Supplementary Information

A multicomponent cascade reaction for the synthesis of novel chromenopyranpyrazole scaffolds

Manickam Bakthadoss,^{*a,b} Damodharan Kannan^a and Raman Selvakumar^a

^a Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India ^b Department of Chemistry, Pondicherry University, Pondicherry - 605 014, India

Contents	Page
1) Experimental section	2-21
 2) (a) ¹H, ¹³C NMR and Mass Spectra for Chromenopyranpyrazoles 5a-p, 8a-g and 10a 	22,122
(b) ¹ H and ¹³ C NMR spectra for Chromenopyranpyrazoles 9a-e , 10b-e , 11 , 12 , 13	22-123

Experimental Section

General Remarks: Melting points were recorded on a Superfit (India) capillary melting point apparatus and were uncorrected. IR spectra were recorded on a Perkin Elmer-FTIR spectrometer using solid samples as KBr plates. For compounds ¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz and 100 MHz, CDCl₃) spectra were recorded in deuterochloroform (CDCl₃) on a Bruker 300 MHz spectrometer using tetramethylsilane (TMS, $\delta = 0$) as an internal standard at room temperature. Mass spectra were recorded on Bruker and Jeol mass spectrometer. The X-ray diffraction measurements were carried on a Bruker AXS SMART APEX 2 diffractometer.

Representative procedure for the synthesis of methyl 16-methyl-11,14-diphenyl-8,12dioxa-14,15-diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-

carboxylate (5a): A mixture of (*E*)-methyl-2-((2-formylphenoxy)methyl)-3-phenylacrylate (**3a**, 1mmol), ethyl/methyl acetoacetate (**1**, 1mmol) and phenyl hydrazine (**2**, 1mmol) was placed in a round bottom flask and melted at 180 °C for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 mL of ethylacetate and hexane mixture (1:49 ratio) which successfully provided the pure product **5a** as colorless solid.

Methyl 16-methyl-11,14-diphenyl-8,12-dioxa-14,15-diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5a):

Yield = 95%; reaction time = 1 h; m.p. 246-248°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.09 (s, 3H), 3.43 (s, 3H), 4.35 (d, *J* = 11.4 Hz, 1H), 4.57 (dd, *J* = 1.2, 11.4 Hz, 1H), 4.78 (s, 1H), 5.59 (s, 1H), 6.77-7.74 (m, 14H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.28, 37.17, 48.14, 52.50, 60.63, 84.21, 98.62, 116.81, 118.66, 119.54, 120.23, 125.69, 126.68, 128.62, 129.06, 129.13, 129.31, 132.06, 134.68, 138.35, 147.22, 147.34, 153.04, 171.19; ¹³C NMR (DEPT 135, 75 MHz, CDCl₃) = δ 15.33, 37.16, 52.53, 60.64, 84.21, 116.83, 119.56, 120.21, 125.70, 126.69, 128.64, 129.08, 129.15, 129.33, 132.10; IR (KBr) = v 1735, 1596, 1510 cm⁻¹; HRMS (ESI) Calcd for C₂₈H₂₄N₂O₄ 452.1736; Found: 453.1816 (M⁺+1).

Methyl 16-methyl-11-(2-methylphenyl)-14-phenyl-8,12-dioxa-14,15-diazatetracyclo [8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5b)

Yield = 92%; reaction time = 1 h; m.p. 258-260°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.12 (s, 3H), 2.39 (s, 3H), 3.47 (s, 3H), 4.31 (d, J = 11.4 Hz, 1H), 4.57 (dd, J = 1.5, 11.4 Hz, 1H), 4.72 (s, 1H), 5.55 (s, 1H), 6.67 - 7.73 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.26, 37.12, 48.09, 52.65, 60.47, 83.43, 98.64, 116.87, 118.45, 119.65, 120.30, 124.79, 125.84, 126.87, 129.11, 129.21, 129.52, 129.94, 132.02, 134.73, 136.68, 138.24, 146.95, 147.21, 152.94, 171.03; IR (KBr) = v 1737, 1593, 1517 cm⁻¹; HRMS (m/z) Calcd for C₂₉H₂₆N₂O₄ 466.1893; Found 466.1893.

Methyl 16-methyl-11-(4-methylphenyl)-14-phenyl-8,12-dioxa-14,15-diazatetracyclo [8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5c)

Yield = 95%; reaction time = 1 h; m.p. 264-268°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.11 (s, 3H), 2.38 (s, 3H), 3.47 (s, 3H), 4.31 (d, *J* = 11.4 Hz, 1H), 4.57 (dd, *J* = 1.5, 11.4 Hz, 1H), 4.71 (s, 1H), 5.54 (s, 1H), 6.66 - 7.78 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.25, 21.26, 37.17, 48.14, 52.49, 60.71, 84.15, 98.58, 116.81, 118.71, 119.50, 120.19, 125.64, 126.60, 129.04, 129.11, 129.28, 131.68, 132.03, 138.38, 139.20, 147.20, 147.47, 153.08, 171.23; IR (KBr) = v 1733, 1596, 1512 cm⁻¹; HRMS (m/z) Calcd for C₂₉H₂₆N₂O₄ 466.1893; Found 466.1893.

Methyl 16-methyl-11-(4-ethylphenyl)-14-phenyl-8,12-dioxa-14,15-diazatetracyclo [8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5d)

Yield = 92%; reaction time = 1 h; m.p. 221-223°C; ¹H NMR (300 MHz, CDCl₃) = δ 1.26 (t, 3H, *J* = 7.5 Hz), 2.08 (s, 3H), 2.69 (q, *J* = 7.5 Hz, 2H), 3.44 (s, 3H), 4.34 (d, *J* = 11.1 Hz, 1H), 4.58 (dd, 1H, *J* = 1.2, 11.1 Hz), 4.76 (s, 1H), 5.57 (s, 1H), 6.77-7.75 (m, 13H); ¹³C NMR (100 MHz, CDCl₃) = δ 15.25, 15.40, 28.59, 37.17, 48.18, 52.45, 60.73, 84.16, 98.58, 116.81, 118.74, 119.59, 120.21, 125.63, 126.66, 128.05, 129.03, 129.09, 131.89, 132.02, 138.40, 145.49, 147.19, 147.48, 153.10, 171.23; IR (KBr) = v 1728, 1585, 1519 cm⁻¹; HRMS (m/z) Calcd for C₃₀H₂₈N₂O₄ 480.2047; Found: 480.2047.

Methyl 16-methyl-14-phenyl-11-[4-(propan-2-yl)phenyl]-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5e):

Yield = 94%; reaction time = 1 h; m.p. 226-228°C; ¹H NMR (300 MHz, CDCl₃) = δ 1.26 (d, J = 6.9 Hz, 6H), 2.06 (s, 3H), 2.93 (sep, J = 7.2 Hz, 1H), 3.41 (s, 3H), 4.33 (d, J = 11.1 Hz, 1H), 4.57 (d, J = 11.1 Hz, 1H), 4.74 (s, 1H), 5.56 (s, 1H), 6.76-7.73 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.24, 23.89, 23.94, 33.90, 37.14, 48.20, 52.44, 60.74, 84.15, 98.63, 116.83, 118.75, 119.53, 120.29, 125.71, 126.63, 126.66, 129.06, 129.12, 131.99, 132.04, 138.33, 147.23, 147.52, 150.13, 153.11, 171.21; IR (KBr) = v 1720, 1582, 1516 cm⁻¹; HRMS (m/z) Calcd for C₃₁H₃₀N₂O₄ 494.2206; Found: 494.2206.

Methyl 11-(2-methoxyphenyl)-16-methyl-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.02,7.013,17]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5f)

Yield = 93%; reaction time = 1 h; m.p. 232-234°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.14 (s, 3H), 3.42 (s, 3H), 3.78 (s, 3H), 4.38 (d, *J* = 11.1 Hz, 1H), 4.67 (d, *J* = 11.1 Hz, 1H), 4.91 (s, 1H), 6.01 (s, 1H), 6.73 - 7.73 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.48, 36.21, 47.54, 52.31, 55.38, 61.96, 98.73, 110.11, 116.77, 119.60, 119.81, 120.17, 120.66, 123.71, 125.52, 127.97, 128.68, 128.99, 130.10, 132.16, 138.45, 147.23, 147.66, 153.01, 156.43, 170.02; IR (KBr) = v 1716, 1599, 1488 cm⁻¹; HRMS (m/z) Calcd for C₂₉H₂₆N₂O₅ 482.1842; Found: 482.1842.

Crystal data for methyl 11-(2-methoxyphenyl)-16-methyl-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.02,7.013,17]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate 5f: Empirical formula, $C_{29}H_{26}N_2O_5$; Formula weight, 482.53; crystal color, colorless; Single crystal X-ray structure of the molecule shown in ORTEP diagram (Figure 1). Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for Chromenopyranpyrazole 5f CCDC # 780638).

Figure 1. ORTEP diagram of Chromenopyranpyrazole 5f

Methyl 11-(4-methoxyphenyl)-16-methyl-14-phenyl-8,12-dioxa-14,15-diazatetracyclo [8.7.0.02,7.013,17]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5g)

Yield = 94%; reaction time = 1 h; m.p. 224-228°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.07 (s, 3H), 3.44 (s, 3H), 3.83 (s, 3H), 4.33 (d, *J* = 11.4 Hz, 1H), 4.59 (dd, *J* = 1.8, 11.4 Hz, 1H), 4.74 (s, 1H), 5.54 (s, 1H), 6.77-7.74 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.26, 37.14,

48.21, 52.54, 55.34, 60.71, 84.01, 98.59, 113.98, 116.80, 118.73, 119.51, 120.20, 125.64, 126.69, 128.02, 129.04, 129.11, 132.02, 138.40, 147.21, 147.51, 153.08, 160.21, 171.31; IR (KBr) = v 1715, 1597, 1490 cm⁻¹; HRMS (ESI) Calcd for $C_{29}H_{26}N_2O_5$ 482.1842; Found: 483.1916 (M⁺+1).

Methyl 11-(3,4-dimethoxyphenyl)-16-methyl-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5h)

Yield = 95%; reaction time = 1 h; m.p. 192-194°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.07 (s, 3H), 3.45 (s, 3H), 3.88 (s, 3H), 3.91 (s, 3H), 4.34 (d, *J* = 11.4 Hz, 1H), 4.62 (d, *J* = 11.4 Hz, 1H), 4.74 (s, 1H), 5.54 (s, 1H), 6.77 - 7.75 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.24, 37.20, 48.20, 52.57, 55.95, 56.08, 60.76, 84.04, 98.58, 109.85, 110.99, 116.80, 118.64, 119.44, 119.56, 120.08, 125.66, 127.02, 129.05, 129.16, 132.01, 138.39, 147.23, 147.42, 148.98, 149.70, 153.00, 171.37; IR (KBr) = v 1721, 1523, 1497 cm⁻¹; HRMS (m/z) Calcd for C₃₀H₂₈N₂O₆ 512.1947; Found: 512.1947.

Methyl 11-(2*H*-1,3-benzodioxol-5-yl)-16-methyl-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5i)

Yield = 93%; reaction time = 1 h; m.p. 194-196°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.07 (s, 3H), 3.47 (s, 3H), 4.31 (d, *J* = 11.4 Hz, 1H), 4.61 (dd, J = 1.5 Hz, *J* = 11.1 Hz, 1H), 4.73 (s, 1H), 5.50 (s, 1H), 6.01 (s, 2H), 6.74 - 7.72 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.25, 37.12, 48.24, 52.60, 60.68, 84.06, 98.59, 101.49, 107.03, 108.22, 116.82, 118.62, 119.53, 120.23, 120.60, 125.71, 128.33, 129.07, 129.15, 132.00, 138.33, 147.18, 147.31, 148.05, 148.32, 153.02, 171.20; IR (KBr) = v 1718, 1529, 1493 cm⁻¹; HRMS (m/z) Calcd for C₂₉H₂₄N₂O₆ 496.1633; Found: 496.1633.

Methyl 16-methyl-11-(2-chlorophenyl)-14-diphenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5j)

Yield = 95%; reaction time = 1 h; m.p. 230-232°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.16 (s, 3H), 3.49 (s, 3H), 4.45 (d, *J* = 10.8 Hz, 1H), 4.73 (d, *J* = 10.5 Hz, 1H), 4.94 (s, 1H), 6.10 (s, 1H), 6.73 - 7.70 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.44, 36.20, 47.65, 52.93, 61.94, 79.73, 98.85, 116.78, 119.63, 119.85, 120.28, 125.73, 127.03, 128.80, 129.05, 129.66, 130.30, 132.04, 133.16, 138.31, 147.25, 152.77, 169.66; IR (KBr) = v 1735, 1596, 1517 cm⁻¹; HRMS (m/z) Calcd for C₂₈H₂₃ClN₂O₄ 486.1346; Found: 486.1345.

Methyl 16-methyl-11-(3-chlorophenyl)-14-diphenyl-8,12-dioxa-14,15-

diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5k)

Yield = 92%; reaction time = 1 h; m.p. 238-240°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.09 (s, 3H), 3.48 (s, 3H), 4.32 (d, *J* = 11.4 Hz, 1H), 4.53 (dd, *J* = 1.8, 11.4 Hz, 1H), 4.77 (s, 1H), 5.55 (s, 1H), 6.77 - 7.72 (m, 13H); ¹³C NMR (100 MHz, CDCl₃) = δ 15.26, 37.12, 48.24, 52.62, 60.67, 84.07, 98.59, 101.49, 107.03, 108.22, 116.83, 118.60, 119.53, 120.25, 120.60, 125.72, 128.32, 129.08, 129.15, 132.01, 147.20, 147.30, 148.05, 148.32, 153.01, 171.21; IR (KBr) = v 1738, 1602, 1518 cm⁻¹; HRMS (m/z) Calcd for C₂₈H₂₃ClN₂O₄ 486.1346; Found: 486.1346.

Methyl 16-methyl-11-(4-chlorophenyl)-14-diphenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5l)

Yield = 94%; Reaction time = 1 h; m.p. 246-248°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.00 (s, 3H), 3.39 (s, 3H), 4.25 (d, *J* = 10.8 Hz, 1H), 4.44 (d, *J* = 10.8 Hz, 1H), 4.68 (s, 1H), 5.50 (s, 1H), 6.70 - 7.63 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.18, 37.21, 48.08, 52.62, 60.53, 83.52, 98.60, 116.85, 119.64, 120.29, 125.84, 128.07, 128.89, 129.07, 129.21, 129.23, 131.94, 131.97, 133.22, 138.24, 147.09, 147.23, 152.96, 171.11 ppm; IR (KBr) = v 1734, 1598, 1516 cm⁻¹; HRMS (m/z) Calcd for C₂₈H₂₃ClN₂O₄ 486.1346; Found: 486.1345...

Methyl 16-methyl-11-(naphthalen-1-yl)-14-phenyl-8,12-dioxa-14,15-diazatetracyclo [8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5m)

Yield = 95%; reaction time = 1 h; m.p. 234-236°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.17 (s, 3H), 2.82 (s, 3H), 4.51 (d, *J* = 10.8 Hz, 1H), 4.76 (d, *J* = 10.5 Hz, 1H), 5.03 (s, 1H), 6.43 (s, 1H), 6.74 - 7.93 (m, 16H); ¹³C NMR (100 MHz, CDCl₃) = δ 15.55, 37.02, 47.95, 52.31, 61.65, 99.02, 116.83, 119.29, 119.70, 120.17, 122.51, 125.13, 125.55, 125.66, 125.88, 126.56, 128.94, 129.06, 129.82, 130.55, 130.77, 132.29, 133.57, 138.39, 147.33, 147.71, 152.95, 170.44; IR (KBr) = v 1735, 1595, 1512 cm⁻¹; HRMS (m/z) Calcd for C₃₂H₂₆N₂O₄: 502.1893; Found: 502.1892.

Methyl 6-methoxy-16-methyl-11,14-diphenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5n)

Yield = 93%; reaction time = 1 h; m.p. 242-244°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.08 (s, 3H), 3.41 (s, 3H), 3.81 (s, 3H), 4.39 (d, *J* = 11.1 Hz, 1H), 4.72 – 4.79 (m, 2H), 5.58 (s, 1H), 6.76-7.70 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.37, 37.06, 48.19, 52.59, 56.02, 61.19, 84.35, 98.70, 111.07, 119.23, 119.68, 120.40, 124.06, 125.80, 126.80, 128.67, 129.15, 129.43, 134.76, 138.46, 142.70, 147.29, 147.46, 148.43, 171.26; IR (KBr) = v 1716, 1592, 1485 cm⁻¹; HRMS (m/z) Calcd for C₂₉H₂₆N₂O₅ 482.1842; Found: 482.1842.

Methyl 6-methoxy-11-(4-methoxyphenyl)-16-methyl-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (50)

Yield = 95%; reaction time = 1 h; m.p. 248-250°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.06 (s, 3H), 3.42 (s, 3H), 3.81 (s, 3H), 3.83 (s, 3H), 4.38 (d, *J* = 11.7 Hz, 1H), 4.74 – 4.78 (m , 2H), 5.54 (s, 1H), 6.75 - 7.73 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) = δ 15.23, 36.93, 48.16, 52.50, 55.32, 55.92, 61.16, 84.04, 98.54, 110.96, 113.92, 119.07, 119.65, 120.26, 123.92, 125.63, 126.68, 128.03, 129.01, 138.39, 142.62, 147.16, 147.52, 148.32, 160.23, 171.27; IR (KBr) = v 1721, 1596, 1483 cm⁻¹; HRMS (m/z) Calcd for C₃₀H₂₈N₂O₆ 512.1947; Found: 512.1947.

Methyl 4-bromo-11-(4-methoxyphenyl)-16-methyl-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaene-10-carboxylate (5p)

Yield = 93%; reaction time = 1 h; m.p. 268-270°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.11 (s, 3H), 2.38 (s, 3H), 3.47 (s, 3H), 4.30 (d, J = 11.4 Hz, 1H), 4.57 (dd, J = 1.5, 11.4 Hz, 1H), 4.71 (s, 1H), 5.54 (s, 1H), 6.66 - 7.74 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.28, 21.26, 36.97, 47.85, 52.64, 60.96, 84.01, 97.94, 111.30, 118.73, 120.19, 120.94, 125.75, 126.56, 129.06, 129.34, 131.44, 131.94, 134.26, 138.29, 139.33, 146.95, 147.45, 152.28,

170.89; IR (KBr) = v 1738, 1626, 1522 cm⁻¹; HRMS (m/z) Calcd for $C_{29}H_{25}BrN_2O_4$: 544.0997; Found: 544.0997.

Representative procedure for the synthesis of 16-methyl-11,14-diphenyl-8,12-dioxa-14,15-diazatetracyclo [8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile 8a: A mixture of (*E*)-2-((2-formylphenoxy)methyl)-3-phenylacrylonitrile (6a, 1mmol), ethyl/methyl acetoacetate (1, 1mmol) and phenyl hydrazine (2, 1mmol) was placed in a round bottom flask and melted at 180 °C for 1 h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 mL of ethylacetate and hexane mixture (1:49 ratio) which successfully provided the pure product 8a as colorless solid.

16-methyl-11,14-diphenyl-8,12-dioxa-14,15-diazatetracyclo [8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile (8a)

Yield = 94%; reaction time = 1 h; m.p. 220-224°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.59 (s, 3H), 4.11 (d, *J* = 11.4 Hz, 1H), 4.25 (d, *J* = 11.4 Hz, 1H), 4.56 (s, 1H), 5.33 (s, 1H), 6.95 - 7.76 (m, 14H); ¹³C NMR (75 MHz, CDCl₃) = δ 14.03, 36.55, 39.31, 66.99, 77.93, 97.40, 116.96, 117.38, 120.44, 122.40, 122.77, 125.99, 127.73, 128.91, 129.01, 129.08, 129.92, 130.03, 133.53, 138.27, 146.64, 148.66, 150.99; ¹³C NMR (DEPT 135, 75 MHz, CDCl₃) = δ 14.03, 36.55, 66.99, 77.93, 117.38, 120.45, 122.78, 126.00, 127.74, 128.92, 129.02, 129.08, 129.92, 130.03 ;IR (KBr) = v 2242, 1597, 1514 cm⁻¹; HRMS (ESI) Calcd for C₂₇H₂₁N₃O₂ 419.1634; Found: 420.1713 (M⁺+1).

16-methyl-11-(2-methylphenyl)-14-phenyl-8,12-dioxa-14,15diazatetracvclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile (8b)

Yield = 91%; reaction time = 1 h; m.p. 254-256°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.29 (s, 3H), 2.59 (s, 3H), 4.05 (d, *J* = 11.4 Hz, 1H), 4.32 (d, *J* = 11.7 Hz, 1H), 4.56 (s, 1H), 5.52 (s, 1H), 6.87 - 8.02 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 13.94, 18.94, 37.12, 39.47, 67.13, 74.39, 97.37, 117.10, 117.84, 120.47, 122.06, 122.63, 125.90, 126.86, 127.70, 129.00, 129.06, 129.84, 129.91, 131.04, 131.88, 137.66, 138.29, 146.73, 149.17, 150.52; IR (KBr) = v 2249, 1590, 1517 cm⁻¹; HRMS (m/z) Calcd for C₂₈H₂₃N₃O₂ 433.1790; Found: 433.1790.

16-methyl-11-(4-methylphenyl)-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile (8c)

Yield = 92%; reaction time = 1 h; m.p. 208-210°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.43 (s, 3H), 2.58 (s, 3H), 4.12 (d, *J* = 11.4 Hz, 1H), 4.25 (d, *J* = 11.4 Hz, 1H), 4.55 (s, 1H), 5.30 (s, 1H), 6.94 - 7.76 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 13.99, 21.34, 36.54, 39.35, 67.06, 77.89, 97.36, 117.08, 117.35, 120.40, 122.44, 122.71, 125.91, 127.62, 128.95, 129.03, 129.56, 129.90, 130.57, 138.31, 140.05, 146.61, 148.77, 151.04; IR (KBr) = v 2233, 1599, 1518 cm⁻¹; HRMS (ESI) Calcd for C₂₈H₂₃N₃O₂ 433.1790; Found: 434.1864 (M⁺+1).

Crystal data for **16-methyl-11-(4-methylphenyl)-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile (8c): Empirical formula, C_{28}H_{23}N_3O_2; Formula weight, 433.50; crystal color, colorless; Single crystal X-ray structure of the molecule shown in ORTEP diagram (Figure 2). Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12** Union Road, Cambridge CB2 1EZ, UK (for Chromenopyranpyrazole **8c** CCDC # **780639**).

Figure 2. ORTEP diagram of Chromenopyranpyrazole 8c

16-methyl-11-(4-ethylphenyl)-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile (8d)

Yield = 94%; Reaction time = 1 h; m.p. 228-230°C; ¹H NMR (300 MHz, CDCl₃) = δ 1.29 (t, 3H, *J* = 7.8 Hz), 2.58 (s, 3H), 2.72 (q, *J* = 7.5 Hz, 2H), 4.12 (d, *J* = 11.4 Hz, 1H), 4.24 (d, *J* = 11.4 Hz, 1H), 4.55 (s, 1H), 5.30 (s, 1H), 6.94 - 7.76 (m, 13 H); ¹³C NMR (75 MHz, CDCl₃) = δ 14.02, 15.39, 28.71, 36.50, 39.35, 67.04, 77.91, 97.39, 117.12, 117.37, 120.42, 122.43, 122.72, 125.94, 127.69, 128.39, 128.97, 129.06, 129.91, 130.76, 138.29, 146.27, 146.63, 148.78, 151.03; IR (KBr) = v 2247, 1585, 1528 cm⁻¹; HRMS (m/z) Calcd for C₂₉H₂₅N₃O₂: 447.1947; Found: 447.1946.

16-methyl-11-(3,4-dimethoxyphenyl)-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile (8e)

Yield = 95%; reaction time = 1 h; m.p. 214-216°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.59 (s, 3H), 3.93 (s, 3H), 3.95 (s, 3H), 4.13 (d, *J* = 11.4 Hz, 1H), 4.26 (d, *J* = 11.4 Hz, 1H), 4.56 (s, 1H), 5.28 (s, 1H), 6.94 - 7.78 (m, 12 H); ¹³C NMR (75 MHz, CDCl₃) = δ 13.99, 36.49, 39.35, 55.98, 56.10, 67.10, 77.43, 97.39, 110.40, 111.06, 117.31, 120.26, 120.67, 122.45, 122.73, 125.78, 125.89, 128.95, 129.03, 129.90, 138.35, 146.62, 148.79, 149.27, 150.33, 151.02; IR (KBr) = v 2236, 1589, 1527 cm⁻¹; HRMS (m/z) Calcd for C₂₉H₂₅N₃O₄ 479.1845; Found: 479.1844.

16-methyl-11-(4-chlorophenyl)-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile (8f)

Yield = 92%; reaction time = 1 h; m.p. 236-238°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.58 (s, 3H), 4.08 (d, *J* = 11.4 Hz, 1H), 4.24 (d, *J* = 11.4 Hz, 1H), 4.55 (s, 1H), 5.31 (s, 1H), 6.94 – 7.73 (m, 13 H); ¹³C NMR (75 MHz, CDCl₃) = δ 14.04, 36.48, 39.22, 66.89, 77.55, 97.43, 116.71, 117.42, 120.42, 120.43, 122.31, 122.92, 126.10, 129.12, 129.22, 129.92, 132.00, 136.12, 138.18, 146.64, 148.37, 150.87; IR (KBr) = v 2225, 1597, 1514 cm⁻¹; HRMS (m/z) Calcd for C₂₇H₂₀ClN₃O₂: Calculated 453.1244; Found: 453.1244.

4-bromo-16-methyl-11-(4-methylphenyl)-14-phenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaene-10-carbonitrile (8g)

Yield = 93%; reaction time = 1 h; m.p. 238-240°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.43 (s, 3H), 2.58 (s, 3H), 4.12 (d, *J* = 11.4 Hz, 1H), 4.23 (d, *J* = 11.4 Hz, 1H), 4.52 (s, 1H), 5.24 (s, 1H), 6.84 - 7.76 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃) = δ 13.98, 21.34, 36.36, 39.10, 67.13, 77.93, 96.73, 114.89, 116.72, 119.17, 120.46, 120.58, 124.49, 126.06, 127.58, 129.06, 129.63, 130.28, 131.99, 132.67, 138.20, 140.22, 146.43, 150.17; IR (KBr) = v 2242, 1595, 1516 cm⁻¹; HRMS (m/z) Calcd for C₂₈H₂₂BrN₃O₂ 511.0895; Found: 511.0895.

A representative procedure for the synthesis of $\{16\text{-methyl-11,14-diphenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaen-10-yl}methanol (9a): A suspension of lithium aluminium hydride (0.03 g, 0.88 mmol) in dry THF (5 mL) was cooled at 0°C. To this suspension was added drop wise solution of the chromenopyranpyrazole 5a (0.20 g, 0.44 mmol) in dry THF (5 mL). The resulting mixture was allowed to stirr at room temperature for 0.5 h. After the completion of reaction, as indicated by TLC, the reaction mixture was quenched with methanol and the separated precipitate was filtered through celite. The filtrate was evaporated under reduced pressure and the colurless solid (0.17 g) thus obtained was taken for next step without purification.$

{16-Methyl-11,14-diphenyl-8,12-dioxa-14,15diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaen-10-yl}methanol (9a)

Yield = 91%; reaction time = 0.5 h; m.p. 190-191°C; ¹H NMR (300 MHz, CDCl₃) = δ 1.71 (bs, 1H), 2.05 (s, 3H), 3.25 (d, *J* = 11.4Hz, 1H), 3.51 (d, *J* = 11.1 Hz, 1H), 3.84 (d, J = 11.4Hz, 1H), 4.29 – 4.34 (m, 1H), 5.54 (s, 1H), 6.66 – 7.65 (m, 14H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.56, 33.77, 38.49, 61.62, 62.47, 83.94, 98.98, 116.66, 119.64, 120.07, 120.24, 125.48, 127.60, 128.45, 128.68, 128.75, 128.57, 132.82, 135.62, 135.45, 147.56, 147.95, 152.94; ¹³C NMR (DEPT 135, 75 MHz, CDCl₃) = δ 15.60, 33.71, 61.57, 62.45, 83.92, 116.66, 119.65, 120.25, 125.51, 127.60, 128.47, 128.69, 128.76, 128.99, 132.85; IR (KBr) = v 1358, 1597, 3448 cm⁻¹; MS (m/z): 425 (M⁺+1); Elemental Analysis for C₂₇H₂₄N₂O₃: Calculated: C, 76.39; H, 5.70; N, 6.60; Found: C, 76.45; H, 5.63; N, 6.71.

[16-methyl-11-(4-methylphenyl)-14-phenyl-8,12-dioxa-14,15-diazatetracyclo[8.7.0.0^{2,7}. 0^{13,17}]heptadeca-2,4,6,13(17),15-pentaen-10-yl]methanol (9b)

Yield = 93%; reaction time = 0.5 h; m.p. 195-197°C; ¹H NMR (300 MHz, CDCl₃) = δ 1.82 (bs, 1H), 2.03 (s, 3H), 2.32 (s, 3H), 3.23 (d, *J* = 11.4 Hz, 1H), 3.48 (d, *J* = 11.4 Hz, 1H), 3.84 (d, *J* = 11.4 Hz, 1H), 4.26-4.30 (m, 2H), 6.65-7.63 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.56,21.24, 33.77, 38.49, 61.61, 62.48, 83.98, 99.00, 116.64, 119.60, 120.10, 120.23, 125.45,127.50, 128.64, 128.96, 129.16, 132.61, 132.84, 138.44, 138.61, 147.58, 148.07, 152.97; IR (KBr) = v 1356, 1594, 3452 cm⁻¹; MS (m/z): 439 (M⁺+1); Elemental Analysis for C₂₈H₂₆N₂O₃: Calculated: C, 76.69; H, 5.98; N, 6.39; Found: C, 76.74; H, 5.87; N, 6.45.

 $[11-(3-chlorophenyl)-16-methyl-14-phenyl-8,12-dioxa-14,15-diazatetracyclo[8.7.0. 0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaen-10-yl]methanol (9c)$

Yield = 90%; reaction time = 0.5 h; m.p. 192-193°C; ¹H NMR (300 MHz, CDCl₃) = δ 1.90 (bs, 1H), 2.05 (s, 3H), 3.23 (d, *J* = 11.1 Hz, 1H), 3.52 (d, *J* = 10.8Hz, 1H), 3.78 (d, *J* = 11.4Hz, 1H), 4.28 (d, *J* = 11.4 Hz, 1H), 4.36 (s, 1H), 4.53 (s, 1H), 6.66-7.59 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.55, 33.61, 38.43, 61.51, 62.49, 83.07, 99.03, 116.69, 119.75, 119.95, 120.31, 125.63, 125.77, 127.59, 127.79, 128.74, 128.91, 129.02, 129.67, 132.78, 134.45, 137.63, 138.33, 147.58, 152.80; IR (KBr) = v 1351, 1589, 3443 cm⁻¹; MS (m/z): 459 (M⁺+1); Elemental Analysis for C₂₇H₂₃ClN₂O₃: Calculated: C, 70.66; H, 5.05; N, 6.10; Found: C, 70.71; H, 5.00; N, 6.18.

[6-methoxy-16-methyl-11,14-diphenyl-8,12-dioxa-14,15-diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaen-10-yl]methanol (9d)

Yield = 93%; reaction time = 0.5 h; m.p. 194-195°C; ¹H NMR (300 MHz, CDCl₃) = δ 1.79 (bs, 1H), 2.05 (s, 3H), 3.23 (d, *J* = 11.1 Hz, 1H), 3.52 (d, *J* = 11.1 Hz, 1H), 3.73 (s, 3H), 3.97 (d, *J* = 11.4 Hz, 1H), 4.33-4.38 (m, 2H), 5.56 (s, 1H), 6.69-7.64 (m, 13H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.62, 33.52, 38.33, 55.89, 61.63, 62.97, 83.85, 98.95, 110.47, 119.22, 120.27, 120.92, 124.73, 125.49, 127.57, 128.39, 128.76, 128.97, 135.51, 138.42, 142.24, 147.53, 147.95, 148.19; IR (KBr) = v 1349, 1586, 3456 cm⁻¹; MS (m/z): 455 (M⁺+1); Elemental Analysis for C₂₈H₂₆N₂O₄: Calculated: C, 73.99; H, 5.77; N, 6.16; Found: C, 73.88; H, 5.86; N, 6.23.

[4-bromo-16-methyl-11-(4-methylphenyl)-14-phenyl-8,12-dioxa-14,15-diazatetra cyclo[8.7.0.0^{2,7}.0^{13,17}]heptadeca-2,4,6,13(17),15-pentaen-10-yl]methanol (9e)

Yield = 90%; reaction time = 0.5 h; m.p. 194-196°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.24 (bs, 1H) 2.07 (s, 3H), 2.34 (s, 3H), 3.29 (d, J = 11.4 Hz, 1H), 3.54 (d, J = 11.4 Hz, 1H), 3.88 (d, J = 11.4 Hz, 1H), 4.29-4.33 (m, 2H), 5.52 (s, 1H), 6.68-7.66 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.60, 21.23, 33.88, 38.53, 60.39, 61.77, 84.02, 89.95, 116.66, 118.55, 119.61, 120.13, 125.37, 127.49, 128.66, 128.95, 129.19, 132.62, 132.83, 1338.58, 138.67, 147.52, 147.99, 152.92; IR (KBr) = v 1361, 1593, 3449 cm⁻¹; MS (m/z): 518 (M⁺+1); Elemental Analysis for C₂₈H₂₅BrN₂O₃: Calculated: C, 65.00; H, 4.87; N, 5.41; Found: C, 65.04; H, 4.82; N, 5.46.

A representative procedure for the synthesis of 14-methyl-12-phenyl-10,23-dioxa-12,13diazahexacyclo[14.8.0.0^{1,9}.0^{3,8}.0^{11,15}.0^{17,22}]tetracosa-3(8),4,6,11(15),13,17,19,21-octaene

(10a): To a solution of chromenopyranpyrazole alcohol 9a (0.10 g, 0.22 mmol) in dichloroethane (4ml), trifluoroacetic acid (15 equivalent) was added at room temperature and the resulting solution was kept under reflux condition for 15 h. After the completion of reaction as indicated by TLC, a saturated solution of sodium hydrogen carbonate (5 mL) was added slowly to the mixture and extrated using ethyl acetate. The organic layer was dried over Na₂SO₄ and the crude product thus obtained was purified using column chromatography to afford the desired product **10a** as a colourless solid.

14-methyl-12-phenyl-10,23-dioxa-12,13diazahexacyclo[14.8.0.0^{1,9}.0^{3,8}.0^{11,15}.0^{17,22}] tetra cosa-3(8),4,6,11(15),13,17,19,21-octaene (10a)

Yield = 85%; reaction time = 15 h; m.p. 220-222°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.09 (s, 3H), 3.83 (d, *J* = 11.7 Hz, 1H), 4.10 (d, *J* = 11.1 Hz, 1H), 4.21 (s, 1H), 4.29 (d, *J* = 11.7 Hz, 1H), 4.46 (d, *J* = 11.7 Hz, 1H), 5.46 (s, 1H), 6.72 – 7.64 (m, 13 H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.54, 34.93, 37.48, 61.57, 66.84, 83.92, 98.55, 116.97, 118.74, 120.35, 125.77, 127.29, 127.59, 128.98, 129.03, 129.29, 129.55, 132.70, 134.35, 138.21, 147.37, 147.62, 152.36; ¹³C NMR (DEPT 135, 75 MHz, CDCl₃) = δ 15.55, 34.92, 61.55, 66.84, 83.91, 116.97, 120.35, 125.78, 127.29, 127.59, 128.46, 128.98, 129.04, 129.29, 129.55, 132.71; IR (KBr) = v 1355, 1594, cm⁻¹; HRMS (m/z) Calcd for C₂₇H₂₂N₂O₂: 406.1681; Found: 406.1681.

5,14-dimethyl-12-phenyl-10,23-dioxa-12,13-diazahexacyclo[14.8.0.0^{1,9}.0^{3,8}.0^{11,15}.0^{17,22}] tetracosa-3(8),4,6,11(15),13,17,19,21-octaene (10b)

Yield = 80%; reaction time = 15 h; m.p. 225-227°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.08 (s, 3H), 2.34 (s, 3H), 3.83 (d, *J* = 11.7 Hz, 1H), 4.11 (d, *J* = 11.7 Hz, 1H), 4.21 (s, 1H), 4.27 (d, *J* = 12 Hz, 1H), 4.44 (d, *J* = 11.4 Hz, 1H), 5.42 (s, 1H), 6.72-7.64 (m, 12 H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.62, 21.19, 34.91, 37.43, 61.61, 66.94, 83.84, 98.54, 116.95, 118.81, 120.23, 125.65, 127.18, 129.01, 129.24, 129.63, 131.31, 132.74, 138.31, 139.59, 147.35, 147.71, 152.38; IR (KBr) = v 1357, 1599 cm⁻¹; MS (m/z): 421 (M⁺+1); Elemental Analysis for C₂₈H₂₄N₂O₂: Calculated: C, 79.98; H, 5.75; N, 6.66; Found: C, 79.89; H, 5.66; N, 6.72.

6-chloro-14-methyl-12-phenyl-10,23-dioxa-12,13-diazahexacyclo[14.8.0.0^{1,9}.0^{3,8}.0^{11,15}. 0^{17,22}]tetracosa-3(8),4,6,11(15),13,17,19,21-octaene (10c)

Yield = 83%; reaction time = 15 h; m.p. 228-230°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.09 (s, 3H), 3.83 (dd, *J* = 1.5, 11.7 Hz, 1H), 4.19 (s, 1H), 4.31 (d, *J* = 12 Hz, 1H), 4.43 (d, *J* = 11.7 Hz, 1H), 5.41 (s, 1H), 6.73-7.61 (m, 12 H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.58, 34.98, 37.53, 61.43, 66.71, 83.30, 98.55, 117.03, 118.55, 120.25, 120.37, 125.45, 125.59, 129.89, 127.52, 129.03, 129.09, 129.37, 129.79, 130.24, 132.66, 135.17, 136.36, 147.35, 152.24; 1357, 1599; MS (m/z): 441 (M⁺+1); Elemental Analysis for C₂₇H₂₂N₂O₂: Calculated: C, 73.55; H, 4.80; N, 6.35; Found: C, 73.62; H, 4.75; N, 6.44.

21-methoxy-14-methyl-12-phenyl-10,23-dioxa-12,13-diazahexacyclo[14.8.0.0^{1,9}.0^{3,8}.0^{11,15}. 0^{17,22}]tetracosa-3(8),4,6,11(15),13,17,19,21-octaene (10d)

Yield = 78%; reaction time = 15 h; m.p. 234-236°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.07 (s, 3H), 3.77-3.81 (m, 4H), 4.23-4.51 (m, 4H), 5.46 (s, 1H), 6.74-7.63 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.65, 34.73, 37.33, 55.92, 62.00, 66.90, 83.82, 98.49, 110.99, 119.58, 119.99, 120.35, 124.47, 125.75, 127.27, 128.97, 129.09, 129.60, 134.27, 138.25, 141.70, 147.33, 147.59, 148.34; IR (KBr) = v 1349, 1610 cm⁻¹; MS (m/z): 437 (M⁺+1); Elemental Analysis for C₂₈H₂₄N₂O₃: Calculated: C, 77.04; H, 5.54; N, 6.42; Found: C, 77.10; H, 5.48; N, 6.50.

19-bromo-5,14-dimethyl-12-phenyl-10,23-dioxa-12,13-diazahexacyclo[14.8.0.0^{1,9}.0^{3,8}. 0^{11,15}.0^{17,22}]tetracosa-3(8),4,6,11(15),13,17,19,21-octaene (10e)

Yield = 80%; reaction time = 15 h; m.p. 230-232°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.08 (s, 3H), 2.33 (s, 3H), 3.82 (d, *J* = 12 Hz, 1H), 4.08-4.28 (m, 3H), 4.43 (d, *J* = 11.4 Hz, 1H), 5.42 (s, 1H), 6.72-7.62 (m, 11H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.56, 21.20, 34.88, 37.43, 61.59, 66.93, 83.87, 98.58, 116.96, 118.76, 120.28, 120.34, 125.76, 127.18, 129.04, 129.27, 129.64, 131.27, 132.74, 138.18, 139.61, 147.39, 147.74, 152.38; IR (KBr) = v 1358, 1585 cm⁻¹; MS (m/z): 500 (M⁺+1); Elemental Analysis for C₂₈H₂₃BrN₂O₂: Calculated: C, 67.34; H, 4.64; N, 5.61; Found: C, 67.31; H, 4.67; N, 5.59.

A representative procedure for the synthesis of 16-methyl-11,14-diphenyl-8,12-dioxa-14,15 diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaene-10-carbaldehyde (11): To a solution of chromenopyranpyrazole alcohol 9a (0.10 g, 0.22 mmol) in DMSO (10 ml), IBX (1.5 equiv) was added at room temperature and stirred well at rt for 6 h. After the completion of reaction as indicated by TLC, the reaction mixture was poured into cold water and extrated using ethyl acetate. The organic layer was dried over Na₂SO₄ and the crude product thus obtained was purified using column chromatography to afford the desired product 11 as a colourless solid.

16-methyl-11,14-diphenyl-8,12-dioxa-14,15 diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] hep- tadeca-2,4,6,13(17),15-pentaene-10-carbaldehyde (11)

Yield = 90%; reaction time = 6 h; m.p. 180-182°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.18 (s, 3H), 4.49 (d, *J* = 11.4 Hz, 1H), 4.69 – 4.73 (m, 2H), 5.51 (s, 1H), 6.76 – 7.75 (m, 14H), 9.46 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) = δ 15.56, 35.00, 49.54, 61.14, 82.90, 98.26, 116.89, 118.90, 120.13, 120.31, 125.79, 127.23, 128.94, 129.06, 129.39, 132.27, 133.72, 138.28,

147.31, 147.38, 153.13, 202.43; IR (KBr) = v 1512, 1597, 1728 cm⁻¹; MS (m/z): 423 (M⁺+1); Elemental Analysis for $C_{27}H_{22}N_2O_3$: Calculated: C, 76.76; H, 5.25; N, 6.63; Found: C, 76.71; H, 5.33; N, 6.59.

A representative procedure for the synthesis of 16-methyl-11,14-diphenyl-8,12-dioxa-14,15 diazatetracyclo[8.7.0. $0^{2,7}$. $0^{13,17}$] heptadeca-2,4,6,13(17),15-pentaene-10-carboxylic acid (12): To a solution of chromenopyranpyrazole 5a (0.20 g, 0.44 mmol) in methanol (4ml), aquoues KOH solution (5 equivalent in 4ml water) was added at room temperature and the resulting solution was kept under reflux condition for 24 h. After the completion of reaction as indicated by TLC, a solution of dil. HCl was added slowly to the mixture and extrated using ethyl acetate. The organic layer was dried over Na₂SO₄ and the crude product thus obtained was purified using column chromatography to afford the desired product 12 as a colourless solid.

16-methyl-11,14-diphenyl-8,12-dioxa-14,15 diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaene-10-carboxylic acid (12)

Yield = 93%; reaction time = 24 h; m.p. 228-230°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.06 (s, 3H), 4.11 – 4.23 (m, 3H), 4.69 (s, 1H), 5.52 (s, 1H), 6.57 – 7.76 (m, 14H); ¹³C NMR (75 MHz, CDCl₃ CDCl₃; 3 drops DMSO-d₆) = δ 13.36, 14.36, 20.15, 59.34, 98.23, 115.53, 118.21, 119.13, 119.35, 124.59, 126.38, 127.38, 127.66, 127.74, 128.14, 131.37, 134.91, 137.65, 146.12, 146.90, 152.40, 169.97; IR (KBr) = v 1730, 1561, 1489 cm⁻¹; MS (m/z): 439 (M⁺+1); Elemental Analysis for C₂₇H₂₂N₂O₄: Calculated: C, 73.96; H, 5.06; N, 6.39; Found: C, 73.91; H, 5.14; N, 6.33.

A representative procedure for the synthesis of 16-methyl-11,14-diphenyl-8,12-dioxa-14,15 diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] heptadeca-2,4,6,13(17),15-pentaene-10-carbox amide (13): To a solution of chromenopyranpyrazole 8a (0.20 g, 0.47 mmol) in methanol (4ml), aquoues KOH solution (5 equivalent in 4ml water) was added at room temperature and the resulting solution was kept under reflux condition for 24 h. After the completion of reaction as indicated by TLC, a solution of dil. HCl was added slowly to the mixture and extrated using ethyl acetate. The organic layer was dried over Na_2SO_4 and the crude product thus obtained was purified using column chromatography to afford the desired product **13** as a colourless solid.

16-methyl-11,14-diphenyl-8,12-dioxa-14,15 diazatetracyclo[8.7.0.0^{2,7}.0^{13,17}] heptadeca-2, 4,6,13(17),15-pentaene-10-carboxamide (13)

Yield = 90%; reaction time = 24 h; m.p. 218-220°C; ¹H NMR (300 MHz, CDCl₃) = δ 2.57 (s, 3H), 4.23 – 4.48 (m, 3H), 5.61 (s, 1H), 5.74 (s, 1H), 5.83 (s, 1H), 6.97 – 7.79 (m, 14H); ¹³C NMR (75 MHz, CDCl₃) = δ 14.41, 31.58, 34.51, 67.89, 80.11, 99.10, 117.38, 120.16, 121.72, 125.97, 127.48, 128.50, 128.56, 129.110, 129.17, 130.24, 134.99, 138.25, 146.64, 148.63, 152.12, 171.25; IR (KBr) = v 1605, 1660, 3456cm⁻¹; MS (m/z): 438 (M⁺+1); Elemental Analysis for C₂₇H₂₃N₃O₃: Calculated: C, 74.12; H, 5.30; N, 9.60; Found: C, 70.20; H, 5.26; N, 9.71.

23

Elemental Composition Report

Single Mass Analysis

Tolerance = 200.0 mDa / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

31

.

7 7.749 7.745 7.745 7.7286 7.386 7.3386 7.334 361	7.207 7.182 7.154 7.127 7.127 6.914 6.911	6.886 6.864 6.861	- 5.570 - 5.570 - 4.762 - 4.598	4.555	4.329	2.698	2.078 2.078 1.283 1.258	L1.232	Current NAME EXPNO PROCNO	t Data Parameters PRSK-4-ET
Meo O H Meo N H Ph									F2 - Ac Date_ Time INSTRUM PROBHD PULPROC TD SOLVEN' NS DS SWH FIDRES AQ RG DW DE TE D1 TD0	cquisition Parameters 20130319 20.55 M spect 5 mm DUL 13C-1 G 2930 65536 F CDC13 7 2 6172.839 Hz 0.094190 Hz 5.3084660 sec 128 81.000 usec 300.0 K 1.0000000 sec 1
	Ma		_tek_						NUC1 P1 PL1 SF01 SF SI SF WDW SSB LB GB FC	1H 13.15 usec 0.00 dB 300.1318534 MHz rocessing parameters 32768 300.1300082 MHz EM 0 0.30 Hz 0 1.00
11 10 9	2.10 3.21 3.21 2.20 2.20 1.01 8 8	6 <u>(1.00)</u>	5 4	3.03	2.14	2.98 N	1	0	ppm	

36

43

Elemental Composition Report

Single Mass Analysis

Tolerance = 200.0 mDa / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

ALK2 Dept of Chemistry - IITM - Chennai QTOF - Micromass-UK ALK2 24 (0.450) AM (Cen.2, 80.00, Ht,5000.0,0.00,0.70); Sm (Mn, 4x2.00); Cm (23:31)							CE =10 eV 23-Mar-2010
100 %- 0 481.6523 481.7944 482.0514	482.306	67 482.480	4 482.6723		483.1916		483.8002
481.80 482.00	482.20 4	182.40	482.60	482.80 483.00	483.20 4	483.40 483.60	m/z
Minimum: Maximum:	200.0	5.0	-1.5 50.0				
Mass Calc. Mass	mDa	PPM	DBE	Score	Formula		
483.1916 483.1920	-0.4	-0.9	17.5	1	C29 H27 H	N2 05	

.

73

٩,

NOESY spectrum of compound 8a

Elemental Composition Report

Single Mass Analysis Tolerance = 200.0 mDa / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 4 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) ALK-4 Dept of Chemistry - IITM - Chennai

ALK-4 QTOF - Micromass-UK ALK-4 20 (0.374) AM (Cen,2, 80	K-4 Dept of Chemistry - IITM - Chennai OF - Micromass-UK K-4 20 (0.374) AM (Cen.2, 80.00, Ht,5000.0,0.00,0.70); Sm (Mn, 4x2.00); Cm (19:26)									
100 %- 418.9633 419.2650 41	9 3789 419.5923	419 71	71	42	0.1713			1.4564		
419.00 419.20	419.40 419	.60	419.80	420.00	420.20	420.40	420.60	420.844.3 m/z 420.80		
Minimum: Maximum:	200.0	5.0	-1.5 50.0							
Mass Calc. Mass	mDa	PPM	DBE	Score	Form	ula				
420.1713 · 420.1712	0.1	0.3	18.5	1	C27	H22 N3	02			

Elemental Composition Report

Page 1

4

Single Mass Analysis

Tolerance = 200.0 mDa / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons

4 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

87

101

102

UNIV. OF MADRAS	7.1139	5.457 4.476 4.437 4.269 4.120 4.120	2.090	Ct NJ PI	Arrent Data Parameters AME AD-H-FINAL KPNO 1 ROCNO 1
O H H U H O H I Da	Me N N Ph			F2 Tj IN Pf Pf TJ SC SS SS SS SS SS SS SS SS TT DS TT TT	2 - Acquisition Parameters ate
				NU P1 P1 SF SI SF SI SF SI SF VI SS LE GE PC	CHANNEL f1 CL 1H 13.15 usec 1 0.00 dB VOI 300.1318534 MHz 2 - Processing parameters 32768 300.1300281 MHz W EM B 0 0.30 Hz 0 1.00
11 10 9 8	2.13 2.13 2.13 2.13 1.00 1.00 1.00 1.00 1.00 1.00	5 4 3 5 11 02 5 11 02 1 02 1 02 1 02 1 02 1 02 1 02 1 0	2 1 U	0 ppm	

