 PM Inj: 1<br>Inj Volume : 5 µl<br>Late changed : D:\LC\201201\LQH.LQH-6-93\LQH-6-93BE 2012-03-09 14-49-26\ASH-50-50-10ML-<br>2200MLH<br>Last changed : D:\LC\201201\2013\UGH.GH-6-93\LQH-6-93BE 2012-03-09 14-49-26\065-0301.D\DA.H (<br>ASH-50-50-10ML-220MLM)<br>Last changed : J/12/201201\201201LQH-04-693LH-6-93BE 2012-03-09 14-49-26\065-0301.D\DA.H (<br>ASH-50-50-10ML-220MLM)<br>Last changed : J/12/201201\201201LQH-04-693LH-6-93BE 2012-03-09 14-49-26\065-0301.D\DA.H (<br>ASH-50-50-10ML-220MLM)<br>Last changed : J/12/20129.133:43 M by TX<br>(modified after loading)<br>(modified after loading)<br>(modified after loading)<br>(modified after loading)<br>MUOIA Wewlength=220m(CMLC201201LOHL046-03BE2012-030014-40-2008-0301D)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acq. Operator :    | LQH                               | Seq. Line : 3                                             |                            |
| Inj Volumë : 5 µl<br>Acq. Method : B:\LC:20120\LQBLDUH-6-93BE 2012-03-09 14-49-26\ASH-50-50-10ML-<br>220ML.H<br>Last changed : 3/9/2012 3:33:52 PM by LQH<br>(modified after 1 ordaing)<br>Analysis Method : D:\LC:20120\LQBLDUH-6-93BE 2012-03-09 14-49-26\065-0301.D\DA.H (<br>2ASH-50-50-10ML-220MLA)<br>Last changed : 3/12/2012 9:39:45 AM by TX<br>(modified after 1 ordaing)<br>MMUTA WawkingBr-220 nm (ONLC201201LOHLDH-6-93BE 2012-03-09 14-49-26\065-0301.D\<br>m44<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acq. Instrument :  | Instrument 1                      | Location : Vial                                           | 65                         |
| <pre>kcq. Method : D:\LCY.201201.LQHLLQH_CG-93.LQH-G-93BE 2012-03-09 14-49-26\ASH-50-50-10HL-<br/>20HH.<br/>Last changed : 3/9/2012 3:33:52 PM by LQH<br/>(modified after loading)<br/>Analysis Method : D:\LCY.201201.LQHLQHLQH-G-93.LQH-6-93BE 2012-03-09 14-49-26\065-0301.D\DA.H (<br/>ASH-50-50-10HL-220HLH)<br/>Last changed : 3/12/20129.133:43 AM by TK<br/>(modified after loading)<br/>(modified after lo</pre> | Injection Date :   | 3/9/2012 3:35:13 PM               |                                                           |                            |
| Last changed : 3/9/2012 3:33:52 PM by LOH<br>(modified after loading)<br>knalysis Method : D:\Lr.Y012012 3:39:45 AM by TX<br>(modified after loading)<br>WOULA Wavelength=220 mm(CUC2012011/CHLOH-6-93LDH-6-93BE 2012-03-09 14-49-26\065-0301.D\DA.H (<br>28.H - 50-50-10HL-2200MR.H)<br>WOULA Wavelength=220 mm(CUC2012011/CHLOH-6-93LDH-6-93BE 2012-03-09 14-49-26\065-0301.D)<br>MUULA Wavelength=220 mm<br>Area Percent Report<br>Area Percent Report<br>Area Percent Report<br>Sorted By : Signal<br>Multiplier : 1.0000<br>Dilution : 1.0000<br>Use Multiplier s Dilution Pactor with ISTDs<br>Signal 1: VWD1 A, Wavelength=220 mm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *5 [mAU ] %<br>(min] [min] mAU *5 [mAU ] %<br>(min] [min] mAU *5 [mAU ] %<br>2 24.496 EB 1.6405 3607.35547 29.00804 40.0361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |                                   | Inj Volume : 5 µl                                         |                            |
| Last changed : 3/9/2012 3:3:52 PM by LOH<br>(modified after loading)<br>knalysis Method : D:\Ln?01201LORLOR+6-930LOH-6-93BE 2012-03-09 14-49-26\065-0301.D\DA.H (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acq. Method :      |                                   | H-6-93\LQH-6-93BE 2012-03-09                              | 14-49-26\ ASH-50-50-10ML-  |
| Analysis Method : D:\LC\201201LQRLDRLDR-6-93BE 2012-03-09 14-49-26\065-0301.D\DA.M (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Last changed :     | 3/9/2012 3:33:52 PM               |                                                           |                            |
| Last changed : 3/12/2012 9:39:45 AM by TX<br>(modified after loading)<br>WOU A Wavelength 2010 m(DULCOULDUILDHUGH-030LOH-030E 2012-03:00 14 40-20085-0301.D)<br>mAU<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysis Method :  | D:\LC\201201\LQH\LQ               | H-6-93\LQH-6-93BE 2012-03-09                              | 14-49-26\065-0301.D\DA.M ( |
| WUDI A Weiselength=220 nm (DLC201201/LOHLOH-6-93LDH-6-93BE2012-03-09 14-49-26006-5301.D)<br>mAU<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Last changed :     | 3/12/2012 9:39:45 A               | M by FX                                                   |                            |
| mAU<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VM/D1 A. Wavel     | enoth=220 nm (DALCQ01201VLC       | a Ling )<br>HVL 0H-6-93/L 0H-6-938 E 2012-03-09 14-49-26' | 065-0301.D)                |
| Area Percent Report<br>Area Percent Report<br>Sorted By :: Signal<br>Multiplier :: 1.0000<br>Dilution :: 1.0000<br>Dilution Factor with ISTDs<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Uidth Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>[mAU ] %<br>2 24.496 BB 1.5108 3902.00293 43.34914 51.9619<br>2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 40                                |                                                           |                            |
| Area Percent Report<br>Area Percent Report<br>Marka Percent Report<br>Area Percent Report<br>Sorted By : Signal<br>Multiplier : Dilution Factor with ISTDs<br>Signal 1: VUD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU] %<br>1 19,585 BB 1.3108 3902.00293 43.34914 51.9619<br>2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  | Ä                                 |                                                           | 0                          |
| Area Percent Report<br>Area Percent Report<br>Marka Percent Report<br>Area Percent Report<br>Multiplier & Dilution Factor with ISTDs<br>Signal 1: VUD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU] %<br>1 19,555 BB 1.3108 3902.00293 43.34914 51.9619<br>2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | /≌∖                               |                                                           | $\langle 0 \rangle = 0$    |
| Br Hight Area<br>Martine Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40-                | 1                                 |                                                           |                            |
| Br Hight Area<br>Martine Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX] 1 %<br>Freak RetTime Type Width Area Height Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                   | é                                                         |                            |
| Br Hight Area<br>Martine Type Width Area Height Area<br># [min] [min] mAX *s [mAX ] \$<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAX *s [mAX ] \$<br>1 19.585 BB 1.3108 3902.00233 43.34914 51.9619<br>2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35-                | ( )                               | 8¥:                                                       |                            |
| Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br<br>Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                   | 3                                                         |                            |
| Area Percent Report<br>Area Percent Report<br>Area Percent Report<br>Sorted By :: Signal<br>Multiplier :: 1.0000<br>Dilution :: 1.0000<br>Dilution :: 1.0000<br>Biltiplier 4 Dilution Factor with ISTDS<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *5 [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-                | }                                 | $\langle \rangle$                                         |                            |
| Area Percent Report<br>Area Percent Report<br>Area Percent Report<br>Sorted By :: Signal<br>Multiplier :: 1.0000<br>Dilution :: 1.0000<br>Dilution :: 1.0000<br>Biltiplier 4 Dilution Factor with ISTDS<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *5 [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                |                                   | / \                                                       |                            |
| Image: state of the state                                                                                                                                                                                                                                                                                                                                                   | 20                 |                                   | / \                                                       |                            |
| Image: Signal with the set of the s                                                                                                                                                                                                                                                                                                                                                  | 20 -               |                                   | $  \rangle$                                               | 0                          |
| 3       20       22       24       26       28       min         Area Percent Report         Sorted By :: Signal<br>Multiplier :: 1.0000<br>Dilution :: 1.0000         Dilution :: 1.0000       1       10000         Use Multiplier 4 Dilution Factor with ISTDs         Signal 1: VWD1 Å, Wavelength=220 nm         Peak RetTime Type Width Årea Height Årea<br># [min] [min] mÅU *s [mÅU ] %         *       [mÅU ] %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15-                |                                   |                                                           | 5d                         |
| 0       18       20       22       24       28       28       min         Area Percent Report         Area Percent Report         Sorted By :: Signal         Multiplier :: 1.0000         Dilution :: 1.0000         Use Multiplier & Dilution Factor with ISTDs         Signal 1: VWD1 Å, Wavelength=220 nm         Peak RetTime Type Width Area Height Area         # [min]       [min] mÅU *s [mÅU ]         1       19.585 BB       1.3108 3902.00293         2       24.496 BB       1.6405 3607.35547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10-                | $\downarrow$                      | /                                                         | $\mathbf{X}$               |
| Image: Non-optimized state     Image: Non-optimized state     Image: Non-optimized state       18     20     22     24     28     28     min   Area Percent Report       Image: Non-optimized state     Area Percent Report   Sorted By:       Signal     1.0000       Multiplier     1.0000       Dilution     1.0000       Use Multiplier & Dilution Factor with ISTDs   Signal 1: VWD1 A, Wavelength=220 nm       Peak RetTime Type Width     Area       #     [min]       [min]     [min]       1     19.585 BB       1.3108     3902.00293       2     24.496 BB       1.6405 3607.35547     29.08884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5-                 | )                                 |                                                           |                            |
| Image: Non-optimized state     Image: Non-optimized state     Image: Non-optimized state       18     20     22     24     28     28     min   Area Percent Report       Image: Non-optimized state     Area Percent Report   Sorted By:       Signal     1.0000       Multiplier     1.0000       Dilution     1.0000       Use Multiplier & Dilution Factor with ISTDs   Signal 1: VWD1 A, Wavelength=220 nm       Peak RetTime Type Width     Area       #     [min]       [min]     [min]       1     19.585 BB       1.3108     3902.00293       2     24.496 BB       1.6405 3607.35547     29.08884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                   |                                                           |                            |
| Area Percent Report         Sorted By       :       Signal         Multiplier       :       1.0000         Dilution       :       1.0000         Use Multiplier & Dilution Factor with ISTDs         Signal 1: VMD1 A, Wavelength=220 nm         Peak RetTime Type Width       Area         #       [min]         [min]       [mAU         's       [soft-soft]         's       [soft]         's       [soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | · · · <u>1</u> · · ·              | <del></del>                                               |                            |
| Sorted By : Signal<br>Multiplier : 1.0000<br>Dilution : 1.0000<br>Use Multiplier & Dilution Factor with ISTDs<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                 | 20                                | 22 24                                                     | 26 28 min                  |
| Sorted By : Signal<br>Multiplier : 1.0000<br>Dilution : 1.0000<br>Use Multiplier & Dilution Factor with ISTDs<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                   |                                                           | ====                       |
| Sorted By : Signal<br>Multiplier : 1.0000<br>Dilution : 1.0000<br>Use Multiplier & Dilution Factor with ISTDs<br>Signal 1: VWD1 Å, Wavelength=220 nm<br>Peak RetTime Type Width Årea Height Årea<br># [min] [min] mÅU *s [mÅU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                   | -                                                         |                            |
| Multiplier : 1.0000<br>Dilution : 1.0000<br>Use Multiplier & Dilution Factor with ISTDs<br>Signal 1: VWD1 &, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] m&U *s [m&U] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                   |                                                           | ===                        |
| Dilution : 1.0000<br>Use Multiplier & Dilution Factor with ISTDs<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sorted By          | -                                 |                                                           |                            |
| Use Multiplier & Dilution Factor with ISTDs<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                   |                                                           |                            |
| Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                   |                                                           |                            |
| Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Use Multiplier & I | dilution Factor with              | ISTDs                                                     |                            |
| Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                   |                                                           |                            |
| # [min] [min] mAU *s [mAU ] %<br>      <br>1 19.585 BB 1.3108 3902.00293 43.34914 51.9619<br>2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signal 1: VWD1 A,  | Wavelength=220 nm                 |                                                           |                            |
| # [min] [min] mAU *s [mAU ] %<br>      <br>1 19.585 BB 1.3108 3902.00293 43.34914 51.9619<br>2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D 1. D             |                                   | 17 - 1 - 1 - 1 - 1                                        |                            |
| <br>1 19.585 BB 1.3108 3902.00293 43.34914 51.9619<br>2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                   |                                                           |                            |
| 1 19.585 BB 1.3108 3902.00293 43.34914 51.9619<br>2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                   |                                                           |                            |
| 2 24.496 BB 1.6405 3607.35547 29.08884 48.0381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                   |                                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                   |                                                           |                            |
| Totals : 7509.35840 72.43799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 24.496 BB        | 1.6405 3607.35547                 | 29.08884 48.0381                                          |                            |
| Totals : 7509.35840 72.43799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                   |                                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Totals :           | 7509.35840                        | 72.43799                                                  |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                   |                                                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | = = = = = = = = = = = = = = = = = |                                                           | ====                       |

\*\*\* End of Report \*\*\*

Instrument 1 3/12/2012 9:39:51 AM FX

Data File D:\LC\201201\FX\FX-5-76\FX-5-76 2012-03-10 18-05-03\043-0701.D Sample Wame: L0H-6-94E

|                 | == |                                       |             |                                |
|-----------------|----|---------------------------------------|-------------|--------------------------------|
| Acq. Operator   | :  | FX                                    | Seq. Line : | 7                              |
| Acq. Instrument | ;  | Instrument 1                          | Location :  | Vial 43                        |
| Injection Date  | 1  | 3/10/2012 9:35:26 PM                  | Inj :       | 1                              |
|                 |    | I                                     | nj Volume : | 5 µl                           |
| Acq. Method     | ;  | D: \LC\ 201201\ FX \ FX-5-76\ FX-5-76 | 2012-03-10  | 18-05-03\ASH-50-50-10ML-220MM- |
|                 |    | 40MIN.M                               |             |                                |
| Last changed    | ;  | 12/2/2011 2:34:27 PM by HZL           |             |                                |
| Analysis Method | ;  | D: \LC\ 201201\ FX\ FX-5-76\ FX-5-76  | 2012-03-10  | 18-05-03\043-0701.D\DA.M (ASH- |
|                 |    | 50-50-10ML-220NM-40MIN.M)             |             |                                |
| Last changed    | 1  | 3/12/2012 9:43:14 AM by FX            |             |                                |
|                 |    | (modified after loading)              |             |                                |
| Method Info     | ;  | ASH-50-50-1ML-254MM-50MIN             |             |                                |



Area Percent Report

-----

| Sorted By        | :          | Signal      |       |
|------------------|------------|-------------|-------|
| Multiplier       | :          | 1.0000      |       |
| Dilution         | :          | 1.0000      |       |
| Use Multiplier . | s Dilution | Factor with | ISTDs |

Signal 1: VWD1 A, Wavelength=220 nm

|       |     | •• | Width<br>[min] |       |       | -      | r     |                   |
|-------|-----|----|----------------|-------|-------|--------|-------|-------------------|
| 1     |     | MM | 1.2066         | 63.   | 73604 | 8.8038 | 80e-1 | 0.4491<br>99.5509 |
| Total | 5 : |    |                | 1.419 | 33e4  | 107.2  | 4896  |                   |

110, 1.41/0004 101.240/0

----- \*\*\*\* End of Report \*\*\*

Instrument 1 3/12/2012 9:43:19 AM FX

Data File D:\LC\201111\LQH\LQH-6-5\LQH-6-5 2011-12-06 09-46-05\081-0201.D

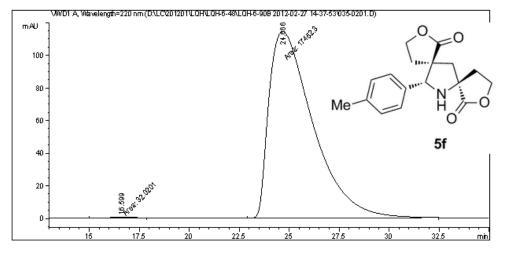
Sample Name: LOH-6-5C \_\_\_\_\_ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seg. Line : 2 Location : Vial 81 Injection Date : 12/6/2011 9:58:27 AM Inj : 1 Inj Volume : 5 µl : D:\LC\201111\LQH\LQH-6-5\LQH-6-5 2011-12-06 09-46-05\ASH-50-50-10ML-220MM. Acg. Method М : 12/6/2011 10:28:19 AM by LQH Last changed (modified after loading) Analysis Method : D:\LC\201111\LQH\LQH-6-5\LQH-6-5 2011-12-06 09-46-05\081-0201.D\DA.M (ASH-50-50-10ML-220MM.M) : 1/2/2012 8:26:38 PM by thl Last changed (modified after loading) Method Info : ASH-50-50-1ML-254MM-50MIN W/D1 A, Wavelength=220 nm (D/LC/201111/LQH/LQH-6-5/LQH-6-5 2011-12-06 09-46-05/081-0201.D) mAU 12 E Care and Tag 10 8 6 5e 4 2 D 18 20 22 24 26 1Ē min \_\_\_\_\_ Area Percent Report \_\_\_\_\_ Sorted By : Signal 1.0000 Multiplier : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU \*s [mAU ] % 1 18.421 MM 1.1746 960.90796 13.63483 50.4237 1.8567 944.75897 8.48041 49.5763 2 23.347 MM 1905.66693 22.11525 Totals : \_\_\_\_\_

Instrument 1 1/2/2012 8:26:43 PM th1

Data File D:\LC\201112\LQH\LQH-6-HUM\LQH-6-HUM 2012-01-02 17-28-02\034-0901.D Sample Mame: LQH-6-43

| Acq. Operator    |                  |                                                                                                                |                 | Seq. Lin       |                         |                   |           |          |            |
|------------------|------------------|----------------------------------------------------------------------------------------------------------------|-----------------|----------------|-------------------------|-------------------|-----------|----------|------------|
| Acq. Instrument  | : Instrum        | ent l                                                                                                          |                 | Location       | n : Vial                | 34                |           |          |            |
| Injection Date   | : 1/2/201        | 2 7:50:15 PM                                                                                                   |                 |                | j: 1                    |                   |           |          |            |
|                  |                  |                                                                                                                |                 | Inj Volum      |                         |                   |           |          |            |
| Acq. Method      |                  | 01112\LQH\L(                                                                                                   | QH-6-HUNN\LQH   | -6-HUN 20.     | 12-01-02                | 17-28-0           | 2\ ASH-50 | -50-10ML | -          |
|                  | 220 <b>NM</b> -3 |                                                                                                                |                 |                |                         |                   |           |          |            |
| Last changed     |                  | 2 5:39:36 PM                                                                                                   | -               |                |                         |                   |           |          | <b>.</b> , |
| Analysis Method  |                  |                                                                                                                |                 | -6-HUN 20.     | 12-01-02                | 17-28-0           | 2\034-09  | 01.D\DA. | 1 (        |
| Last changed     |                  | 50-10ML-220B<br>2 9,22,40 DM                                                                                   |                 |                |                         |                   |           |          |            |
| basi chanyeu     |                  | 2 8:23:40 PM<br>ed after loa                                                                                   |                 |                |                         |                   |           |          |            |
| WVD1 A, We       | velength=220 nr  | n(DALC2011124L)                                                                                                | 2HYLQH-6-HUNYLQ | H-6-HUN 2012-0 | )1-02 17-28-0           | 2\034-0901.0      | 0         |          |            |
| mAU ]            | Ť                |                                                                                                                |                 | 9              | л                       |                   | ·         |          |            |
|                  |                  |                                                                                                                |                 | à              | $\mathcal{A}_{\hat{O}}$ |                   | 0         | -        |            |
| 20               |                  |                                                                                                                |                 | /~>            | нр.<br>•                |                   | ~~        | ¥0       |            |
| 207              |                  |                                                                                                                |                 | -   re         | /                       |                   | \         |          |            |
|                  |                  |                                                                                                                |                 |                | \                       |                   | \m./      |          |            |
|                  |                  |                                                                                                                |                 |                | \                       |                   | . /       |          |            |
| 15 -             |                  |                                                                                                                |                 | 1              | \                       | ſ \               | 1)        | NY:      | 7          |
|                  |                  |                                                                                                                |                 | 1              |                         | U                 | /         | N ş      | ó          |
|                  |                  |                                                                                                                |                 | 1              |                         | 1=                | 1         | Н_//     | 0          |
| 10 -             |                  |                                                                                                                |                 | 1              |                         | -                 |           | 0        |            |
| 1                |                  |                                                                                                                |                 | 1              |                         |                   |           |          |            |
|                  |                  |                                                                                                                |                 | 1              |                         |                   |           | 5e       |            |
| 5-               |                  |                                                                                                                |                 | 1              |                         | \                 |           |          |            |
|                  |                  |                                                                                                                |                 | 1              |                         | $\langle \rangle$ |           |          |            |
|                  |                  | <u>_</u> ~                                                                                                     |                 | 1              |                         |                   |           |          |            |
| 0-1              | 0                | and a second and a second and a second |                 | /              |                         |                   |           |          |            |
|                  |                  | <u> 46°</u>                                                                                                    |                 | /              |                         |                   |           | <u> </u> |            |
|                  |                  |                                                                                                                |                 |                |                         |                   | , , , ,   |          |            |
| 16               | 18               | 20                                                                                                             | 22              |                | 24                      |                   | 26        | 28       | min        |
|                  |                  |                                                                                                                |                 |                |                         |                   |           |          |            |
|                  |                  | Area Percent                                                                                                   |                 |                |                         |                   |           |          |            |
|                  |                  | ======================================                                                                         | -               |                |                         |                   |           |          |            |
|                  |                  |                                                                                                                |                 |                |                         |                   |           |          |            |
| Sorted By        | :                | Signal                                                                                                         |                 |                |                         |                   |           |          |            |
| Multiplier       |                  | 1.0000                                                                                                         |                 |                |                         |                   |           |          |            |
| Dilution         |                  | 1.0000                                                                                                         |                 |                |                         |                   |           |          |            |
| Use Multiplier   | . Dilution       |                                                                                                                | 1 ISTDs         |                |                         |                   |           |          |            |
| -                |                  |                                                                                                                |                 |                |                         |                   |           |          |            |
|                  |                  |                                                                                                                |                 |                |                         |                   |           |          |            |
| Signal 1: VWD1.  | A, Wavelen       | gth=220 ռա                                                                                                     |                 |                |                         |                   |           |          |            |
|                  |                  |                                                                                                                |                 |                |                         |                   |           |          |            |
| Peak RetTime Typ |                  | Area                                                                                                           | Height          | Area           |                         |                   |           |          |            |
| # [min]          |                  | mAU *s                                                                                                         | [mAU]           | 믭              |                         |                   |           |          |            |
|                  |                  |                                                                                                                |                 |                |                         |                   |           |          |            |
| 1 18.661 MM      |                  | 6.80379                                                                                                        |                 |                |                         |                   |           |          |            |
| 2 23.116 MM      | 1.9676           | 2925.06689                                                                                                     | 24.77680        | 99.7679        |                         |                   |           |          |            |
| Totals :         |                  | 2931.87069                                                                                                     | 24 87057        |                |                         |                   |           |          |            |
| 105415 ;         |                  | 2931.01009                                                                                                     | 24.01931        |                |                         |                   |           |          |            |
|                  |                  |                                                                                                                |                 |                |                         |                   |           |          |            |
|                  |                  |                                                                                                                |                 |                |                         |                   |           |          |            |
|                  |                  | *** End of                                                                                                     | Report ***      |                |                         |                   |           |          |            |
|                  |                  |                                                                                                                |                 |                |                         |                   |           |          |            |

Instrument 1 1/2/2012 8:23:46 PM th1


Data File D:\LC\201201\LQH\LQH-6-47\LQH-6-90B 2012-02-27 12-39-56\033-0201.D Sample Wame: LQH-6-47C

| Acq. Operator :                                                                                                                                   | 1.011                                                                               |                                                                                                                     |                                                      |                              |                    |                |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|--------------------|----------------|-----------|
|                                                                                                                                                   |                                                                                     |                                                                                                                     |                                                      | Seq. Line                    |                    |                |           |
| Acq. Instrument :                                                                                                                                 |                                                                                     |                                                                                                                     | -                                                    |                              | : Vial 33          |                |           |
| Injection Date :                                                                                                                                  | 2/21/201                                                                            | 12 12:52:36                                                                                                         |                                                      |                              | : 1                |                |           |
| 1                                                                                                                                                 | B. 1 C. 00                                                                          |                                                                                                                     |                                                      | Inj Volume                   |                    | 0 563 1 637 50 | F.O. 1007 |
| Acq. Method :                                                                                                                                     |                                                                                     | ) TSO T/ PÓH/ PÓ                                                                                                    | IH-6-4 (\LUH-                                        | 0-908 2012                   | -02-21 12-3        | 9-56\ASH-50-   | -20-10ML- |
|                                                                                                                                                   | 220NM.M                                                                             | 1 11.00.10                                                                                                          | Mr. bes. THC                                         |                              |                    |                |           |
| Last changed :<br>Analysis Method :                                                                                                               |                                                                                     | 11 11:03:10                                                                                                         |                                                      | 6-000 2012                   | -02-27 12-2        | 0-561022-020   |           |
| widiysis nernod :                                                                                                                                 |                                                                                     | 50-10ML-220B                                                                                                        |                                                      | 0-900 2012                   | -02-21 12-3        | 9-30(033-020   | 1.D(DA.H  |
| Last changed :                                                                                                                                    |                                                                                     | 12 1:52:21 F                                                                                                        |                                                      |                              |                    |                |           |
| sast chargea .                                                                                                                                    |                                                                                     | ed after loa                                                                                                        |                                                      |                              |                    |                |           |
| WWD1 A, Wave                                                                                                                                      |                                                                                     |                                                                                                                     | 2HVLQH6-47\LQH1                                      | 3-90B 2012-02-27             | 7 12-39-56/033-020 | )1.D)          |           |
| mAU (                                                                                                                                             | 8                                                                                   |                                                                                                                     |                                                      |                              |                    |                |           |
| 60 -                                                                                                                                              | a                                                                                   |                                                                                                                     | ~                                                    |                              |                    |                |           |
| 1 /                                                                                                                                               | -1                                                                                  |                                                                                                                     | 0                                                    | 0                            |                    |                |           |
| 1 1                                                                                                                                               | {                                                                                   |                                                                                                                     | (F                                                   | .0                           |                    |                |           |
| 50-                                                                                                                                               | {                                                                                   |                                                                                                                     | \/                                                   |                              |                    |                |           |
|                                                                                                                                                   |                                                                                     |                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                |                              | ъ                  |                |           |
| 40-                                                                                                                                               | \                                                                                   |                                                                                                                     | 1                                                    |                              | )35294             |                |           |
| ~7 [                                                                                                                                              | 1                                                                                   | //                                                                                                                  | )" N'                                                | 1 /                          | 6.5                |                |           |
| 1 (                                                                                                                                               |                                                                                     | ∕le ∕′_                                                                                                             | -/ H                                                 | <i>ħ</i> −0                  | A.                 |                |           |
| 30-                                                                                                                                               |                                                                                     |                                                                                                                     | - "                                                  | ~ - ·                        | /                  |                |           |
| 1 1                                                                                                                                               | 1                                                                                   |                                                                                                                     |                                                      | )                            | $  \rangle$        |                |           |
| 1 1                                                                                                                                               | 1                                                                                   |                                                                                                                     |                                                      |                              | $I \sim 1$         |                |           |
| 20 -                                                                                                                                              | \                                                                                   |                                                                                                                     | 51                                                   |                              | $  \rangle$        |                |           |
| 1                                                                                                                                                 |                                                                                     |                                                                                                                     |                                                      | 1                            |                    | \              |           |
| 10 -                                                                                                                                              |                                                                                     |                                                                                                                     |                                                      | (                            |                    | $\mathbf{i}$   |           |
| "]                                                                                                                                                |                                                                                     |                                                                                                                     |                                                      | /                            |                    |                |           |
|                                                                                                                                                   |                                                                                     |                                                                                                                     |                                                      |                              |                    |                |           |
| □ □- <u> </u> ∠                                                                                                                                   |                                                                                     |                                                                                                                     |                                                      |                              |                    |                |           |
|                                                                                                                                                   |                                                                                     | 18 21                                                                                                               | ) 22                                                 | 24                           | 26                 | 28             | 30        |
| 14 1                                                                                                                                              | 16                                                                                  |                                                                                                                     |                                                      |                              |                    |                |           |
| 14                                                                                                                                                | 16                                                                                  |                                                                                                                     |                                                      |                              |                    |                |           |
|                                                                                                                                                   | 16                                                                                  |                                                                                                                     |                                                      |                              |                    |                |           |
|                                                                                                                                                   |                                                                                     |                                                                                                                     | Report                                               |                              |                    |                |           |
|                                                                                                                                                   |                                                                                     |                                                                                                                     | Report                                               |                              |                    |                |           |
|                                                                                                                                                   | 2                                                                                   | Area Percent                                                                                                        | Report                                               |                              |                    |                |           |
| sorted By                                                                                                                                         |                                                                                     | Area Percent<br>Signal                                                                                              | Report                                               |                              |                    |                |           |
| Sorted By<br>Multiplier                                                                                                                           | :<br>:                                                                              | Area Percent<br>Signal<br>1.0000                                                                                    | : Report                                             |                              |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution                                                                                                               | :<br>:<br>:<br>:                                                                    | Area Percent<br>Signal<br>1.0000<br>1.0000                                                                          |                                                      |                              |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution                                                                                                               | :<br>:<br>:<br>:                                                                    | Area Percent<br>Signal<br>1.0000<br>1.0000                                                                          |                                                      |                              |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution                                                                                                               | :<br>:<br>:<br>:                                                                    | Area Percent<br>Signal<br>1.0000<br>1.0000                                                                          |                                                      |                              |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &                                                                                           | ;<br>;<br>;<br>Dilution                                                             | Signal<br>1.0000<br>1.0000<br>Factor with                                                                           |                                                      |                              |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &                                                                                           | ;<br>;<br>;<br>Dilution                                                             | Signal<br>1.0000<br>1.0000<br>Factor with                                                                           |                                                      |                              |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &,                                                                      | j<br>;<br>;<br>Dilution<br>, Waveleng                                               | Area Percent<br>Signal<br>1.0000<br>1.0000<br>Factor with<br>gth=220 nm                                             | ı ISTDs                                              |                              |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type                                                 | j<br>;<br>;<br>Dilution<br>, Waveleng<br>2 Width                                    | Area Percent<br>J.0000<br>1.0000<br>Factor with<br>gth=220 nm<br>Area                                               | ı ISTDs<br>Height                                    | <br><br>Агеа<br>3            |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]                                      | ;<br>;<br>;<br>Dilution<br>, Waveleng<br>2 Width<br>[min]                           | Area Percent<br>J.0000<br>1.0000<br>Factor with<br>gth=220 nm<br>Area<br>mAU *s                                     | u ISTDs<br>Height<br>[mAU ]                          | 뫕                            |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]                                      | ;<br>;<br>Dilution<br>, Waveleng<br>2 Width<br>[min]                                | Area Percent<br>1.0000<br>1.0000<br>Factor with<br>9th=220 nm<br>Area<br>mAU *s                                     | u ISTDs<br>Height<br>[mAU]                           | ।<br>                        |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>                                  | :<br>:<br>:<br>Dilution<br>, Waveleng<br>e Width<br>[min]<br>-                      | Area Percent<br>Signal<br>1.0000<br>Factor with<br>gth=220 nm<br>Area<br>mAU *s<br>4597.03076                       | Height<br>[mAU ]<br>60.97140                         | ₽<br> <br>50.0254            |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]                                      | :<br>:<br>:<br>Dilution<br>, Waveleng<br>e Width<br>[min]<br>-                      | Area Percent<br>1.0000<br>1.0000<br>Factor with<br>9th=220 nm<br>Area<br>mAU *s                                     | Height<br>[mAU ]<br>60.97140                         | ₽<br> <br>50.0254            |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>                                  | :<br>:<br>:<br>Dilution<br>, Waveleng<br>e Width<br>[min]<br>-                      | Area Percent<br>Signal<br>1.0000<br>Factor with<br>gth=220 nm<br>Area<br>mAU *s<br>4597.03076                       | Height<br>[mAU ]<br>60.97140<br>32.83550             | ₽<br> <br>50.0254            |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>   <br>1 16.035 BB<br>2 25.294 MM | :<br>:<br>:<br>Dilution<br>, Waveleng<br>e Width<br>[min]<br>-                      | Area Percent<br>                                                                                                    | Height<br>[mAU ]<br>60.97140<br>32.83550             | ₽<br> <br>50.0254            |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>   <br>1 16.035 BB<br>2 25.294 MM | :<br>:<br>:<br>Dilution<br>, Waveleng<br>e Width<br>[min]<br>-                      | Area Percent<br>                                                                                                    | Height<br>[mAU ]<br>60.97140<br>32.83550             | ₽<br> <br>50.0254            |                    |                |           |
| Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>   <br>1 16.035 BB<br>2 25.294 MM | ;<br>;<br>;<br>Dilution<br>, Waveleng<br>e Width<br>[min]<br>- <br>1.1492<br>2.3817 | Signal<br>1.0000<br>1.0000<br>Factor with<br>gth=220 nm<br>Årea<br>mAU *s<br>4697.03076<br>4692.26660<br>9389.29736 | Height<br>[mAU ]<br>60.97140<br>32.83550<br>93.80690 | ¥<br> <br>50.0254<br>49.9746 |                    |                |           |

Instrument 1 2/28/2012 1:52:26 PM LQH

Data File D:\LC\201201\LQH\LQH-6-48\LQH-6-90B 2012-02-27 14-37-53\035-0201.D Sample Wame: LQH-6-48C

|                 | == |                                                                           |
|-----------------|----|---------------------------------------------------------------------------|
| Acq. Operator   | :  | LQH Seq. Line : 2                                                         |
| Acq. Instrument | :  | Instrument 1 Location : Vial 35                                           |
| Injection Date  | :  | 2/27/2012 4:03:25 PM Inj: 1                                               |
|                 |    | Inj Volume : 5 µl                                                         |
| Acq. Method     | :  | D:\LC\201201\LQH\LQH-6-48\LQH-6-90B 2012-02-27 14-37-53\ASH-50-50-10ML-   |
|                 |    | 220NM-40MIN.M                                                             |
| Last changed    | :  | 12/2/2011 2:34:27 PM by HZL                                               |
| Analysis Method | :  | D:\LC\201201\LQH\LQH-6-48\LQH-6-90B 2012-02-27 14-37-53\035-0201.D\DA.M ( |
|                 |    | ASH-50-50-10ML-220NM-40MIN.M)                                             |
| Last changed    | :  | 3/9/2012 11:34:56 AM by FX                                                |
|                 |    | (modified after loading)                                                  |
| Method Info     | :  | ASH-50-50-1ML-254NM-50MIN                                                 |



## Area Percent Report

## 

| Sorted By        | :        | Signal      |       |
|------------------|----------|-------------|-------|
| Multiplier       | :        | 1.0000      |       |
| Dilution         | :        | 1.0000      |       |
| Use Multiplier a | Dilution | Factor with | ISTDs |

## Signal 1: VWD1 A, Wavelength=220 nm

===

| Peak RetTi<br># [mir |       |        |       |      |       |       | Area<br>% |
|----------------------|-------|--------|-------|------|-------|-------|-----------|
|                      |       |        |       |      | ·<br> | ·     |           |
| 1 16.9               |       | •      |       |      |       |       | 0.1831    |
| 2 24.6               | 66 MM | 2.5451 | 1.745 | 23e4 | 114.2 | 28714 | 99.8169   |
|                      |       |        |       |      |       |       |           |
| Totals :             |       |        | 1.748 | 43e4 | 114.0 | 58474 |           |

\*\*\*\* End of Report \*\*\*

Instrument 1 3/9/2012 11:35:02 AM FX

Data File D:\LC\201201\LQH\LQH-6-93\LQH-6-93C 2012-02-28 09-19-17\002-0201.D Sample Wame: LQH-6-93A

| Acq. Operator :              | LQH                            | Seq. L                         | іле: 2                     |                |
|------------------------------|--------------------------------|--------------------------------|----------------------------|----------------|
| Acq. Instrument :            | Instrument 1                   |                                | ion : Vial 2               |                |
| Injection Date :             | 2/28/2012 10:00:               | 47 AM                          | Inj: 1                     |                |
|                              |                                | Inj Vol                        | ume : 5 µl                 |                |
| Acq. Method :                | D:\LC\201201\LQH               | \LQH-6-93\LQH-6-93C 2          | 012-02-28 09-19-17\ASH     | -50-50-10ML-   |
|                              | 220 <b>NM.M</b>                |                                |                            |                |
| Last changed :               | 2/28/2012 10:27:               | 02 AM by LQH                   |                            |                |
|                              | (modified after                |                                |                            |                |
| Analysis Method :            | D:\LC\201201\LQH               | \LQH-6-93\LQH-6-93C 2          | 012-02-28 09-19-17\002-    | -0201.D\DA.M ( |
|                              | ASH-50-50-10ML-2               | 20 <b>NM.M</b> )               |                            |                |
| Last changed :               | 3/9/2012 11:24:1               |                                |                            |                |
| 10/D1 0 10h -                | (modified after                |                                | 00.00.00.10.13000.0001.50  |                |
|                              | iengin=220 nm (D:\CC20120<br>— | 1/LQH/LQH-6-93/LQH-6-93C 2012- | 02-28 09-19-17 002-0201.D) |                |
| mAU                          | Ē                              |                                |                            |                |
| 175-                         | /≓\                            |                                | .0.                        | 0              |
|                              | 1 \                            |                                | ~                          | FU             |
| 150 -                        | 1 \                            |                                |                            |                |
|                              | {                              |                                | `m/                        |                |
|                              |                                |                                |                            |                |
| 125 -                        |                                | -                              | 11 11/                     |                |
|                              |                                | 18.211                         | ų į                        | N to l         |
| 100 -                        |                                | Ť.                             |                            |                |
|                              |                                |                                | Me                         | 0              |
| 75 -                         |                                |                                |                            | _              |
|                              |                                |                                |                            | 5g             |
| 50-                          |                                |                                | $\mathbf{X}$               | •              |
|                              |                                | /                              | $\mathbf{i}$               |                |
| 25-                          |                                | /                              |                            |                |
|                              |                                | /                              |                            |                |
| ₀ <u>∔</u>                   | J`                             | <u> </u>                       |                            | <u> </u>       |
|                              |                                |                                | · · · · · · · ·            | · · · · · · ·  |
| 12                           | 14 1                           | 6 18                           | 20 22                      | 24 min         |
|                              |                                |                                |                            |                |
|                              |                                |                                |                            |                |
|                              | Area Perc                      | ent Report                     |                            |                |
|                              |                                |                                |                            |                |
|                              |                                |                                |                            |                |
| Sorted By                    | : Signa                        |                                |                            |                |
| Multiplier                   | : 1.000                        |                                |                            |                |
| Dilution<br>Une Wultiplier c | : 1.000<br>Dilution Fostor w   |                                |                            |                |
| Use Multiplier &             | DILUCION MACCOL W              | ICH ISIDS                      |                            |                |
|                              |                                |                                |                            |                |
| Signal 1: VWDl A,            | Novelongth-220 n               | -                              |                            |                |
| ərginar i: vombi A,          | waverength=220 h               | 11                             |                            |                |
| Peak RetTime Type            | Width Area                     | Height Area                    |                            |                |
| # [min]                      |                                | [mAU ] %                       |                            |                |
|                              |                                |                                | -1                         |                |
|                              |                                | 4 ' 188.41473 ' 50.442         |                            |                |
| 2 18.211 BB                  |                                | 4 95.76410 49.558              |                            |                |
|                              |                                |                                | -                          |                |
| Totals :                     | 2.26614e                       | 4 284.17883                    |                            |                |
|                              |                                |                                |                            |                |
|                              |                                |                                |                            |                |
|                              |                                |                                |                            |                |

\*\*\* End of Report \*\*\*

Instrument 1 3/9/2012 11:24:25 AM FX

Data File D:\LC\201201\FX\FX-5-76\FX-5-76 2012-03-10 18-05-03\041-0501.D

Sample Name: LQH-6-94A \_\_\_\_\_ Acq. Operator : FX Seg. Line : 5 Acq. Instrument : Instrument 1 Location : Vial 41 Injection Date : 3/10/2012 8:22:21 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\FX\FX-5-76\FX-5-76 2012-03-10 18-05-03\ASH-50-50-10ML-220IM-Acq. Method 30MIN.M Last changed : 1/2/2012 5:39:36 PM by thl Analysis Method : D:\LC\201201\FX\FX-5-76\FX-5-76 2012-03-10 18-05-03\041-0501.D\DA.M (ASH-50-50-10ML-220NM-30MIN.M) Last changed : 3/12/2012 9:34:50 AM by FX (modified after loading) WWDIA, Wavelength=220 nm (DALC/201201VFXVFX-5-76VFX-5-762012-03-1018-05-03/041-0501.D) mAU \*\*\*\*\* 200 175 150 125 100 О Me 75 5g 50 Rea A La 25 730 Û 14 16 18 20 22 24 min Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU ] 5 # [min] 1 14.730 MM 0.7914 21.11814 4.44722e-1 0.0833 2 17.721 MM 2.0359 2.53294e4 207.35204 99.9167 Totals : 2.53505e4 207.79676 

\*\*\* End of Report \*\*\*

Instrument 1 3/12/2012 9:34:58 AM FX

Data File D:\LC\201201\LQH\LQH-6-108B\LQH-6-108B 2012-03-09 08-44-15\062-0301.D Sample Name: LQH-6-106A

\_\_\_\_\_ Acq. Operator : lqh Acq. Instrument : Instrument l Seg. Line : 3 Location : Vial 62 Injection Date : 3/9/2012 9:51:13 AM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\LQH\LQH-6-108B\LQH-6-108B 2012-03-09 08-44-15\ASH-50-50-10ML-Acg. Method 220**NM.M** Last changed : 12/6/2011 11:03:10 AM by TMC Analysis Method : D:\LC\201201\LQH\LQH-6-108B\LQH-6-108B 2012-03-09 08-44-15\062-0301.D\DA.M (ASH-50-50-10ML-220MM.M) Last changed : 3/9/2012 11:38:06 AM by FX (modified after loading) W/D1 A, Wavelength=220 nm (DALC/2012011/LOH/LOH/6-108B/LOH/6-108B/2012-03-09 08-44-15/062-0301.D) Sa KA mAU ã  $\mathbf{C}$ 80 18.926 60 0 Me 5h 40 20 12 14 16 18 20 22 min \_\_\_\_\_ Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU ] 5 # [min] 1 13.251 MM 0.8895 4728.19580 88.59309 52.5801 2 18.926 BB 1.5145 4264.17236 41.20830 47.4199 Totals : 8992.36816 129.80140 \_\_\_\_\_ \*\*\* End of Report \*\*\*

Instrument 1 3/9/2012 11:38:11 AM FX

Data File D:\LC\201201\FX\FX-5-76\FX-5-76 2012-03-10 18-05-03\044-0801.D

Sample Name: LQH-6-111 \_\_\_\_\_ Acq. Operator : FX Seq. Line : 8 Acq. Instrument : Instrument 1 Location : Vial 44 Injection Date : 3/10/2012 10:16:50 PM Inj : 1 Inj Volume : 5 µl : D:\LC\201201\FX\FX-5-76\FX-5-76 2012-03-10 18-05-03\ASH-50-50-10ML-220IM-Acq. Method 30MIN.M Last changed : 1/2/2012 5:39:36 PM by thl Analysis Method : D:\LC\201201\FX\FX-5-76\FX-5-76 2012-03-10 18-05-03\044-0801.D\DA.M (ASH-50-50-10ML-220NM-30MIN.M) Last changed : 3/12/2012 9:44:56 AM by FX (modified after loading) WWDIA, Wavelength=220 nm (DALC/201201VFXVFX-5-76VFX-5-762012-03-1018-05-03/044-0801.D) mAU . . . . 50 40 30 Mé 5h 20 10 175 D 16 18 20 ź 12 14 24 min Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier : 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU ] 5 # [min] 1 13.175 MM 0.8521 9.71918 1.90107e-1 0.1598 1.7092 6070.97803 59.20070 99.8402 2 18.321 MM Totals : 6080.69720 59.39081 \*\*\* End of Report \*\*\*

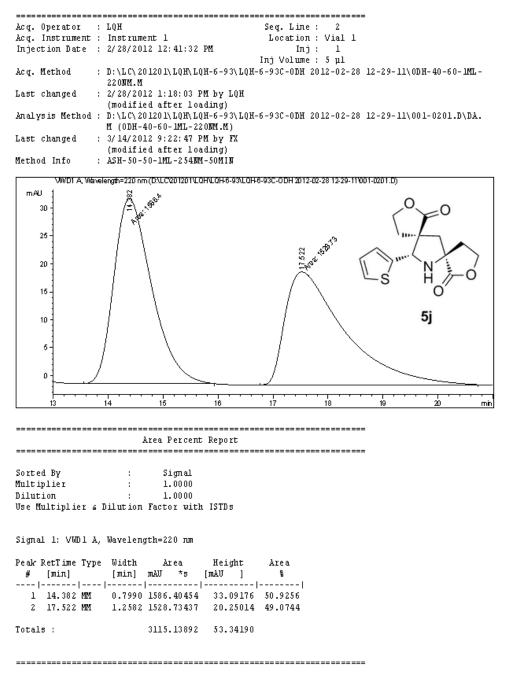
Instrument 1 3/12/2012 9:45:01 AM FX

Data File D:\LC\201201\LQH\LQH-6-90\LQH-6-90B 2012-02-27 08-47-40\032-0401.D Sample Wame: LQH-6-47B

| Acq. Operator :    | LQH                                       | Seq. Line                       | : 4                                                       |                 |      |
|--------------------|-------------------------------------------|---------------------------------|-----------------------------------------------------------|-----------------|------|
| Acq. Instrument :  |                                           | -                               | : Vial 32                                                 |                 |      |
| -                  | 2/27/2012 10:22:16                        |                                 | : 1                                                       |                 |      |
|                    | -, - ,                                    | Inj Volume                      |                                                           |                 |      |
| Acq. Method :      | D:\LC\201201\LQH\LQ<br>220 <b>NM.M</b>    | H-6-90/LQH-6-90B 2012           |                                                           | ASH-50-50-10ML- |      |
| Last changed :     | 2/27/2012 10:21:08<br>(modified after loa | •                               |                                                           |                 |      |
| Analysis Method :  |                                           | H-6-90\LQH-6-90B 2012           | -02-27 08-47-40\                                          | 032-0401.D\DA.M | (    |
| Last changed :     | 3/9/2012 11:08:16 A                       |                                 |                                                           |                 |      |
|                    | (modified after loa                       | ding)                           |                                                           |                 |      |
| WWD1 A, Wavele     | ength=220 nm (DALC/201201/LQ              | HVLQH-6-90\LQH-6-908 2012-02-27 | 08-47-40/032-0401.D)                                      |                 |      |
| 20                 | °°                                        |                                 |                                                           | (°)             |      |
| 15-                |                                           |                                 | <sup>∰</sup> a <sup>a</sup> <sup>a</sup> <sup>a</sup> MeO | - Come (        | N -0 |
|                    |                                           |                                 |                                                           | ;               | 5i   |
| 5-                 |                                           | /                               |                                                           |                 |      |
| 0                  | <u> </u>                                  |                                 |                                                           | ····            |      |
|                    |                                           |                                 |                                                           |                 |      |
| 35                 | 40 46                                     | 50 55 60                        | 65                                                        | 70 75           | min  |
|                    | Area Percent                              | Report                          |                                                           |                 |      |
| Sorted By          | : Sigmal                                  |                                 |                                                           |                 |      |
| Multiplier         | : 1.0000                                  |                                 |                                                           |                 |      |
| Dilution           | : 1.0000                                  |                                 |                                                           |                 |      |
| Use Multiplier & D | )ilution Factor with                      | ISTDs                           |                                                           |                 |      |
| Signal 1: VWD1 A,  | Wavelength=220 nm                         |                                 |                                                           |                 |      |
| Peak RetTime Type  | Width Area                                | Height Area                     |                                                           |                 |      |
| # [min]            | [min] mAU *s                              | [mAU ] %                        |                                                           |                 |      |
|                    | 3.2880 4798.29834                         | <br>2л 32262 ло 8138            |                                                           |                 |      |
|                    | 5.2000 4190.29034<br>6.7069 4834.17285    |                                 |                                                           |                 |      |
| Totals :           | 9632.47119                                | 36.33559                        |                                                           |                 |      |
|                    |                                           |                                 |                                                           |                 |      |

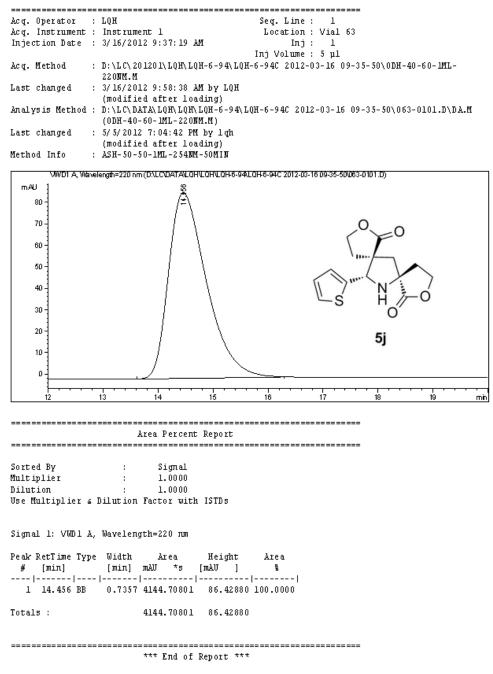
\*\*\* End of Report \*\*\*

Instrument 1 3/9/2012 11:08:22 AM FX


Data File D:\LC\201201\LQH\LQH-6-48\LQH-6-90B 2012-02-27 14-37-53\034-0101.D Sample Name: LQH-6-48B

|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   |                                  | =======    | ====            |            |                      |                                       |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|------------|-----------------|------------|----------------------|---------------------------------------|
| Acq. Operator :                                                                                                  | LQH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |                                                   | Seq. Line                        | : 1        |                 |            |                      |                                       |
| Acq. Instrument :                                                                                                | Inst rument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ; 1                                                                                    |                                                   | Location                         | : Vial     | 34              |            |                      |                                       |
| Injection Date :                                                                                                 | 2/27/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2:39:24 P                                                                              | М                                                 | Inj                              | : 1        |                 |            |                      |                                       |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   | Inj Volume                       | : 5 µl     |                 |            |                      |                                       |
| Acq. Method :                                                                                                    | D:\LC\2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201\LQH\LQ                                                                             | H-6-48\LQH-                                       | 6-90B 2012                       | -02-27     | 14-37-53        | \ASH-50-   | 50-10ML-             |                                       |
|                                                                                                                  | 220 <b>NM.M</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   |                                  |            |                 |            |                      |                                       |
| Last changed :                                                                                                   | 2/27/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                   |                                  |            |                 |            |                      |                                       |
|                                                                                                                  | (modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                   |                                  |            |                 |            |                      |                                       |
| Analysis Method :                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   | 6-90B 2012                       | -02-27     | 14-37-53        | \034-010   | 1.D\DA.M             | (                                     |
|                                                                                                                  | ASH-50-50-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                   |                                  |            |                 |            |                      |                                       |
| Last changed :                                                                                                   | 3/9/2012 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                   |                                  |            |                 |            |                      |                                       |
| V0/D1 A 10bie                                                                                                    | (modified<br>length=220 pm (D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>arter 10a</u><br>N.C201201V.0                                                       | . <u>a17.g</u> )<br>HVLQH-6-48\LQH-0              | 3-90B 2012-02-27                 | 14-37-5300 | 340101 FN       |            |                      |                                       |
| mAU ł                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   |                                  | 14-01-00-0 | ,+0101.0)       |            |                      |                                       |
|                                                                                                                  | Ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                   |                                  |            |                 |            |                      |                                       |
|                                                                                                                  | (The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   |                                  | ~          |                 |            |                      |                                       |
|                                                                                                                  | {4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | рі <sup>в</sup><br>1                                                                   |                                                   |                                  | <u> </u>   | -0              |            |                      |                                       |
| 50 -                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | }                                                                                      |                                                   |                                  | 5          | F               |            |                      |                                       |
|                                                                                                                  | Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                      |                                                   |                                  | \          |                 |            |                      |                                       |
| 40-                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                      |                                                   |                                  | /          |                 |            |                      |                                       |
|                                                                                                                  | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | {                                                                                      |                                                   |                                  | 1          | 1               | >          |                      |                                       |
|                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                   | //                               | ·]· `      | N               | 2          |                      |                                       |
| 30-                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        | MeC                                               | $) \frown =$                     | J          | Н //-           | -0         |                      |                                       |
|                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                   | -                                |            | O'              |            |                      |                                       |
| 20-                                                                                                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                      |                                                   |                                  |            | -               |            |                      |                                       |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   |                                  | 1          | 5i              |            |                      |                                       |
| 1 4                                                                                                              | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                      |                                                   |                                  |            |                 |            |                      |                                       |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>ر</u>                                                                               |                                                   |                                  |            |                 |            |                      |                                       |
| 10-                                                                                                              | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                   |                                  |            |                 |            | Se <sup>6</sup>      |                                       |
| 10 -                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   |                                  |            |                 | 89<br>- 28 |                      |                                       |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _\                                                                                     | <u> </u>                                          |                                  |            |                 | \$1.58<br> |                      |                                       |
| 10 -<br>0                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | <u> </u>                                          |                                  |            |                 | \$1.58<br> |                      |                                       |
| 0                                                                                                                | ,<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |                                                   | 50                               |            |                 | -00        | 99 <sup>99</sup><br> |                                       |
| 0                                                                                                                | 0 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | 45                                                | 50                               | 5:         |                 | `,<br>     |                      |                                       |
| 0                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | 45                                                |                                  |            |                 | `,<br>     |                      | , , , , , , , , , , , , , , , , , , , |
| 0                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                   |                                  |            | 5               | `,<br>     |                      |                                       |
| 0                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Percent                                                                              |                                                   |                                  |            | ,<br>5<br>===== | `,<br>     |                      | , , , ,<br>min                        |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Percent                                                                              | Report                                            |                                  |            | <br>5<br>= ==== | `,<br>     |                      |                                       |
| 0                                                                                                                | Are<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a Percent<br>Signal                                                                    | Report                                            |                                  |            |                 | `,<br>     |                      |                                       |
| o<br>25 3                                                                                                        | Аге<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a Percent<br>Signal<br>1.0000                                                          | Report                                            |                                  |            | <br>5<br>= ==== | `,<br>     |                      | <br>min                               |
| Sorted By<br>Multiplier<br>Dilution                                                                              | Are<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a Percent<br>Signal<br>1.0000<br>1.0000                                                | Report                                            |                                  |            | 5               | `,<br>     |                      | min                                   |
| o<br>25 3                                                                                                        | Are<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a Percent<br>Signal<br>1.0000<br>1.0000                                                | Report                                            |                                  |            | <br>5<br>       | `,<br>     |                      | , , , , , , , , , , , , , , , , , , , |
| Sorted By<br>Multiplier<br>Dilution                                                                              | Are<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a Percent<br>Signal<br>1.0000<br>1.0000                                                | Report                                            |                                  |            |                 | `,<br>     |                      | min                                   |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier 4                                                          | Are<br>:<br>:<br>Dilution Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Signal<br>1.0000<br>1.0000<br>actor with                                               | Report                                            |                                  |            | <br>5<br>       | `,<br>     |                      |                                       |
| Sorted By<br>Multiplier<br>Dilution                                                                              | Are<br>:<br>:<br>Dilution Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Signal<br>1.0000<br>1.0000<br>actor with                                               | Report                                            |                                  |            | ,<br>5<br>===== | `,<br>     |                      |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VMD1 A,                                     | Line Control of Contro | ea Percent<br>Signal<br>1.0000<br>1.0000<br>actor with<br>1=220 nm                     | Report                                            |                                  |            |                 | `,<br>     |                      |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type                | Line Contract of the second se | ea Percent<br>Signal<br>1.0000<br>1.0000<br>actor with<br>n=220 nm<br>Area             | Report<br>. ISTDs<br>Height                       |                                  |            |                 | `,<br>     |                      |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VMD1 A,<br>Peak RetTime Type<br># [min]     | Are<br>:<br>:<br>Dilution Fa<br>Wavelength<br>: Didth<br>[min] mJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ea Percent<br>Signal<br>1.0000<br>1.0000<br>actor with<br>n=220 nm<br>Area<br>W *s     | Report<br>. ISTDs<br>Height<br>[m&U]              | Area                             |            |                 | `,<br>     |                      |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]     | E Constant of the second secon | ea Percent<br>Signal<br>1.0000<br>1.0000<br>actor with<br>1=220 nm<br>Area<br>W *s     | Report<br>ISTDs<br>Height<br>[mAU ]               | مرتبع<br>مرتبع<br>مرتبع<br>مرتبع |            | <br>5<br>====   | `,<br>     |                      |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VMD1 A,<br>Peak RetTime Type<br># [min]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ea Percent<br>Signal<br>1.0000<br>1.0000<br>actor with<br>1=220 nm<br>Area<br>W *s<br> | Report<br>ISTDs<br>Height<br>[mAU ]               | Area<br>%<br>99.9448             |            |                 | `,<br>     |                      | mb                                    |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ea Percent<br>Signal<br>1.0000<br>1.0000<br>actor with<br>1=220 nm<br>Area<br>W *s<br> | Report<br>. ISTDs<br>Height<br>[m&V ]<br>60.35048 | Area<br>%<br>99.9448             |            |                 | `,<br>     |                      | mb                                    |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br> | Line (1998)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ea Percent<br>Signal<br>1.0000<br>1.0000<br>actor with<br>1=220 nm<br>Area<br>W *s<br> | Report<br>ISTDs<br>Height<br>[mAU ]<br>           | Area<br>%<br>99.9448             |            |                 | `,<br>     |                      |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VUD1 Å,<br>Peak RetTime Type<br># [min]<br> | Line (1998)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ea Percent<br>1.0000<br>1.0000<br>actor with<br>1=220 nm<br>Area<br>W *s<br>           | Report<br>ISTDs<br>Height<br>[mAU ]<br>           | Area<br>%<br>99.9448             |            |                 | `,<br>     |                      |                                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VUD1 Å,<br>Peak RetTime Type<br># [min]<br> | Line (1998)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ea Percent<br>1.0000<br>1.0000<br>actor with<br>1=220 nm<br>Area<br>W *s<br>           | Report<br>ISTDs<br>Height<br>[mAU ]<br>           | Area<br>%<br>99.9448             |            |                 | `,<br>     |                      | mh                                    |

\*\*\* End of Report \*\*\*


Instrument 1 3/9/2012 11:33:04 AM FX

Data File D:\LC\201201\LQH\LQH-6-93\LQH-6-93C-0DH 2012-02-28 12-29-11\001-0201.D Sample Wame: LQH-6-93C



Instrument 1 3/14/2012 9:22:53 PM FX

Data File D:\LC\DATA\LQH\LQH\LQH-6-94\LQH-6-94C 2012-03-16 09-35-50\063-0101.D Sample Wame: LQH-6-94C



Instrument 1 5/5/2012 7:04:49 PM lqh

Data File D:\LC\201201\LQH\LQH-6-93\LQH-6-93C-0DH 2012-02-28 12-29-11\003-0301.D Sample Name: LQH-6-93D

| Acq. Operator :: LOH Seq. Line : 3<br>Acq. Instrument : Instrument 1<br>Inspection Date :: 2/28/2012 1:19:47 PM Inj : 1<br>Inj Volume : 5 µl<br>Acq. Hethod :: D:\LC\201201\LQH.LQH.6-93(LOH-6-93CODH 2012-02-28 12-29-11\ASH-50-50-<br>IOM -220MLM<br>Last changed :: 2/28/2012 1:53:43 PM by LQH<br>(modified after loading)<br>Analysis Method :: D:\LC\201201\LQH.LQH-6-93(LOH-6-93C-DDH 2012-02-28 12-29-11\003-0301.D\DA.<br>M (ASH-50-50-10ML-220MLM)<br>Last changed :: D'ACC 201201\LQH.LQH-6-93(LOH-6-93C-DDH 2012-02-28 12-29-11\003-0301.D\DA.<br>M (ASH-50-50-10ML-220MLM)<br>Last changed :: D'ACC 201201\LQH.LQH-6-93(LOH-6-93C-DDH 2012-02-28 12-29-11\003-0301.D\DA.<br>M (ASH-50-50-10ML-220MLM)<br>Last changed :: D'ACC 201201\LQH.LQH-6-93(LOH-6-93C-DDH 2012-02-28 12-29-11\003-0301.D\DA.<br>M (ASH-50-50-10ML-220MLM)<br>Isot changed :: D'ACC 201201\UQHLQH-6-93(LOH-6-93C-DDH 2012-02-28 12-29-11\003-0301.D\DA<br>M (ASH-50-50-10ML-220MLM)<br>Isot changed :: D'ACC 201201\UQHLQH-6-93(LOH-6-93C-DDH 2012-02-28 12-29-11\003-0301.D\DA<br>M (ASH-50-50-10ML-220MLM)<br>Isot changed :: D'ACC 201201\UQHLQH-6-93(LOH-6-93C-DDH 2012-02-28 12-29-11\003-0301.D\DA<br>M (ASH-50-50-10ML-220MLM)<br>M (ASH-50-50-10ML-220MLM)<br>M (ASH-50-50-10ML-220MLM)<br>M (ASH-50-50-10ML-220MLM)<br>M (ASH-50-50-10ML-220ML)<br>Ast changed :: D'ACC 201201\UQHLQH-6-93(LOH-6-93C-DDH 2012-02-28 12-29-11\003-0301.D\DA<br>M (ASH-50-50-10ML-220MLM)<br>M (ASH-50-50-10ML-220ML)<br>M (ASH-50-50-10ML-220ML)<br>M (ASH-50-50-10ML-220ML)<br>Softed By :: Signal<br>M (ASH-50-50-10ML-220 MM<br>Peak RetTime Type Uidth Area Height Area<br># [MIL] [MIL] M Asta I Height Area<br># [MIL] [MIL] M Asta I Height Area<br># [MIL] [MIL] M 4.3220 9971.19336 38.45141 49.6121<br>Totals : 2.00983e4 150.24231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                            |                                                                                                                    |                                                     |                            |                |                |                                            |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|----------------|----------------|--------------------------------------------|---------------------------------------|
| Acq. Instrument : Instrument 1<br>Injection Date : 2/28/2012 1:19:47 PM<br>Inj : 1<br>Inj Volume : 5 µl<br>Acq. Method : D:\LC\2012012\LQM.LQM.LQM-6-93C-0DH 2012-02-28 12-29-11\ASH-50-50-<br>1000-220MR.M<br>(solitical after 1 loading)<br>Analysis Method : D:\LC\2012012\LQM.LQM-6-93LOH-6-93C-0DH 2012-02-28 12-29-11\003-0301.D\DA.<br>M (355-05-0-10ML-220MR.M)<br>Last changed : 3/9/2012 11:28:14 AM by TX<br>(modified after 1 loading)<br>MVOI A Washingm=-220 mn(DALCONCOME 493LOH-6-93C-0DH 2012-02-28 12:29-11\003-0301.D\DA.<br>M (1 ASH:50-50-10ML-220MR.M)<br>Last changed : 3/9/2012 11:28:14 AM by TX<br>(modified after 1 loading)<br>MVOI A Washingm=-220 mn(DALCONCOME 493LOH-6-93C-0DH 2012-02-28 12:29-11\003-0301.D\DA.<br>M (1 ASH:50-50-10ML)<br>M (1 A Washingm=-220 mn(DALCONCOME 493LOH-6-93C-0DH 2012-02-28 12:29-11\003-0301.D)<br>M (1 A Washingm=-220 mn(DALCONCOME 493LOH-6-93C-0DH 2012-02-28 12:29-11003-0301.D)<br>M (1 A Washingm=-220 mn(DALCONCOME 4000 4000 4000 4000 4000 4000 4000 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acq. Operator :                                                                                                  | LQH                                                                        |                                                                                                                    |                                                     | Seq. Line                  | : 3            |                |                                            |                                       |
| Inj Volumë : 5 pl<br>Acq. Hethod : D:\LC\201201\L0H\L0H\c0Hc-6-93\L0H-6-93C-0DH 2012-02-28 12-29-11\ASH-50-50-<br>10HL-220H.H<br>Last changed : $2/28/2012$ 1:53: 43 PH by L0H<br>(modified after loading)<br>Analysis Method : D:\LC\201201L0H\L0H-6-93L0H-6-93C-0DH 2012-02-28 12-29-11\003-0301.D\DA.<br>M (ASH-50-50-100H-220HH)<br>Last changed : $3/9/2012$ 11:28:14 AM by FX<br>(modified after loading)<br>(modified after loading)<br>(modified after loading)<br>(modified after loading)<br>(modified after loading)<br>MUD A Wawlergt=220 nm (D)LC00120100H0H64-93C-0DH 2012-02-28 1229-11003-0001D)<br>mAU<br>00<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acq. Instrument :                                                                                                | Instrume                                                                   | nt l                                                                                                               |                                                     | Location                   | ι: Vial        | 3              |                                            |                                       |
| Inj Volumë : 5 µl<br>Acq. Method : D:\LC\201201\L0H\L0H-6-93C-0DH 2012-02-28 12-29-11\ASH-50-50-<br>10ML-220MT.M<br>Last changed : $3/20/2012$ 11:33:43 PM by L0H<br>(modified after 1 loading)<br>Analysis Method : D:\LC\201201\L0H\L0H-6-93C0H-6-93C-0DH 2012-02-28 12-29-11\003-0301.D\DA.<br>m (XSH-50-50-10HL<br>(modified after 1 loading)<br>(modified after 1 loading)<br>(modified after 1 loading)<br>(modified after 1 loading)<br>(modified after 1 loading)<br>MUDI A Washingth=220 nn(DALC201201LOHL0H-6-93C-0DH 2012-02-28 12-29-11\003-0301.D\DA.<br>m 40<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Injection Date :                                                                                                 | 2/28/201                                                                   | 2 1:19:47 H                                                                                                        | PM                                                  | In                         | ): 1           |                |                                            |                                       |
| $\frac{1000 - 2200 \text{ M} \text{ M}}{1001 \text{ field after loading}}}$ Analysis Method : D:\LC(201201)LD(RLORE-6-93)LORE-6-93C-ODH 2012-02-28 12-29-11\003-0301.D\DA.<br>M(X)= 50-50-1000 - 2200 M(D)LORE-6-93C-ODH 2012-02-28 12-29-11\003-0301.D\DA.<br>M(X)= 50-50-1000 - 2200 M(D)LORE-200 M(D)<br>Last changed : 3/9/2012 11:28:14 AM by FX<br>(modified after loading)<br>WOULA Wavesength=220 m(C)LCCCDDDULCHLOHE-6-93C-ODH 2012-02-28 12-29-11003-0301.D)<br>MU = 4 Wavesength=220 m(C)LCCDDDULCHLOHE-6-93C-ODH 2012-02-28 12-29-11003-0301.D)<br>m/U = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                |                                                                            |                                                                                                                    |                                                     | Inj Volume                 | : 5 µl         |                |                                            |                                       |
| Last changed :: $2/28/2012$ 1:51:43 PH by LQH<br>(modified after loading)<br>knalysis Method :: D:Lh(201201LQRLQRL=6-93C-0DH 2012-02-28 12-29-11\003-0301.D\DA.<br>H (ASH-50-50-10ML-220MM.H)<br>Last changed :: $3/9/2012$ 11:28:14 AM by FX<br>(modified after loading)<br>(modified after load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acq. Method :                                                                                                    |                                                                            |                                                                                                                    | QH-6-93\LQH-                                        | -                          |                | 28 12-29-1     | 11\ASH-50-50                               | -                                     |
| Analysis Method : D:\LC\201201\L0HL0HL0H-6-93C-0DH 2012-02-28 12-29-11\003-0301.D\DA.<br>M (ASH-50-50-10HL-220MLM)<br>iast changed : 3/9/2012 11:28:14 AM by FX<br>(modified after loading)<br>(modified after l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ast changed :                                                                                                    | 2/28/201                                                                   | 2 1:53:43 H                                                                                                        | -                                                   |                            |                |                |                                            |                                       |
| Ast changed : 3/9/2012 11:28:14 AM by FX<br>(modified after loading)<br>WDDA Wavelength=220 nm(DALCOULDUILDH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9ALCH-0-9AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysis Method :                                                                                                | D:\LC\20                                                                   | 1201\LQH\L0                                                                                                        | )H-6-93\LQH-                                        | 6-93C-0DH                  | 2012-02-       | 28 12-29-1     | 1\003-0301.                                | D\DA.                                 |
| WWD1 A Wavelength=220 nm(DXLC201201LOHU0H6-93LOH6-93C-ODH 2012-02-28 12-29-11003-0301.D)<br>mAU<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | last changed :                                                                                                   | 3/9/2012                                                                   | 11:28:14 2                                                                                                         | M by FX                                             |                            |                |                |                                            |                                       |
| $\frac{1}{1} \frac{1}{19.611} \frac{1}{19.611} \frac{1}{19.611} \frac{1}{13.229} \frac{1}{19.236} \frac{1}{32.299971.19336} \frac{1}{38.45141} \frac{1}{49.6121}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VI0/D1 A 30656                                                                                                   | (modifie                                                                   | $\frac{d}{d} \frac{after}{d} \frac{108}{200000000000000000000000000000000000$                                      | ading)<br>puy ou s owr our                          | 8 02C 0DH 2012             | 00 20 12 20    | 11002 0201 55  |                                            |                                       |
| Area Percent Report<br>Area Percent Report<br>Sorted By :: Signal<br>Multiplier :: 1.0000<br>Dilution :: 1.0000<br>Dilution :: 1.0000<br>Use Multiplier & Dilution Factor with ISTDS<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>(mAU ] %<br>1 19.611 EB 1.3423 1.01271e4 111.79090 50.3879<br>2 41.624 MM 4.3220 9971.19336 38.45141 49.6121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  | iengui-220 mm                                                              | (0.2020120120                                                                                                      | 21122170-8542217                                    | 0-800-00112012             | -02-20 12-28   | -11000-0001.0) |                                            |                                       |
| Area Percent Report<br>Area Percent Report<br>Sorted By :: Signal<br>Multiplier :: 1.0000<br>Dilution :: 1.0000<br>Dilution :: 1.0000<br>Bige Multiplier & Dilution Factor with ISTDs<br>Signal 1: VMD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU ] %<br>1 19.611 BB 1.3423 1.01271e4 111.79090 50.3879<br>2 41.624 MM 4.3220 9971.19336 38.45141 49.6121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 -                                                                                                            |                                                                            |                                                                                                                    | 0                                                   | 0                          |                |                |                                            |                                       |
| $\frac{1}{2} \int_{2} \int_{2} \int_{2} \int_{2} \int_{3} \int_$ |                                                                                                                  |                                                                            |                                                                                                                    | ( r                                                 |                            |                |                |                                            |                                       |
| 20       5k         20       26         20       26         30       35         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         50       mmin         Area Percent Report       50         500       1.0000         500       50         500       50         5100       50         5110       50         5110       50         5110       50         5110       50         5110       50         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  | ſ                                                                          | -                                                                                                                  |                                                     |                            |                |                |                                            |                                       |
| 20       5k         20       26         20       26         30       35         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         50       mmin         Area Percent Report       50         500       1.0000         500       50         500       50         5100       50         5110       50         5110       50         5110       50         5110       50         5110       50         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60 -                                                                                                             | 6                                                                          |                                                                                                                    | N. N.                                               |                            |                | N.             |                                            |                                       |
| 20       5k         20       26         20       26         30       35         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       46         40       40         40       46         40       46         40       46         40       40         40       40         40       40         40       40         40       40         40       40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                            |                                                                                                                    | ≥ ⊓<br>(                                            | ວ້ ັ                       | 1.624<br>1.624 | e£)`           |                                            |                                       |
| 20<br>20<br>20<br>25<br>30<br>35<br>40<br>40<br>40<br>45<br>50<br>mm<br>Area Percent Report<br>Area Percent Report<br>Area Percent Report<br>Sorted By : Signal<br>fultiplier : 1.0000<br>Dilution : 1.0000<br>Dilution : 1.0000<br>Blution Factor with ISTDs<br>Signal 1: VWD1 Å, Wavelength=220 nm<br>Peak RetTime Type Width Årea Height Årea<br># [min] [min] mÅU *s [mÅU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40-                                                                                                              | Į.                                                                         |                                                                                                                    | 5k                                                  |                            | Ń              |                |                                            |                                       |
| 20       25       30       35       40       45       60       mir         Area Percent Report         Sorted By : Signal         Multiplier : 1.0000         Dilution : 1.0000         Dilution : 1.0000         Use Multiplier & Dilution Factor with ISTDs         Signal 1: VWD1 A, Wavelength=220 nm         Peak RetTime Type Width Area Height Area         # [min] [min] mAU *s [mAU ] %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 -                                                                                                             |                                                                            |                                                                                                                    | U.                                                  |                            | /              |                |                                            |                                       |
| 20       25       30       35       40       45       60       mir         Area Percent Report         Sorted By : Signal         Multiplier : 1.0000         Dilution : 1.0000         Dilution : 1.0000         Use Multiplier & Dilution Factor with ISTDs         Signal 1: VWD1 A, Wavelength=220 nm         Peak RetTime Type Width Area Height Area         # [min] [min] mAU *s [mAU ] %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 /                                                                                                              | \                                                                          |                                                                                                                    |                                                     |                            | /              |                |                                            |                                       |
| Area Percent Report         Sorted By       :       Signal         Multiplier       :       1.0000         Dilution       :       1.0000         Use Multiplier & Dilution Factor with ISTDs         Signal 1: VWD1 Å, Wavelength=220 nm         Peak RetTime Type Width       Area         # [min]       [min]       mAU         *s       [mAU       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 ]                                                                                                              | $\sim$                                                                     |                                                                                                                    |                                                     |                            | /              | <u> </u>       | ·                                          |                                       |
| Area Percent Report           Sorted By         :         Signal           Multiplier         :         1.0000           Dilution         :         1.0000           Jse Multiplier & Dilution Factor with ISTDs           Signal 1: VWD1 A, Wavelength=220 nm           Peak RetTime Type Width         Area           # [min]         [mAU         %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o/                                                                                                               |                                                                            |                                                                                                                    |                                                     | · · ·                      | /              |                | ·- <u></u> ,                               |                                       |
| Multiplier       :       1.0000         Dilution       :       1.0000         Jse Multiplier & Dilution Factor with ISTDs         Signal 1: VWD1 Å, Wavelength=220 nm         Peak RetTime Type Width       Area         # [min]       [min] mAU       *s [mAU         *       [min]       [MAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                |                                                                            | <br>                                                                                                               | 30                                                  |                            | 40             |                | ·<br>• • • • • • • • • • • • • • • • • • • | <br><br>mir                           |
| Dilution : 1.0000<br>Jse Multiplier & Dilution Factor with ISTDs<br>Signal 1: VWD1 &, Wavelength=220 nm<br>Peak RetTime Type Width &rea Height Area<br># [min] [min] mAU *s [mAU ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>20                                                                                                          |                                                                            | rea Percent                                                                                                        | ; Report                                            |                            |                |                |                                            | <br>                                  |
| Jse Multiplier & Dilution Factor with ISTDs<br>Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAW *s [mAW ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sorted By                                                                                                        |                                                                            | rea Percent<br>Signal                                                                                              | ; Report                                            |                            |                |                |                                            | <br>                                  |
| Signal 1: VWD1 A, Wavelength=220 nm<br>Peak RetTime Type Width Area Height Area<br># [min] [min] mAW *s [mAW ] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br><br>Sorted By<br>Multiplier                                                                                | <br>:<br>:                                                                 | rea Percent<br>Signal<br>1.0000                                                                                    | ; Report                                            |                            |                |                |                                            | <br><br>mi                            |
| Peak RetTime Type Width Area Height Area<br># [min] [min] mAU *s [mAU] %<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sorted By<br>Multiplier<br>Dilution                                                                              | <br>:<br>:                                                                 |                                                                                                                    | Report                                              |                            |                |                | <u>-</u> ,<br>- , , ,<br>- , , ,           | <br><br>                              |
| <pre># [min] [min] mAU *s [mAU ] %    1 19.611 BB 1.3423 1.01271e4 111.79090 50.3879 2 41.624 MM 4.3220 9971.19336 38.45141 49.6121</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sorted By<br>Multiplier<br>Dilution                                                                              | <br>:<br>:                                                                 |                                                                                                                    | Report                                              |                            |                |                | <u>-</u> ,<br><u>-</u> <u>60</u>           | mi                                    |
| <br>1 19.611 BB 1.3423 1.01271e4 111.79090 50.3879<br>2 41.624 MM 4.3220 9971.19336 38.45141 49.6121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier 6                                                          | Dilution                                                                   | signal<br>1.0000<br>Factor with                                                                                    | Report                                              |                            |                |                | <u>-</u>                                   | mi                                    |
| 1 19.611 BB 1.3423 1.01271e4 111.79090 50.3879<br>2 41.624 MM 4.3220 9971.19336 38.45141 49.6121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type                | =======<br>:<br>:<br>Dilution<br>Waveleng<br>Didth                         | rea Percent<br>Sigmal<br>1.0000<br>1.0000<br>Factor with<br>th=220 rum<br>Area                                     | Report<br>I ISTDs<br>Height                         |                            |                |                | <u>-</u> ,<br><u>-</u> <u>60</u>           | <br>• • • , -<br>• mir                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]     | =======<br>:<br>:<br>Dilution<br>Waveleng<br>Width<br>[min]                | rea Percent<br>Sigmal<br>1.0000<br>1.0000<br>Factor with<br>th=220 nm<br>Àrea<br>m&U *s                            | : Report<br>I ISTDs<br>Height<br>[mAU]              |                            |                |                | <u>-</u>                                   | <br>, , , , , , , , , , , , , , , , , |
| Totals : 2.00983e4 150.24231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sorted By<br>Multiplier<br>Dilution<br>Jse Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br> | =======<br>:<br>:<br>Dilution<br>Waveleng<br>Width<br>[min]<br> <br>1.3423 | rea Percent<br>Signal<br>1.0000<br>1.0000<br>Factor with<br>th=220 nm<br>Àrea<br>m&U *s<br>1.01271e4               | Report<br>ISTDs<br>Height<br>[m&U]<br>111.79090     | Area<br>8<br>  <br>50.3879 |                |                | <u>-</u>                                   | <br>                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br> | :<br>:<br>Dilution<br>Waveleng<br>Width<br>[min]<br>  <br>1.3423<br>4.3220 | rea Percent<br>Sigmal<br>1.0000<br>1.0000<br>Factor with<br>th=220 nm<br>Area<br>mAU *s<br>1.01271e4<br>9971.19336 | Report<br>Reight<br>[mAU ]<br>111.79090<br>38.45141 | Area<br>8<br>  <br>50.3879 |                |                | <br>50                                     | <br>                                  |

\*\*\* End of Report \*\*\*

Instrument 1 3/9/2012 11:28:19 AM FX

Data File D:\LC\DATA\LQH\LQH\LQH-6-94\LQH-6-94D 2012-03-12 10-51-32\057-0101.D Sample Wame: LQH-6-94D

| Acq. Operator :                                                                                                                                  | lah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Seg. Line : 1                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Accor Instrument :                                                                                                                               | Iqn<br>Instrument 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location : Vial 57                                  |
|                                                                                                                                                  | 3/12/2012 10:53:09 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inj: 1                                              |
| injection base .                                                                                                                                 | 3, 12, 2012 10, 33, 09 MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inj Volume : 5 µl                                   |
| Acq. Method :                                                                                                                                    | D:\LC\ 201201\LOH\LOH-6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -94\LQH-6-94D 2012-03-12 10-51-32\ASH-50-50-10ML-   |
| Acq. nechoa .                                                                                                                                    | 220NM-60MIN.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ->4(LQR-0->4D 2012-03-12 10-31-32(ABR-30-30-10HD-   |
| Last changed :                                                                                                                                   | 12/6/2011 9:55:58 PM by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V TMC                                               |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6-94\LQH-6-94D 2012-03-12 10-51-32\057-0101.D\DA.M |
|                                                                                                                                                  | (ASH-50-50-10ML-220MM-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| Last changed :                                                                                                                                   | 5/5/2012 7:09:28 PM by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                   |
| -                                                                                                                                                | (modified after loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                   |
| VWD1 A, Wave                                                                                                                                     | length=220 nm (DALCADATA/LQH/LQH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LQH-6-94LQH-6-94D 2012-03-12 10-51-32057-0101.D)    |
| mAU]                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 250 -                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A A                                                 |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                                                                                                                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 200-                                                                                                                                             | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r                                                   |
|                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
|                                                                                                                                                  | E S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
| 150 -                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 100 -                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N L                                                 |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H/T = 0                                             |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                   |
| 100 -                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •   \                                               |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5k                                                  |
| 1                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JK                                                  |
| 50 -                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                                                                                                                  | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
|                                                                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| 0                                                                                                                                                | ·································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 15                                                                                                                                               | 20 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 35 40 45 50                                      |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                                                                                                                  | Area Percent Rep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                                                                                                                  | Area Percent Reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| Sorted By                                                                                                                                        | Area Percent Rep<br>: Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| Sorted By<br>Multiplier                                                                                                                          | Area Percent Reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| Sorted By<br>Multiplier<br>Dilution                                                                                                              | Area Percent Reg<br>: Signal<br>: 1.0000<br>: 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | port                                                |
| Sorted By<br>Multiplier<br>Dilution                                                                                                              | Area Percent Reg<br>: Signal<br>: 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | port                                                |
| Sorted By<br>Multiplier<br>Dilution                                                                                                              | Area Percent Reg<br>: Signal<br>: 1.0000<br>: 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | port                                                |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier 6                                                                                          | Area Percent Reg<br>: Signal<br>: 1.0000<br>: 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | port                                                |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier 6                                                                                          | Area Percent Rep<br>: Sigmal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with IST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | port                                                |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &,                                                                     | Area Percent Reg<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with IST<br>Wavelength=220 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | port                                                |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 &,                                                                     | Area Percent Reg<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with IST<br>Wavelength=220 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | port<br><br>TDs<br>eight Area                       |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]                                     | Area Percent Rep<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with IST<br>Wavelength=220 nm<br>: Width Area He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | port<br><br>Ds<br>eight Area<br>J <b>%</b>          |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]                                     | Area Percent Rep<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with IST<br>Wavelength=220 nm<br>: Width Area He<br>[min] mAU *s [mAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | port<br><br>Ds<br>eight Area<br>J <b>%</b>          |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]                                     | Area Percent Rep<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with IST<br>Wavelength=220 nm<br>: Width Area He<br>[min] mAU *s [mAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | port<br><br>IDs<br>J ] %<br> <br>1.86954 0.2083     |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>  <br>1 19.560 BB<br>2 39.969 MM | Area Percent Rep           :         Signal           :         1.0000           :         1.0000           Dilution Factor with IST           Wavelength=220 nm           :         Width           :         May           : | eight Area<br>J ] %<br>                             |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 Å,<br>Peak RetTime Type<br># [min]<br> <br>1 19.560 BB                 | Area Percent Rep<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with IST<br>Wavelength=220 nm<br>: Width Area He<br>[min] mAU *s [mAU<br>-]]<br>0.8952 142.06021 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eight Area<br>J ] %<br>                             |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>  <br>1 19.560 BB<br>2 39.969 MM | Area Percent Rep           :         Signal           :         1.0000           :         1.0000           Dilution Factor with IST           Wavelength=220 nm           :         Width           :         May           : | eight Area<br>J ] %<br>                             |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>  <br>1 19.560 BB<br>2 39.969 MM | Area Percent Rep           :         Signal           :         1.0000           :         1.0000           Dilution Factor with IST           Wavelength=220 nm           :         Width           :         May           : | eight Area<br>J ] %<br>                             |
| Sorted By<br>Multiplier<br>Dilution<br>Use Multiplier &<br>Signal 1: VWD1 A,<br>Peak RetTime Type<br># [min]<br>                                 | Area Percent Rep<br>: Signal<br>: 1.0000<br>: 1.0000<br>Dilution Factor with IST<br>Wavelength=220 nm<br>: Width Area He<br>[min] mAU *s [mAU<br>0.8952 142.06021 J<br>4.4642 6.80589e4 254<br>6.82010e4 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | port<br>FDs<br>Light Area<br>J ] %<br>              |

Instrument 1 5/5/2012 7:09:33 PM lqh

Sample Name: LQH-9-45

\_\_\_\_\_ Acq. Operator : THL Seg. Line : 5 Location : Vial 94 Acq. Instrument : Instrument 1 Injection Date : 1/10/2006 1:20:15 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\ASH-50-50-10ML-220MM-Acg. Method 40MIN.M Last changed : 12/2/2011 2:34:27 PM by HZL Analysis Method : D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\094-0501.D\DA.M (ASH-50-50-10ML-220NM-40MIN.M) Last changed : 3/16/2013 4:25:49 PM by FX (modified after loading) Method Info : ASH-50-50-1ML-254MM-50MIN W/D1 A, Wavelength=220 nm (D/LC/DATA/LQH/LQH/9-45/LQH/9-45 2006-01-10 11-36-28/094-0501.D) e and a second s These mAU 9 8 Ph 7 6 5 51 4 3 2 1 18 20 22 26 28 зò 32 min \_\_\_\_\_ Area Percent Report \_\_\_\_\_ Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area

Data File D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\094-0501.D

|       |        |     | [min]  |       |       | •    |       |                    |  |
|-------|--------|-----|--------|-------|-------|------|-------|--------------------|--|
|       |        | •   | •      |       |       | •    |       |                    |  |
| _     | 21.760 |     | 1.6355 |       |       |      |       | 50.6139<br>49.3861 |  |
| 2     | 23.002 | 111 | 1.0(30 |       | 03001 | ٢.   | 13132 | 49.3001            |  |
| Total | 5 :    |     |        | 1573. | 39331 | 15.8 | 35276 |                    |  |

\*\*\* End of Report \*\*\*

Instrument 1 3/16/2013 4:26:26 PM FX

Data File D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\095-0601.D Sample Wame: LQH-9-46

| Acq. Operator                                    | <br>: THL Seq. Line : б                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acq. Instrument                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  | : 1/10/2006 2:01:31 PM Inj: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | Inj Volume : 5 µl                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acq. Method                                      | : D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\ASH-50-50-10ML-220MM-<br>40MIN.M                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  | : 12/2/2011 2:34:27 PM by HZL                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                                                | : D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\095-0601.D\DA.M (ASH-<br>50-50-10ML-220MM-40MIN.M)                                                                                                                                                                                                                                                                                                                                                                        |
| -                                                | : 3/16/2013 4:28:36 PM by FX<br>(modified after loading)                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | : ASH-50-50-1ML-254MM-50M1N                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WVD1A,Wav<br>mAU [                               | elength=220 nm (DALCDATALQHVQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9-45/LQH9- |
| 35-                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30 -                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  | Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25-                                              | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | / \ Ĥ <i>/</i> ,−0                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20 -                                             | O Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15-                                              | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10-                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                | E she                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18                                               | 20 22 24 28 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  | Area Percent Report                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sorted By                                        | : Simal                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Multiplier                                       | : 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dilution                                         | : 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Use Multiplier 6                                 | Dilution Factor with ISTDs                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  | , Wavelength=220 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Signal 1: VWD1 A                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Signal 1: VWD1 A<br>Peak RetTime Typ             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Peak RetTime Typ<br># [min]                      | [min] mAU *s [mAU ] %                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -<br>Peak RetTime Typ<br># [min]<br>             | [min] mAU *s [mAU ] %<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Peak RetTime Typ<br># [min]                      | [min] mAU *s [mAU ] %<br>-    <br>1.6786 3606.08813 35.80420 99.4505                                                                                                                                                                                                                                                                                                                                                                                                             |
| Peak RetTime Typ<br># [min]<br>  <br>1 21.355 MF | [min] mAU *s [mAU ] %<br>-    <br>1.6786 3606.08813 35.80420 99.4505                                                                                                                                                                                                                                                                                                                                                                                                             |

Instrument 1 3/16/2013 4:29:06 PM FX

Sample Name: LQH-9-40

Data File D:\LC\DATA\LQH\LQH-9-40\LQH-9-40 2006-01-06 20-16-38\092-0301.D

\_\_\_\_\_ Acq. Operator : LQH Acq. Instrument : Instrument 1 Seq. Line : 3 Location : Vial 92 Injection Date : 1/6/2006 8:58:01 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-9-40\LQH-9-40 2006-01-06 20-16-38\ASH-50-50-10ML-220MM. Acg. Method М : 1/6/2006 8:56:37 PM by LQH Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-9-40\LQH-9-40 2006-01-06 20-16-38\092-0301.D\DA.M (ASH-50-50-10ML-220NM.M) : 3/16/2013 4:19:15 PM by FX Last changed (modified after loading) WWD1 A. Wavelergth=220 nm (D:\LC\DATA\LQH\QH-9-40\LQH-9-40 2006-01-06 20-16-38\092-0301.D) feetage ã mAU 12 and the second second 10 8 6 4 5m 2 ٥ 20 22 10 12 14 16 18 min \_\_\_\_\_ Area Percent Report \_\_\_\_\_ Sorted By : Signal 1.0000 Multiplier : 1,0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area # [min] [min] mAU \*s [mAU ] % 1 11.132 MM 0.9845 730.68909 12.37048 50.4969 2 19.689 MM 1.4211 716.30835 8.40070 49.5031 1446.99744 20.77118 Totals :

\*\*\* End of Report \*\*\*

Instrument 1 3/16/2013 4:19:28 PM FX

Sample Name: LQH-9-40

Data File D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\093-0401.D

\_\_\_\_\_ Acq. Operator : THL Seq. Line : 4 Acq. Instrument : Instrument 1 Location : Vial 93 Injection Date : 1/10/2006 12:53:34 PM Inj : 1 Inj Volume : 5 µl : D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\ASH-50-50-1ML-220MM.M Acg. Method : 1/10/2006 12:52:17 PM by THL Last changed (modified after loading) Analysis Method : D:\LC\DATA\LQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\093-0401.D\DA.M (ASH-50-50-1ML-220MM.M) Last changed : 3/16/2013 4:24:15 PM by FX (modified after loading) WD1A Wavelength=220 nm (D\LC\DATALQH\LQH-9-45\LQH-9-45 2006-01-10 11-36-28\093-0401.D) mAU 40 8 35 30 25 -20 15 1.00<sup>-1,0</sup>-0.958 10 -5m 595 5 ٥· 1n 12 16 18 14 20 min Area Percent Report \_\_\_\_\_ Sorted By : Signal : Multiplier 1.0000 1.0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] mAU \*s [mAU ] 5 # [min] 1 10.682 MT 1.0141 2425.61426 39.86407 98.3407 2 19.595 MM 1.0105 40.92847 6.75068e-1 1.6593

Totals : 2466.54273 40.53914

\*\*\*\* End of Report \*\*\*

Instrument 1 3/16/2013 4:24:20 PM FX